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1 Introduction

In a well-known paper [1], Atiyah and Bott showed how the moduli space of flat connections
on a Riemann surface could be equipped with a Poisson structure, via an infinite dimen-
sional reduction from the space of all connections. In this essay, we will focus on a later
construction of the same Poisson structure due to Fock and Rosly [3]. Their method avoids
the infinite dimensional reduction, as well as providing a natural treatment of a class of
functions on the moduli space (roughly: Wilson loops), which had been considered by others
(c.f. [2] for an exposition and references). The main focus of this essay will be to describe
in detail the proof that the construction of Fock and Rosly gives the same Poisson structure
on the moduli space as that of Atiyah and Bott.

Let’s begin by reviewing the method of Atiyah and Bott. Let S be a compact Riemann
surface, possibly with boundary. Let G be a Lie group with Lie algebra g. We assume
that g is equipped with a non-degenerate, symmetric bilinear form B : g ⊗ g → R which is
invariant with respect to the adjoint action. We consider the trivial bundle S × G and fix
a trivialization. A connection is then simply a Lie algebra-valued 1-form A ∈ Ω1(S, g). The
infinite dimensional vector space AS = Ω1(S, g) carries a symplectic structure

ω(a, b) =

∫
S

B(a ∧ b).

The group GS = C∞(S,G) acts on AS by gauge transformations

A 7→ AdgA− dgg−1

preserving the symplectic structure. Let Γ = ∂S, and GS
Γ the subgroup of based gauge

transformations, i.e. gauge transformations restricting to the identity on Γ. The smooth
dual of the Lie algebra gSΓ = {x ∈ C∞(S, g)| x|Γ = 0} can be identified with Ω2(S, g) via
the pairing

〈α, x〉 =

∫
S

B(α ∧ x) α ∈ Ω2(S, g), x ∈ gSΓ.

Atiyah-Bott showed that the action of GS
Γ on AS is Hamiltonian, where the moment map

F : AS → (gSΓ)∗ is the curvature F (A) = dA+ A ∧ A. The symplectic reduction

MΓ = F−1(0)/GS
Γ

is the space of flat connections ASfl modulo based gauge transformations.
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We would like to perform a further reduction by GΓ in order to obtain the space of flat
connections modulo all gauge transformations (not only those based on Γ). Roughly, the
moment map should send a connection A to its pull-back to Γ. But this doesn’t quite work,
as the resulting map is not Poisson but instead an extra 2-cocyle appears. To get a true
moment map it’s necessary to pass to a central extension of GS. Let Γ1, ...,Γk denote the
components of Γ. Each Γi is a circle, and so we can consider the affine Kacs-Moody algebra

ĝΓi . This is the 1-dimensional central extension of gΓi where the 2-cocyle is

c(x, y) =

∫
Γi

B(x ∧ dy).

The dual (ĝΓi)∗ can be identified with Ω1(Γi, g)⊕ R via the pairing

〈(α, c), (x, d)〉 =

∫
Γi

B(α ∧ x) + cd.

The map Φ :MΓ →
∏

i(ĝ
Γi)∗ given by

Φ(A) = {(A|Γ1 , 1), ..., (A|Γk , 1)}

is a moment map for the action of H =
∏

i Ĝ
Γi onMΓ. Notice that this map is well-defined

on equivalence classes, since above we took a quotient by based gauge transformations, which
do not affect the boundary values.

By standard results on moment maps, this means that the quotient

M =MΓ/H

is Poisson with symplectic leaves given by the inverse images of coadjoint orbits in H. Recall
that the coadjoint orbits of the affine Kacs-Moody group are classified according to the
conjugacy class of the holonomy around the loop. Since H is a product of affine Kacs-
Moody groups, a choice of coadjoint orbit corresponds to a choice of conjugacy class for each
component Γi. In summary, the spaceM of flat connections modulo gauge transformations
is a finite dimensional Poisson manifold (possibly with singularities); the symplectic leaves
are obtained by fixing the conjugacy class of the holonomy around each of the boundary
components.

2 Fock-Rosly description

The basic idea of the Fock-Rosly approach is to work with a graph l embedded in the surface
rather than the surface itself. The graph gives a kind of discretization of the surface (in the
same spirit as lattice approximations for gauge theories), and so should completely encode
its topology. Fock-Rosly begin with a finite dimensional Poisson manifold Al (in general it
is a product of copies of G) the points of which represent holonomies along the edges of the
graph, and then perform a finite reduction to obtain M. The space Al may be thought of
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as resulting from the space of flat connections on taking a quotient by the group of gauge
transformations based at the vertices of the graph. The reduction is then just by a finite
product of copies of G, equal to the number of vertices.

