In function spaces \(X\) of (equivalence classes) of functions of the type \(f:\Omega\to\mathbb{R}\) with \(\Omega\subset\mathbb{R}^N\) such as Lebesgue spaces \(L^p(\Omega)\) and Sobolev spaces \(W_0^{1,p}(\Omega),W^{1,p}(\Omega)\) we often find sets of the of the type
\begin{equation*}
\mathbf{K}(X)=\{v\in X: |v(x)|\leq \alpha(x) \quad \text{for almost every } x\in\Omega\}
\end{equation*}
where \(\alpha:\Omega\to\mathbb{R}\) is some given function.
Suppose that the boundary of the set \(\Omega\) is smooth enough (at least Lipschitz), then we have the following density results
\begin{align*}
\overline{C^\infty(\Omega)}^{L^p(\Omega)}&=L^p(\Omega), &\overline{C_c^\infty(\Omega)}^{W_0^{1,p}(\Omega)}&=W_0^{1,p}(\Omega), &\text{and} & &\overline{C^\infty(\bar{\Omega})}^{W^{1,p}(\Omega)}&=W^{1,p}(\Omega).
\end{align*}
That is smooth functions on \(\Omega\), with compact support within \(\Omega\), and up to the boundary \(\bar{\Omega}\) are dense in \(L^p(\Omega)\), \(W_0^{1,p}(\Omega)\), and \(W^{1,p}(\Omega)\), respectively. However, in order to obtain the analogous results with contraints as for example
\begin{align*}
\overline{\mathbf{K}(W^{1,p}(\Omega))\cap C^\infty(\bar{\Omega})}^{W^{1,p}(\Omega)}&=\mathbf{K}(W^{1,p}(\Omega)),
\end{align*}
additional requirements on \(\alpha:\Omega\to\mathbb{R}\) are needed.
\(\mathbf{i)}\) There are irregular enough \(\alpha:\Omega\to\mathbb{R}\) that the above fail (see Hintermüller-Rautenberg-Rösel(2017))
\(\mathbf{ii)}\) In general, a dense continuous embedding \(Y\hookrightarrow X\) is not enough to guarantee
\begin{equation*}
\overline{\mathbf{K}\cap Y}^X=\mathbf{K},
\end{equation*}
for \(\mathbf{K}\subset X\).
Regularization of Optimization Problems
Sets of the type \(\mathbf{K}:=\mathbf{K}(X)\) commonly are constraints (on controls or state variables) in optimization problems, i.e., \begin{equation}\tag{$\mathrm{P}$}\label{P} \min_{u\in \mathbf{K}\subset X} J(u). \end{equation} Discretization or regularization approaches to solving \eqref{P} require to consider \begin{equation}\tag{$\mathrm{P}_\gamma$}\label{Pg} \min_{u\in Y\subset X} J(u)+\gamma R(u), \end{equation} where \(\gamma>0\) and \(R(u)=g(\|u\|_Y)\) for some \(g:\mathbb{R}^+_0\to \mathbb{R}^+_0\) strictly increasing. Under natural conditions on \(J\) that provide existence of minimizers, sufficient conditions for the sequence of minimizers \(u_\gamma\) to \eqref{Pg} to converge to a minimizer \(u^*\) of \eqref{P} are given by \begin{equation*} \overline{\mathbf{K}\cap Y}^X=\mathbf{K}. \end{equation*}

with M. Hintermüller, K. Papafitsoros, and H. Sun
arXiv preprint 2002.05614, 2020.


with M. Hintermüller, and K. Papafitsoros.
arXiv preprint 1910.02751, 2019.


with A. N. Ceretani.
Zeitschrift für angewandte Mathematik und Physik (ZAMP) 70: 14, 2019.


with M. Hintermüller, and S. Rösel.
Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 473(2205), 2017.


Part I: Modelling and theory
with M. Hintermüller.
Journal of Mathematical Imaging and Vision, 59(3), 498-514, 2017.


Part II: Algorithm, its analysis and numerical tests.
with M. Hintermüller, T. Wu and A. Langer.
Journal of Mathematical Imaging and Vision, 59(3), 515-533, 2017.


with M. Hintermüller, and K. Papafitsoros.
Journal of Mathematical Analysis and Applications, 454(2), pp. 891-935, 2017.


with M. Hintermüller.
Journal of Mathematical Analysis and Applications, 426(1), pp. 585-593, 2015.