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These are some expository notes (prepared for a seminar at Penn State) on subelliptic
estimates for Bismut’s hypoelliptic Laplacian in the simplest possible case, T ∗S1, where the
operator more or less reduces to the ‘Fokker-Planck operator’.

A reference is the book by Helffer-Nier, Hypoelliptic estimates and spectral theory for Fokker-
Planck operators and Witten Laplacians, Chapter 5.

1. Hypoelliptic Laplacian on T ∗S1

Let T ∗S1 = S1×R with coordinates x ∈ S1 = R/2πZ and y ∈ R. The hypoelliptic Laplacian
(or Fokker-Planck operator) is

L = −∂2y + y2 − 1 +X, X = y∂x.

The operator X is (formally) skew-adjoint, so L is neither self-adjoint nor skew-adjoint. Let

a = ∂x, b = ∂y + y.

Then

L = b∗b+X, X = b∗a− a∗b.
The operators a, a∗ commute with each other and with b, b∗. Moreover

[b, b∗] = 1, [b,X] = a.

2. The Sobolev scale

Introduce the operator

∆ = 1 + a∗a+ b∗b = −∂2x − ∂2y + y2.

It is an essentially self-adjoint, positive unbounded operator in the Hilbert space L2(T ∗S1)
(initially with domain consisting of Schwartz functions, but then pass to its closed extension
to obtain a self-adjoint operator).
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Definition 2.1. For s ≥ 0 let

Hs := dom(∆s/2) ⊂ H = L2(T ∗S1).

For s < 0 set Hs = (H−s)∗. Let H∞ be the intersection of all the Hs, and H−∞ the union
of all the Hs. Then H∞ coincides with the Schwartz functions and H−∞ with the tempered
distributions. Define an inner product on Hs by

(u, v)Hs = (∆s/2u,∆s/2v)L2 , ‖u‖s = ‖∆s/2u‖.

The spaces Hs are Hilbert spaces and moreover for every r ∈ R

∆s/2 : Hr+s → Hr

is a unitary isomorphism.

Example 2.2. H1 = W 1 ∩ dom(y), where W 1 is the usual Sobolev space, and y is viewed as a
multiplication operator in L2(T ∗S1). This follows from

‖∆1/2u‖2 = (∆u, u) = ((−∂2x − ∂2y)u, u) + (y2u, u) = ‖(−∂2x − ∂2y)1/2u‖2 + ‖yu‖2

which implies dom(∆1/2) = dom((−∂2x − ∂2y)1/2) ∩ dom(y).

Remark 2.3. For s > t the embedding Hs ↪→ Ht is compact, and is trace class when s ≥ t+ 4.
(In another talk we saw that ∆−2 is trace class.)

Definition 2.4. If an operator T : H∞ → H∞ extends to a bounded operator

T : Hr+s → Hs

for all s, then we say that T has (analytic) order r. In particular ∆r/2 has order r. This defines
a filtration on the algebra of operators H∞ → H∞.

Lemma 2.5. The operators a, b, a∗, b∗ all have order 1. The operators X and L have order 2.

This requires some justification, at least for b. Note that

‖bu‖2 = (b∗bu, u) ≤ (∆u, u) = ‖∆1/2u‖2 = ‖u‖21
which shows that b, viewed as an operator H1 → H is bounded. To see that b viewed as
an operator Hs+1 → Hs is bounded, one can use the iterated commutators formula for the
operator ∆s/2 that we saw in another talk.

Lemma 2.6. The operators [∆s/2, X], [∆s/2, L] have order s.

This is one less than the ‘naive’ order, which would be s+ 2− 1 = s+ 1. One expects this
because

[∆, X] = b∗a+ ba∗

has order 2 instead of 3. Again the general case can be handled using the iterated commutators
formula.

Consideration of orders of operators will be useful in proving the subelliptic estimate.
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3. Subelliptic estimate

The main goal is:

Theorem 3.1 (Subelliptic estimate). For all s there is a constant C > 0 with

‖u‖2
s+ 1

4

≤ C(‖Lu‖2s + ‖u‖2s)

for all u ∈ H∞.