Throughout we will assume that S has at least one boundary component; say S has genus g
and b boundary components, with b ≥ 1. In this case, the fundamental group of the surface
is a free group with 2g + b − 1 generators. For simplicity, suppose one of the boundary
components Γ0 has been marked. We would like to choose a graph l and an embedding
of l in S that “encodes the topology” of S. The minimal requirement is that by following
various sequences of edges in the (embedded) graph, we should be able to obtain a set of
curves which generate the fundamental group of the surface obtained from S by closing one
of the holes (say Γ0) to obtain a surface with genus g and b− 1 boundary components. We
will in fact require that the graph l be a free group with 2g+ b− 1 generators. The simplest
possibility is to have a single vertex and 2g + b− 1 loops (take the standard generators for
the fundamental group of S except for the generator corresponding to the marked boundary
component Γ0 as this is the hole that gets closed). More complicated graphs can arrise by
(e.g.) adding more vertices. We can even recover the surface from such a graph together with
a cylic ordering of the edges at each vertex which determines the embedding (when the graph
is embedded in S, this is induced from the orientation)—Fock and Rosly call this a fat graph.

Let E(l) denote the set of ends of edges (meaning each edge corresponds to two different
elements of E(l)), and let N(l) denote the set of vertices. The map α 7→ α∨ sending an end
to the other end of the same edge, defines and involution of E(l). Let [α] denote the vertex
associated with the end α, and let [α, α∨] denote the edge associated to α. Following Fock and
Rosly, we define a graph connection to be a map A : E(l) → G satisfying A(α∨) = A(α)−1.
Let Al denote the set of all graph connections. If m is the number of edges of l, then

Al '
{

(gα) ∈
∏

α∈E(l)

G(α)

∣∣∣∣gα = g−1
α∨

}
'
{

(g1, g
−1
1 , ..., gm, g

−1
m ) ∈ G2m

}
. (1)

We also have an analog of the gauge group, Gl ' Gn (n=number of vertices), which we define
to be the set of maps g : N(l)→ G. The action is

(g · A)(α) = g(α∨)−1A(α)g(α).

We’ll also write this action as g · (gα) when using the description above. Notice that this is
exactly the usual effect of gauge transformations on holonomy.

Now let ei denote an orthonormal basis on g, and let Li, Ri denote the corresponding left
and right vector fields on G. Let Liα, Ri

α denote the corresponding vector fields on the α-copy
of G (i.e. G(α)) in the product appearing in (1). Define vector fields on the product

∏
αG

(α)

by
X i
α := Liα −Ri

α∨ .

Notice that at points in Al these are tangent to Al and so define vector fields on Al. We’ll
see why these vectors fields are used later on (for now, notice that if ι : G → G × G is the
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map ι(g) = (g, g−1) then ι∗L
i = Li1 −Ri

2).

Given a connection A on S and a graph l embedded in S, we obtain a graph connection (also
denoted by A) by putting A(α) = hol(A,α) for each α ∈ E(l) (as above, we are assuming a
trivial bundle S × G with fixed trivialization). Let GS

N(l) denote the set of gauge transfor-

mations based at the vertices of l. Since elements of GS
N(l) don’t change the holonomy of a

connection along the edges of the graph, it’s clear that we have a map holl : ASfl/GS
N(l) → Al.

A flat connection is completely determined by its holonomy along representatives for a set
of generators of the fundamental group; in fact such a connection gives a representation
π1 → G of the fundamental group. It follows that the map holl is injective. In fact holl is
also surjective. This is because if we’re given a graph connection, we can always find a flat
connection on S with the prescribed holonomies (to show this formally, the basic idea is to
pass to the space S̃ of (fixed endpoint-) homotopy classes of paths having initial point in
the set of vertices N(l) (for example, this would be the universal covering space if there is
only one vertex), and then use the trivial connection on S̃ ×G to obtain an appropriate flat
connection on S × G ' (S̃ × G)/π1(S,N(l)) where π1(S,N(l)), the groupoid of homotopy
classes of paths between the vertices N(l), acts on G according to the prescribed holonomies
along a sequence of edges homotopic to the path; c.f. [4] for an exposition).

