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These are some expository notes (prepared for a seminar at Penn State) on subelliptic
estimates for Bismut’s hypoelliptic Laplacian in the simplest possible case, T%S!, where the
operator more or less reduces to the ‘Fokker-Planck operator’.

A reference is the book by Helffer-Nier, Hypoelliptic estimates and spectral theory for Fokker-
Planck operators and Witten Laplacians, Chapter 5.

1. HYPOELLIPTIC LAPLACIAN ON T*S!

Let T*S! = S! xR with coordinates # € S' = R/277Z and y € R. The hypoelliptic Laplacian
(or Fokker-Planck operator) is

L=-0;+y*-1+X, X =y,
The operator X is (formally) skew-adjoint, so L is neither self-adjoint nor skew-adjoint. Let
a = 0, b=0,+y.
Then
L=bb+ X, X =b*a —a’b.
The operators a, a* commute with each other and with b, b*. Moreover

b6 =1, [bX]=a

2. THE SOBOLEV SCALE
Introduce the operator
A=1+d"a+bd=-02-0, +y"

It is an essentially self-adjoint, positive unbounded operator in the Hilbert space L?(T*S!)
(initially with domain consisting of Schwartz functions, but then pass to its closed extension
to obtain a self-adjoint operator).
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Definition 2.1. For s > 0 let
H® := dom(A*?) ¢ H = L¥(T*SY).

For s < 0 set H® = (H*)*. Let H* be the intersection of all the H*, and H~°° the union
of all the H®. Then H* coincides with the Schwartz functions and H~°° with the tempered
distributions. Define an inner product on H® by

(w,0) s = (APu, APo) ;s = |AY .
The spaces H® are Hilbert spaces and moreover for every r € R
A2 HTS o HT
is a unitary isomorphism.

Example 2.2. H' = W' N dom(y), where W' is the usual Sobolev space, and y is viewed as a
multiplication operator in L?(T*S'). This follows from

IAY2u))? = (Au,u) = (=07 = 8))u.u) + (yPu,u) = | (=07 — )" 2ul® + [lyu)®
which implies dom(A/2) = dom((—82 — 8;)1/2) N dom(y).

Remark 2.3. For s > t the embedding H* < H' is compact, and is trace class when s > ¢ + 4.
(In another talk we saw that A2 is trace class.)

Definition 2.4. If an operator T': H* — H™ extends to a bounded operator
T:H™™ — H*

for all s, then we say that T has (analytic) order r. In particular A™/? has order r. This defines
a filtration on the algebra of operators H*° — H°.

Lemma 2.5. The operators a,b,a*,b* all have order 1. The operators X and L have order 2.
This requires some justification, at least for b. Note that
[bul® = (6"bu,u) < (Au,u) = [|AYVul* = |Ju]?

which shows that b, viewed as an operator H! — H is bounded. To see that b viewed as
an operator H*t! — H* is bounded, one can use the iterated commutators formula for the
operator A%/2 that we saw in another talk.

Lemma 2.6. The operators [A%/?, X], [A%/?, L] have order s.

This is one less than the ‘naive’ order, which would be s +2 — 1 = s+ 1. One expects this
because

[A, X] =b%a+ ba*
has order 2 instead of 3. Again the general case can be handled using the iterated commutators

formula.
Consideration of orders of operators will be useful in proving the subelliptic estimate.
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3. SUBELLIPTIC ESTIMATE
The main goal is:
Theorem 3.1 (Subelliptic estimate). For all s there is a constant C > 0 with
lull3y s < CULulS + [lul?)
for allu € Hy.
Remark 3.2. It is enough to check this for s = 0, since then
lul?, ; = A2
< C(||LAY2u|? + || A% 2ul|?)
< C(|ILull? + [lull3 + 1L, A72Jul|?)
and [L, A%/?] has order s so the commutator term is bounded by C’||u||? for some constant C”.
We will try to prove an inequality of the form
1A% U] < C([Lul® + Ju]®) (1)

with ¢ > 0, and see in the course of the proof why ¢ < % works. Throughout C will denote a
positive constant (not depending on ) that can change from line to line. We use some basic
facts over and over again:

(a) Let R denote the R part of a complex number. The bilinear form R(-,-) is symmetric
and satisfies the Cauchy-Schwartz inequality

[R(w, v)| < lullllv]-
The symmetry of R(-,-) is useful because it implies that
R(Xu,u) =0

for any u € H* (X is formally skew-adjoint). Thus one useful trick will be to replace
b*b with L = b*b + X in certain expressions.