Remark 3.2. It is enough to check this for s = 0, since then

‖u‖2
s+ 1

4

= ‖∆s/2u‖21
4

≤ C(‖L∆s/2u‖2 + ‖∆s/2u‖2)

≤ C(‖Lu‖2s + ‖u‖2s + ‖[L,∆s/2]u‖2)

and [L,∆s/2] has order s so the commutator term is bounded by C ′‖u‖2s for some constant C ′.

We will try to prove an inequality of the form

‖∆
q
2u‖2 ≤ C(‖Lu‖2 + ‖u‖2) (1)

with q > 0, and see in the course of the proof why q ≤ 1
4 works. Throughout C will denote a

positive constant (not depending on u) that can change from line to line. We use some basic
facts over and over again:

(a) Let < denote the R part of a complex number. The bilinear form <(·, ·) is symmetric
and satisfies the Cauchy-Schwartz inequality

|<(u, v)| ≤ ‖u‖‖v‖.

The symmetry of <(·, ·) is useful because it implies that

<(Xu, u) = 0

for any u ∈ H∞ (X is formally skew-adjoint). Thus one useful trick will be to replace
b∗b with L = b∗b+X in certain expressions.

(b) One has the inequality 2‖u‖‖v‖ ≤ ‖u‖2 + ‖v‖2. We will often simply drop the factor
‘2’, since don’t attempt to optimize our constants.

We start by proving similar estimates for a couple simpler operators.

Lemma 3.3. One has the inequalities

‖bu‖2 ≤ ‖Lu‖2 + ‖u‖2.

Proof. As X is formally skew-adjoint, <(Xu, u) = 0. Thus

‖bu‖2 = <(b∗bu, u) = <(Lu, u) ≤ ‖Lu‖2 + ‖u‖2. (2)

�

Lemma 3.4. For q ≤ 1
2 one has

|(Lu,∆q−1a∗bu)| ≤ C(‖Lu‖2 + ‖u‖2).
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Proof. For q ≤ 1
2 the operator ∆q−1a∗ has order 0 so is bounded. Hence, by the Cauchy-

Schwartz inequality

|(Lu,∆q−1a∗bu)| ≤ ‖Lu‖‖∆q−1a∗‖‖bu‖ ≤ C‖Lu‖‖bu‖ ≤ C(‖Lu‖2 + ‖bu‖2),

and Lemma 3.3 gives the result. �

Lemma 3.5. For q ≤ 1
2 one has

‖b∗a∆q−1u‖2 ≤ C(‖Lu‖2 + ‖u‖2).

Proof. Since (1 + b∗b) commutes with a and with ∆,

b∗a∆q−1 = b∗(1 + b∗b)−1/2a∆q−1(1 + b∗b)1/2.

For q ≤ 1
2 the operator a∆q−1 is bounded,hence

‖b∗a∆q−1u‖ ≤ ‖b∗(1 + b∗b)−1/2‖‖a∆q−1‖‖(1 + b∗b)1/2u‖ = C‖(1 + b∗b)1/2u‖.

Squaring ‖(1 + b∗b)1/2u‖ we find

‖(1 + b∗b)1/2u‖2 = <((1 + b∗b)u, u) = ‖u‖2 + <(Lu, u) ≤ ‖u‖2 + ‖Lu‖2 + ‖u‖2.

�

Lemma 3.6. For q ≤ 1
2 one has

|(Lu, b∗a∆q−1u)| ≤ C(‖Lu‖2 + ‖u‖2).

Proof. Applying the Cauchy-Schwartz inequality to the left hand side,

|(Lu, b∗a∆q−1u)| ≤ ‖Lu‖‖b∗a∆q−1u‖ ≤ ‖Lu‖2 + ‖b∗a∆q−1u‖2.

Lemma 3.5 gives the result. �

Lemma 3.7. For q ≤ 1
4 we have a bound

‖b∆q−1a∗bu‖2 ≤ C(‖Lu‖2 + ‖u‖2).

Proof. We have

‖b∆q−1a∗bu‖2 = <(b∗b∆q−1a∗bu,∆q−1a∗bu)

= <(L∆q−1a∗bu,∆q−1a∗bu)

= <(∆q−1a∗bLu,∆q−1a∗bu) + <([L,∆q−1a∗b]u,∆q−1a∗bu)

using <(Xv, v) = 0 with v = ∆q−1a∗b in the second line, and then commuting L past ∆q−1a∗b
in the third line. The first term becomes

<(a∆2q−2a∗bLu, bu).