One remark is that it is possible to consider more general graphs (for example, a triangula-
tion of S), but in this case the map holl has image equal to the submanifold of flat graph
connections, i.e. those for which if we form a closed curve from a sequence of edges which is
homotopic (in S) to the constant curve, then the product of the group elements assigned to
the edges going around the curve is the identity.

This shows that holl : Alf l/Gl 'M at least as (possibly singular) manifolds. Fock and Rosly

now proceed to define a Poisson structure on Al and Gl, and then prove that holl is a Poisson
map for this structure. In order to do this, they introduce a linear order < on the ends of
edges at each vertex, calling the resulting data a ciliated fat graph—they visualize the linear
order being specified by adding a small “cilium” at each vertex indicating where we should
start counting.

For each vertex n ∈ N(l), we choose an r-matrix r(n) ∈ g ⊗ g, i.e. a solution of the Yang-
Baxter equation, and require that the symmetric part of r(n) equal the quadratic form B.
With respect to the orthonormal basis ei we can write rij = Bij + aij where aij = −aji.
We will not go into any detail on r-matrices, but for our purposes it suffices to know that
these conditions (specifically, the Yang-Baxter equation) imply that r(n) induces a Poisson
bracket on g, and hence G becomes a Poisson Lie group. Following Fock and Rosly, we define
a bivector field on Al by

π =
∑
n∈N(l)

( ∑
α<β∈n

rij(n)X i
α ∧X

j
β + 1

2

∑
α∈n

rij(n)X i
α ∧Xj

α

)
. (2)
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We can simplify this expression using the decomposition rij = Bij + aij. We have∑
α<β

rijX
i
α ∧X

j
β =

∑
α<β

BijX
i
α ∧X

j
β +

∑
α 6=β

aijX
i
α ⊗X

j
β,

and similarly, using that Bij = ±δij (the ei are orthonormal) the other term is

1
2

∑
α

rijX
i
α ∧Xj

α = 1
2

∑
α

BijX
i
α ∧Xj

α + aijX
i
α ∧Xj

α

=
∑
α

0 + aijX
i
α ⊗Xj

α.

Adding the two parts we find

π =
∑
n∈N(l)

(∑
α,β∈n

aij(n)X i
α ⊗X

j
β +

∑
α<β∈n

BijX
i
α ∧X

j
β

)

=
∑
n∈N(l)

(
aij(n)X i

∆(n)⊗Xj
∆(n) +

∑
α<β∈n

BijX
i
α ∧X

j
β

)
(3)

where we’ve introduced the vectors X i
∆(n) :=

∑
α∈nX

i
α, which are tangent to the orbit of Gl.

This means that the part of π involving the anti-symmetric part aij gives trivial contribution
in the quotient Al/Gl (since for a Gl-invariant function f on Al, clearly X i

∆(n)f = 0). In
particular, this shows that the Poisson structure π induced on the quotient is independent
of the choices of r-matrices (the symmetric part is already constrained to be Bij).

For now we will take for granted (1) that this formula defines a Poisson structure on Al, (2)
that if Gl is equipped with the direct product Poisson structure (using the r-matrices r(n)
on the nth factor), then the action on Al is Poisson, (3) consequently the quotient Al/Gl
acquires a Poisson structure. Instead we will focus on showing that the bracket induced
by π on the quotient agrees with the Atiyah-Bott Poisson structure on M (thus giving an
alternative proof that π induces a Poisson structure on the quotient).

3 Poisson brackets of certain functions

As preparation for the proof, we will compute the Poisson bracket of certain functions on
M in the Atiyah-Bott description. Let f : G → R be a smooth function on G. Consider
a simple curve α : [0, 1] → S in the surface. Given a connection A, let hα(A) = hol(A,α)
denote the holonomy of A along α. As above, for simplicity we are taking the bundle to be
S ×G with fixed trivialization. So A ∈ Ω1(S, g) and hα(A) = h(1) where h(s) is the unique
solution to the linear ODE

ḣ = A(α̇(s))h(s), h(0) = Id.
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We define a function on the space of connections by fα = f ◦ hα. Fix u ∈ Ω1(S, g). And let
g = hα(A) (constant). By definition

dfαA(u) =
d

dt

∣∣∣∣
0

fα(A+ tu)

=

〈
(df)g,

d

dt

∣∣∣∣
0

hα(A+ tu)

〉
=

〈
(df)g,

∫
α

g · vα(u)

〉
=

〈
(df)g,

∫
S

δα ∧ g · vα(u)

〉
where the second to last line defines vα as an End(g)-valued function on α, and δα denotes an
appropriate delta-type 1-form supported on α (altogether δαg ·vα is the variational derivative
of the functional hα at the point A ∈ AS). Since B is non-degenerate, we can define a function
F : G→ g by

〈(df)g, Xg〉 = B(F (g), g−1Xg).