(b) One has the inequality 2|ul|[|v]] < ||ul|? + ||v]|>. We will often simply drop the factor
‘2’, since don’t attempt to optimize our constants.

We start by proving similar estimates for a couple simpler operators.
Lemma 3.3. One has the inequalities
oull® < | Zuf|* + [lul®.
Proof. As X is formally skew-adjoint, R(Xwu,u) = 0. Thus
lbull* = R(b*bu, u) = R(Lu,u) < || Lul* + [lul®. (2

~—

Lemma 3.4. For q < % one has

|(Lu, A a"bu)| < O(||Lull + [[ul®).
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Proof. For ¢ < % the operator A9~!a* has order 0 so is bounded. Hence, by the Cauchy-
Schwartz inequality

|(Lu, A a*bu)| < || Lul[[|AT a*||[|bull < O Lullllbu]| < C(|Lul® + [|bull?),
and Lemma 3.3 gives the result. O
Lemma 3.5. Forq < % one has

15 aAT a2 < C (| Lul2 + ul?).
Proof. Since (1 4 b*b) commutes with a and with A,
b aATt = b*(1 + b*b) " 2a AT (1 + b*b) V2.

For ¢ < % the operator aA?~! is bounded, hence

15Tl < 151+ 5) "2 [a AT (1 + 5B)Y2ul| = CII(L+ bb) 2l
Squaring ||(1 4 b*b)'/?u|| we find

1L+ 070) 20 = R((L+b*b)u, u) = [Jul® + R(Lu, w) < [full® + | Lul|* + [Ju]*

O
Lemma 3.6. For q < % one has
|(Lu, b*aA T )| < C()|Lul* + [Jul).
Proof. Applying the Cauchy-Schwartz inequality to the left hand side,
[(Lu, b*aAT )] < || Lufl[[b*a A ul| < [ Lul® + |5 ad®u]%.
Lemma 3.5 gives the result. O

Lemma 3.7. For q < % we have a bound
1bAT™ a*bul|* < O(||Lul|* + [Jul|?).
Proof. We have
1bAT a*bul|? = R(B*DAT o bu, AT 1 a*bu)
= R(LAT Ta*bu, AT a*bu)
= R(AT a*bLu, AT a*bu) + R([L, AT a*blu, AT a*bu)

using N(Xv,v) = 0 with v = A9 1a*b in the second line, and then commuting L past A 1a*b
in the third line. The first term becomes

R(aA?T2a*bLu, bu).
For ¢ < i, A?4=2 has order < —3 and so aA%9~2a*b is bounded. So this is bounded by
Cll Lulllbull < C(|Lull® + [Ju]]?).
For the second term make the replacement L = b*b + X, and use

[b°b+ X, AT a*b] = —ATlg*b — [X, AT b — AT a%a,
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where we also used [X,b] = —a to simplify the third term. Thus
R([L, AT a*blu, AT a*bu) = — || AT La*bu*—R([X, AT Ya*b, AT a*bu) —R(AT Lo au, AT a*bu).
We can drop the first term which is always negative. Write the second term as

R(aAT AL, X]a*bu, bu)

and note that for g < i the operator aA?"1[A971) X]a* has order 0, so is bounded—thus this
term is bounded by C||bu||> < C(||Lul||? + ||u|?). Write the third term as

R(aA*2a*au, bu)

and note aA%~2a*a has order < 0, so is bounded—hence this term is bounded by C'||ul|[|bu|| <

Clull® +1bull?) < C(ILull* + 2| ull?). O
Proof of Theorem 3.1: Note
1A% U] = (A%u,u) = (AT (1 + a”a + b b)u, u). (3)

Consider first AT~ 1p*bu. If g < %, the operator A9~1b* has non-positive order, so is bounded.
Thus

IAT6"bul| < C|lbu]
for some constant C, and use Lemma 3.3. This shows that the b*b term in (3) is easily bounded
by a term of the form (1), as long as ¢ < % It remains to bound

R(AT a*au, u). (4)
Since we know how to bound terms involving b’s, it makes sense to begin by making the
replacement
a = [b, X]
ie.
AT g*a = AT a* (bX — Xb)
= AT 1g*bX — XA ' — [ATY, X]a*b.

Substituting this in (4), using that X is formally skew-adjoint and the symmetry of the bilinear
form R(-,-) we have

R(AT o au, u) = R(AT La*bXu, u) — R(XAT La*bu, u) — R(AT a*, X]bu, u)
= R(Xu, (AT 1a*b + b aAT ) — R([AT a*, X]bu, u).