For q ≤ 1
4 , ∆2q−2 has order ≤ −3 and so a∆2q−2a∗b is bounded. So this is bounded by

C‖Lu‖‖bu‖ ≤ C(‖Lu‖2 + ‖u‖2).

For the second term make the replacement L = b∗b+X, and use

[b∗b+X,∆q−1a∗b] = −∆q−1a∗b− [X,∆q−1]a∗b−∆q−1a∗a,
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where we also used [X, b] = −a to simplify the third term. Thus

<([L,∆q−1a∗b]u,∆q−1a∗bu) = −‖∆q−1a∗bu‖2−<([X,∆q−1]a∗b,∆q−1a∗bu)−<(∆q−1a∗au,∆q−1a∗bu).

We can drop the first term which is always negative. Write the second term as

<(a∆q−1[∆q−1, X]a∗bu, bu)

and note that for q ≤ 1
4 the operator a∆q−1[∆q−1, X]a∗ has order 0, so is bounded—thus this

term is bounded by C‖bu‖2 ≤ C(‖Lu‖2 + ‖u‖2). Write the third term as

<(a∆2q−2a∗au, bu)

and note a∆2q−2a∗a has order ≤ 0, so is bounded—hence this term is bounded by C‖u‖‖bu‖ ≤
C(‖u‖2 + ‖bu‖2) ≤ C(‖Lu‖2 + 2‖u‖2). �

Proof of Theorem 3.1: Note

‖∆
q
2u‖2 = (∆qu, u) = (∆q−1(1 + a∗a+ b∗b)u, u). (3)

Consider first ∆q−1b∗bu. If q ≤ 1
2 , the operator ∆q−1b∗ has non-positive order, so is bounded.

Thus
‖∆q−1b∗bu‖ ≤ C‖bu‖

for some constant C, and use Lemma 3.3. This shows that the b∗b term in (3) is easily bounded
by a term of the form (1), as long as q ≤ 1

2 . It remains to bound

<(∆q−1a∗au, u). (4)

Since we know how to bound terms involving b’s, it makes sense to begin by making the
replacement

a = [b,X]

i.e.

∆q−1a∗a = ∆q−1a∗(bX −Xb)
= ∆q−1a∗bX −X∆q−1a∗b− [∆q−1, X]a∗b.

Substituting this in (4), using that X is formally skew-adjoint and the symmetry of the bilinear
form <(·, ·) we have

<(∆q−1a∗au, u) = <(∆q−1a∗bXu, u)−<(X∆q−1a∗bu, u)−<([∆q−1a∗, X]bu, u)

= <(Xu, (∆q−1a∗b+ b∗a∆q−1)u)−<([∆q−1a∗, X]bu, u).

In the second term, the commutator [∆q−1, X] has order 2(q − 1), so [∆q−1, X]a∗ has order
2q− 1. With q ≤ 1

2 this operator is bounded, hence the commutator term above is bounded by

C‖bu‖‖u‖ ≤ C(‖bu‖2 + ‖u‖2) ≤ C(‖Lu‖2 + 2‖u‖2),
using equation (2). This leaves us with

<(Xu, (∆q−1a∗b+ b∗a∆q−1)u).

Since we know how to bound terms involving L’s and b’s, it makes sense to make the
replacement X = L− b∗b. So we have a difference of two terms

<(Lu, (∆q−1a∗b+ b∗a∆q−1)u) (5)
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and
<(b∗bu, (∆q−1a∗b+ b∗a∆q−1)u). (6)

Let’s consider (6) first. For one of the parts

<(b∗bu,∆q−1a∗bu) = <(bu, b∆q−1a∗bu) ≤ ‖bu‖2 + ‖b∆q−1a∗bu‖2 (7)

and now apply Lemmas 3.3, 3.7. For the other part move the b∗b over and note that

b∗(bb∗)a∆q−1 = b∗(b∗b+ 1)a∆q−1 = b∗a∆q−1(b∗b+ 1)

where we used the fact that b∗b+ 1 commutes with ∆, a. Thus

<(b∗bu, b∗a∆q−1u) = <(u, b∗a∆q−1(b∗b+ 1)u) = <(b∆q−1a∗bu, bu) + <(u, b∗a∆q−1u).