Fix an orthonormal basis ei for g (so B(ei, ej) = ±δij). Let Li, Ri denote the corresponding
left and right invariant vector fields on G respectively. Writing F (g) = Fi(g)ei, B(ei, ej) =
Bij we find

Fi = BijL
jf.

Using F the differential can be written

dfαA(u) =

∫
S

B(F (g)δα ∧ vα(u))

=

∫
S

B(vTαF (g)δα ∧ u),

here vT denotes the adjoint with respect to B. Comparing with the equation for the sym-
plectic form, this shows that the Hamiltonian vector field for the function fα is

Hfα(A) = vTαF (hα(A))δα.

Now let α, β be two curves in S which we assume intersect transversely. Choose functions
f1, f2 on G. Using what we’ve just found, their Poisson bracket is

{fα1 , f
β
2 } = ω(Hfα1 , Hf

β
2 )

=

∫
S

B(vTαF1 ◦ hα, vTβ F2 ◦ hβ)δα ∧ δβ

=
∑
x∈α∩β

ε(x)B
(
vTα (x)F1 ◦ hα, vTβ (x)F2 ◦ hβ

)
.

In this equation, ε(x) = ±1 is the oriented intersection number at x, which arrises from
integrating over the wedge of the delta-type 1-forms.
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To proceed further, we need to determine vα(x) at the points x of intersection. Below, we
will only need to know the result in the case where A vanishes on a neighbourhood which
includes each of the endpoints of α as well as all of the intersection points—say A vanishes
on all of α except possibly α([s0, s1]) where 0 < s0 < s1 < 1. Now define ht(s) to be the
family of solutions to the linear ODEs

∂sht = (A+ tu)(α̇(s))ht(s), ht(0) = Id, (4)

as above, so that ht(1) = hα(A+ tu). Integrating both sides from 0 to 1 we obtain

hα(A+ tu) = ht(1) = ht(0) +

∫ 1

0

(A+ tu)(s)ht(s)ds.

In the above formula (and also below) we are abusing notation and writing A(α̇(s)) as A(s),
and likewise for u. Now take ∂t

∣∣
0

of both sides, which gives

∂t
∣∣
0
hα(A+ tu) =

∫ 1

0

[
A(s)∂t

∣∣
0
ht(s) + u(s)h0(s)

]
ds

We only need to determine vα at points in α([0, s0]) and α([s1, 1]) (since we are assuming all
the intersection points fall in these intervals), so it suffices to consider two types of variations
u. First take u(s) = 0 for s ∈ [0, s1]. This implies that ht(s) is independent of t for s ∈ [0, s1],
and consequently ∂t

∣∣
0
ht(s) = 0 for s ∈ [0, s1]. Also A(s) = 0 for s ∈ [s1, 1] by our assumption

on A. Together this implies that the first term in the integral vanishes. Moreover, for the
second term, u vanishes on [0, s1], and h0(s) = g = hα(A) is constant for s ∈ [s1, 1] (this is
because A is identically zero on that interval, so the holonomy doesn’t change after reaching
s1). And so the integral simplifies to∫ 1

0

g · vα(u)(s)ds = ∂t
∣∣
0
hα(A+ tu) =

∫ 1

0

u(s) · gds.

Since u was allowed to vary freely away from [0, s1], this suffices to show that vα(x) = Adg−1

for x ∈ α([s1, 1]). This has a simple interpretation if we imagine the holonomy as a parallel
transport operator acting on the left. We multiply by g first (that is the holonomy along
α([0, s1])) and then by the integral of u, which is the holonomy along α([s1, 1]) to first order.
We get something similar if we take u(s) = 0 for s ∈ [s0, 1], except the contribution of u to
the holonomy comes before the segment where A is nonzero (instead of after), so the two are
multiplied in the reverse order and we get∫ 1

0

g · vα(u)(s)ds = ∂t
∣∣
0
hα(A+ tu) =

∫ 1

0

g · u(s)ds,

which shows that vα(x) = Id for x ∈ α([0, s0]).