In the second term, the commutator [A?~!, X| has order 2(q — 1), so [A?"!, X]a* has order
2¢—1. With g < % this operator is bounded, hence the commutator term above is bounded by

Clibullllull < C(llbull? + [Jull*) < C(|[Lull* + 2[|u]?),
using equation (2). This leaves us with
R(Xu, (AT a*b 4 b*aAT™1)u).

Since we know how to bound terms involving L’s and b’s, it makes sense to make the
replacement X = L — b*b. So we have a difference of two terms

R(Lu, (AT a*b + b*aATV)u) (5)
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and
R(b*bu, (AT a*b + b*aAT ). (6)
Let’s consider (6) first. For one of the parts
R(b*bu, AT a*bu) = R(bu, bAT La*bu) < ||bul® + [|bAT L a*bul|? (7)

and now apply Lemmas 3.3, 3.7. For the other part move the b*b over and note that
b*(bb*)aAT™! = b* (b*b 4+ 1)aAT™ L = b*a AL (b 4 1)
where we used the fact that b*b + 1 commutes with A, a. Thus
R(b*bu, b*aAT ) = R(u, b*aAT 1 (b*b + 1)u) = R(OAT La*bu, bu) + R(u, b*aAT ).

The first term in this expression is bounded as in (7), while for the second part we use that
aA9~! is bounded to get an upper bound of the form C/||bul|||lu| < C(||bul|? + ||u||?) and then
use Lemma 3.3. This completes the discussion of (6).

For (5) we use Lemma 3.5 to bound the second term. For the first term use the Cauchy-
Schwartz inequality

R(Lu, AT a*bu) < || Lul|[| AT a*bu|| < || Lul|® + [|AY a*bul|®.

The operator A?~1g* is bounded, so one gets a bound for the second term in this expression
of the form
C|bul?

and now use Lemma 3.3. O

4. M-ACCRETIVITY

The argument here is a simplification of that appearing in Chapter 5 of the book by Helffer-
Nier.
We must show that for some A\ > 0 the range of L + A is dense in H (we will see A = 2 is
large enough). Let
T=L+2=-0;+y"+1+X.
It is equivalent to show that if f € L?(T*S!) and
(f,Tu) =0, YueCX(T*S") = f=0

or, in other words, if 7*f = 0 (in the sense of distributions) then f = 0. There is a similar
subelliptic estimate for L*, and it implies that f must be smooth (e.g. one gets an inequality
for the 1/4 Sobolev norm by a constant times the 0 Sobolev norm, so the 1/4 Sobolev norm
must be finite, and so on). (We will see that, apart from the sub-elliptic estimate, the 32
and X terms play no further role in proving m-accretivity.) We can assume f is real-valued
(since T*R(f) = 0 = T*J(f) so one could apply the argument below separately to the real and
imaginary parts)—this is a small convenience because then the inner products below will all
be symmetric.
Now the idea is to replace f with C,% f, where

G(y) = C¢(3)

and ¢ is a smooth compactly supported bump function in the y-direction (the non-compact
direction). By dominated convergence ||Cxf|> — ||f]|?> as k& — oo. Having the cutoff function
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will allow us to freely integrate by parts in the y-variable. At the end of the argument we will
take k£ — oo and obtain the result.

Since f is smooth and (; has compact support, the equation T*f = 0 implies in particular
that

0= (T"f,Gif) = (£, T(GN) = (f, (=05 + 1+ y* + X)), (8)
Using integration by parts, the —65 term equals’
(f, =05 1)) = 10y (GNP = 10y Cr) FII.
Substituting this into (8), using X ¢ =0, (f, X f) = 0 we find
0= 10y (G HII* = @G FIIP + (f, (L +y*)Gf) = =1@yC) FIIP + (f, (1 +y*)C ),
thus

G I+ Ny 1% < 1(DyCe) 11
By the definition (i (y) = ¢(%) we have

C
1@y FI* < N0y GlPIFI* = 511 £

for some constant C. Thus, dropping the positive term ||y(xf||* we have

C
G £ 17 < 5 11
Taking k — oo shows ||, f||? — 0. Thus f =0 € H.

1Integrating by parts once we have
(f, =05(Ge£)) = By f, (ByCe)Si f + CrDy (Cr )
= (GO f, (OyCk) ) + (CkOy f, Oy (Ck f))-
Use CrOyf = 0y(Ckf) — fOyCr in the second term and note that
(CkOy [, (0yC) ) — ((OyCk).f, Oy (G f)) = ((DyCk) S, = fOuCk)
(here we used the symmetry of (-,-) for R-valued arguments) to get

(f, =05 () = 110y (G NI = 1Dy Cr) FII*.
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