The first term in this expression is bounded as in (7), while for the second part we use that
a∆q−1 is bounded to get an upper bound of the form C‖bu‖‖u‖ ≤ C(‖bu‖2 + ‖u‖2) and then
use Lemma 3.3. This completes the discussion of (6).

For (5) we use Lemma 3.5 to bound the second term. For the first term use the Cauchy-
Schwartz inequality

<(Lu,∆q−1a∗bu) ≤ ‖Lu‖‖∆q−1a∗bu‖ ≤ ‖Lu‖2 + ‖∆q−1a∗bu‖2.
The operator ∆q−1a∗ is bounded, so one gets a bound for the second term in this expression
of the form

C‖bu‖2

and now use Lemma 3.3. �

4. m-accretivity

The argument here is a simplification of that appearing in Chapter 5 of the book by Helffer-
Nier.

We must show that for some λ > 0 the range of L + λ is dense in H (we will see λ = 2 is
large enough). Let

T = L+ 2 = −∂2y + y2 + 1 +X.

It is equivalent to show that if f ∈ L2(T ∗S1) and

(f, Tu) = 0, ∀u ∈ C∞c (T ∗S1) ⇒ f = 0

or, in other words, if T ∗f = 0 (in the sense of distributions) then f = 0. There is a similar
subelliptic estimate for L∗, and it implies that f must be smooth (e.g. one gets an inequality
for the 1/4 Sobolev norm by a constant times the 0 Sobolev norm, so the 1/4 Sobolev norm
must be finite, and so on). (We will see that, apart from the sub-elliptic estimate, the y2

and X terms play no further role in proving m-accretivity.) We can assume f is real-valued
(since T ∗<(f) = 0 = T ∗=(f) so one could apply the argument below separately to the real and
imaginary parts)—this is a small convenience because then the inner products below will all
be symmetric.

Now the idea is to replace f with ζ2kf , where

ζk(y) = ζ( yk )

and ζ is a smooth compactly supported bump function in the y-direction (the non-compact
direction). By dominated convergence ‖ζkf‖2 → ‖f‖2 as k → ∞. Having the cutoff function
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will allow us to freely integrate by parts in the y-variable. At the end of the argument we will
take k →∞ and obtain the result.

Since f is smooth and ζk has compact support, the equation T ∗f = 0 implies in particular
that

0 = (T ∗f, ζ2kf) = (f, T (ζ2kf)) = (f, (−∂2y + 1 + y2 +X)ζ2kf). (8)

Using integration by parts, the −∂2y term equals1

(f,−∂2y(ζkf)) = ‖∂y(ζkf)‖2 − ‖(∂yζk)f‖2.
Substituting this into (8), using Xζk = 0, (f,Xf) = 0 we find

0 = ‖∂y(ζkf)‖2 − ‖(∂yζk)f‖2 + (f, (1 + y2)ζ2kf) ≥ −‖(∂yζk)f‖2 + (f, (1 + y2)ζ2kf),

thus
‖ζkf‖2 + ‖yζkf‖2 ≤ ‖(∂yζk)f‖2.

By the definition ζk(y) = ζ( yk ) we have

‖(∂yζk)f‖2 ≤ ‖∂yζk‖2‖f‖2 =
C

k2
‖f‖2

for some constant C. Thus, dropping the positive term ‖yζkf‖2 we have

‖ζkf‖2 ≤
C

k2
‖f‖2.

Taking k →∞ shows ‖ζkf‖2 → 0. Thus f = 0 ∈ H.

1Integrating by parts once we have

(f,−∂2
y(ζ

2
kf)) = (∂yf, (∂yζk)ζkf + ζk∂y(ζkf))

= (ζk∂yf, (∂yζk)f) + (ζk∂yf, ∂y(ζkf)).

Use ζk∂yf = ∂y(ζkf)− f∂yζk in the second term and note that

(ζk∂yf, (∂yζk)f)− ((∂yζk)f, ∂y(ζkf)) = ((∂yζk)f,−f∂yζk)
(here we used the symmetry of (·, ·) for R-valued arguments) to get

(f,−∂2
y(ζkf)) = ‖∂y(ζkf)‖2 − ‖(∂yζk)f‖2.
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