Borrowing from the previous section, we can think of α, α∨ as labelling the two ends of
the curve (where α labels the end where the parametrisation starts, etc.). If an intersection
point x falls in the initial third α([0, s0]) we will say that it is associated with α, while if it
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falls in the final third α([s1, 1]) we will say that it is associated with α∨. Write αx for the
end (either α or α∨) that a given intersection point x is associated with. We can summarize
the previous paragraph by saying that if αx = α∨ then vα(x) = Adg−1 , otherwise αx = α
and vα(x) = Id.

Applying this we can simplify the formula above for the Poisson bracket, at least for the
special case of interest. Let gα = holα(A) and similarly for β. Suppose that A vanishes in
neighbourhoods around the two endpoints of both curves (as above) and suppose further
that all the intersection points x ∈ α ∩ β lie in these portions of the two curves (each x
has to be in both). Notice that if vα(x) = Id then vTα (x) = Id, while if vα(x) = Adg−1

α

then vTα (x) = Adgα by Ad-invariance of B. Using Ad-invariance of B again, we have that
〈(df)g, R

i
g〉 = B(AdgF (g), ei), and therefore AdgF (g) = Bij(R

i
gf)ej. Let’s use Y i

α,x to denote
either Li or Ri depending on whether αx = α or αx = α∨ and similarly for β. Applying
these considerations, the formula becomes

{fα1 , f
β
2 }(A) =

∑
x∈α∩β

Bij(Y
i
α,xf1)(Y j

β,xf2)ε(x) (5)

where Y i
α,xf1 is evaluated at gα = hα(A) ∈ G, and Y j

β,xf2 is evaluated at gβ = hβ(A) ∈ G.

Let’s now write this equation in a slightly different form (which will begin to indicate the
similarity with the Fock-Rosly Poisson structure—to be upgraded to a proof in the next
section). Let N = {(g1, g2) ∈ G × G|g1 = g−1

2 } and let ι : G → N denote the isomorphism
ι(g) = (g, g−1). Given a function f on G, we can use ι to define a function φ on N by
pulling back (by ι−1), i.e. φ(g, g−1) := f(g). Then Lif(g) = (Li1 − Ri

2)φ(g, g−1) (because
ι∗L

i = Li1−Ri
2), and similarly Rif(g) = −(Ri

1−Li2)φ(g, g−1). Let α be a curve as above, and
let α∨ denote α traversed in the opposite direction (to connect with the previous section,
think of α and α∨ as the two ends of the curve, with the α direction being that which starts
at the end labelled by α, etc.). Then N is the space of graph connections on the curve α,
where g1 = A(α), g2 = g−1

1 = A(α∨). The vector field Li1 − Ri
2 is X i

α while Ri
1 − Li2 = X i

α∨ ,
therefore

Lif(g) = X i
αφ(g, g−1)

Rif(g) = −X i
α∨φ(g, g−1).

Notice the crucial minus sign! It suggests doing the following. We want to re-write (5) in
terms of functions on N and the vector fields X i

α. The terms involving (Rif)ε(x) (i.e. for
x associated with α∨) will become (−X i

α∨φ)ε(x), where here ε(x) is the intersection number
relative to α. Instead we can absorb the extra minus sign by taking ε(x) to be the intersec-
tion number relative α∨ (which has the opposite orientation, and so the intersection number
switches sign). The result is that the orientation number at an intersection x is taken relative
to the two ends that x is associated with.

Let’s now do this. Let a and b be unoriented simple curves in S, with ends labelled α, α∨

and β, β∨ respectively. Let φ1, φ2 be functions on N which we lift to functions on AS by
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φa1 = φ1 ◦hola, φb2 = φ2 ◦holb where hola(A) = (holα(A), holα∨(A)) = (gα, g
−1
α ), etc. Let A be

a connection on S where as above we assume that A vanishes on the initial and final thirds
of both curves, and that all the intersection points x fall in these portions. Then equation
(5) becomes

{φa1, φb2}(A) =
∑
x∈a∩b

Bij(X
i
αxφ1)(Xj

βxφ2)ε(x), (6)

where in this equation ε(x) = ±1 denotes the intersection number for the point x relative to
the αx, βx orientations on a and b.

4 Proof that the Fock-Rosly and Atiyah-Bott Poisson

structures agree

Let φ1, φ2 be Gl-invariant functions on Al. We want to compute their bracket using the
Fock-Rosly (FR) Poisson structure, and then compare the result with the bracket of their
lifts to M computed using the Atiyah-Bott (AB) Poisson structure. We will choose a fairly
specific (embedded) ciliated fat graph l, which in a certain sense is the simplest possible. It
will have a single vertex which we assume is on one of the boundary components (we can
use a homotopy to move the vertex to the boundary if needed), and with the cilium pointing
outside the surface. And it will have one loop for each of the standard generators of the
fundamental group, except the generator for the component of the boundary that the vertex
lies on. If S has genus g and b boundary components, then there will be m = 2g + b − 1
loops. Although we won’t go into any detail, this is not such a big restriction. In their
paper, Fock-Rosly describe some natural geometric operations on ciliated fat graphs—such
as contracting edges between distinct vertices, erasing edges, adding loops—which turn out
to be (FR) Poisson maps, and also preserve lifts of functions to M. If we’re given some
(connected) graph containing multiple vertices we can contract edges repeatedly until we
have a single vertex, coming to a graph that is essentially equivalent to l. Because these
maps are Poisson, it is enough to compare the Poisson structures for the graph l.

The computaton using the Fock-Rosly structure is immediate. Since there is only one vertex,
there is no need to write a sum over vertices. Here and later we will abbreviate expressions
of the form BijY

i
a ∧ Y

j
b as Ya ∧ Yb. Using this short form, the Fock-Rosly Poisson bivector is

π =
∑
α>β

Xα ∧Xβ + (X∆ terms)

We haven’t written the terms involving X∆, since they vanish on Gl-invariant functions:

{φ1, φ2}FR = 〈π, dφ1 ⊗ dφ2〉

=
∑
α>β

〈Xα ∧Xβ, dφ1 ⊗ dφ2〉. (7)

On the other hand, φ1 and φ2 lift to functions φl1 = φ1◦holl, φl2 = φ2◦holl on AS, where here
holl maps a connection A to its set of holonomies along the edges of the graph l. Because
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of the discussion above, since the graph l captures the topology of the surface S, all gauge-
invariant functions on ASfl (and hence all functions on the quotient M) can be obtained in

this way. So we will want to compute the Poisson bracket of the lifted functions φl1, φl2 on AS
at points where the connection A is flat. For this we will use the result of the computation
done in a previous section.

We cannot directly apply the formula obtained in the section above since it only applied in
the case that two edges intersected transversely; for example it is not directly applicable to
computing the bracket of φl1 and φl2. But we can deform the graph l to obtain a slightly
different embedding l̄ such that the two embeddings have no common vertices and all inter-
sections of edges of l with those of l̄ are transverse. Then l and l̄ give two different ways
of lifting functions to AS. But in fact if l, l̄ are homotopic, then the two lifts will agree
on ASfl up to a gauge transformation, and in particular they will agree for gauge invariant

functions. So we will compute the Atiyah-Bott bracket for φl1 and φl̄2 using the formula from
the section above, and compare the result with the bracket computed for φ1 and φ2 using
the Fock-Rosly bivector.

Following Fock and Rosly, we will choose l̄ in a specific way so that we know how it relates
to l. Imagine two copies of l lying on top of each other. We fix a point in the middle of
each edge (a “pivot point”) and move the vertex in one of the copies of l (together with its
edges but keeping the pivot points in the middle fixed) slightly counter-clockwise as viewed
from the outside of the surface (the boundary component is a circle). We make the number
of intersections minimal, and ensure that they are transverse. The deformed copy is l̄. See
the attached figures for some examples of this.

Let a1,...am denote the loops of l and ā1,...,ām the corresponding loops of l̄. Let αi, α
∨
i denote

the ends of ai for i=1,...m, and likewise ᾱi, ᾱ
∨
i denote the corresponding ends in l̄. There

is one intersection point at the pivot point ai ∩ āi for each loop, and there is also one inter-
section point for each pair of ends β, γ in l such that β > γ (the intersection point being
β ∩ γ̄). (Roughly speaking, this second set of intersection points arrise because the γ̄ have
to cross back over those edges β > γ which γ̄ has found itself on the wrong side of due to
the fact that we’ve dragged the vertex of l̄ counterclockwise.) Probably the best way to see
this is by drawing several examples.

We can choose a contractible neighbourhood U ⊂ S which includes the beginning and ends
of all the loops as well as all the intersection points. Also for any intersection point x ∈ a∩ b̄,
the set U must contain a segment of a leading to the vertex of l and a segment of b̄ leading
to the vertex of l̄. Again probably the best way to see that this can be done is by drawing
several examples (we give some in the attached figures). Notice that U divides each loop a
into three pieces: the part of a outside U , the initial segment of a (relative to some orienta-
tion), and the final segment of a. Suppose A is a flat connection at which we would like to
evaluate the bracket of φl1, φl̄2. Since U is contractible, we can use a gauge transformation
to find another connection A′ in the same gauge orbit which vanishes on U . As φl1, φl̄2 are
gauge invariant, we can use any connection lying in the same gauge orbit when evaluating
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the bracket. So without loss of generality we can assume that we are evaluating the bracket
at a flat connection A which vanishes on U . We are now in the situation of the previous
section. For each pair of loops a, b̄ the connection A vanishes on the initial third and final
third of each curve (this was the reason U was chosen the way it was), and so each of the
intersection points x ∈ a ∩ b̄ becomes associated with one of the ends of each of a and b̄ as
was described in the previous section. In other words, x is associated to the two ends of
edges that can be reached by following loops and staying inside U . For example if, relative
to orientations α, β̄ on a, b respectively, x falls in the initial third of a and the final third of
b, then x is associated to α and to β̄∨, and we write this as lx = α and l̄x = β̄∨.

Using (6), the contribution of each point of intersection x to the bracket is

Bij(X
i
lxφ1)(Xj

l̄x
φ2)ε(x)

where ε(x) = ±1 is the intersection number relative to the orientations lx and l̄x on the two
loops involved in the intersection. Notice that this expression contains terms like Xβ̄φ2, etc.,
which actually just means the same thing as Xβφ2, because the functions φ1, φ2 are defined
on the same space Al ⊂ G2m (the bar variables only differentiate the two copies of l).

Taking the sum over all the intersection points of l and l̄ gives the bracket. We should
perhaps make one comment about this. From equation (6), we know that for each pair of
intersecting loops a, b̄ we should sum over the intersection points of those two loops. But
why is it that summing over all the different pairs of loops gives the bracket of the two
functions? The reason is a general property of Poisson brackets. Recall that for functions f ,
g on a Poisson space M and bivector P the Poisson bracket is

{f, g} = 〈P, df ⊗ dg〉.

Suppose x1, ..., xn, y1, ..., yk are coordinates on M . Then we can write d = ∂x+∂y and expand

{f, g} = 〈P, ∂xf ⊗ ∂xg + ∂xf ⊗ ∂yg + ∂yf ⊗ ∂xg + ∂yf ⊗ ∂yg〉.

Each of the four terms can be given a meaning. Take for example 〈P, ∂xf ⊗ ∂yg〉; at a point
(c, d) this can be interpreted as the Poisson bracket of the functions f̃(x, y) := f(x, d) and
g̃(x, y) := g(c, y). A similar thing is happening in our example, except now the “independent
variables” correspond to the holonomies of the connection A along the loops a1, ..., am. This
is m “G-valued variables”, and so the analogous sum has m2 terms, one for each pair of
loops. This explains why summing over all the intersections of the different pairs of loops
will give the bracket. It seems to me that for this to work, it must be possible to vary the
holonomies along all of the loops independently (it is important that the x1, ..., xn, y1, ..., ym
form a set of independent variables, otherwise we can’t write d = ∂x + ∂y). This is possible
as long as S has at least one boundary component so that the fundamental group is free.
If true, this is another reason for restricting to the case where S has at least one boundary
component (both Fock-Rosly and Audin do this early on, though don’t seem to comment
explicitly on why it is needed).
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Returning to the calculation, the Atiyah-Bott bracket is

{φl1, φl̄2}AB =
∑
x∈l∩l̄

Bij(X
i
lxφ1)(Xj

l̄x
φ2)ε(x), (8)

where the intersection number ε(x) is taken relative to (lx, l̄x). This is in a form that obscurs
the (anti-) symmetry, which is hidden in the intersection numbers and the gauge invariance.
We can handle this with the following trick. By gauge invariance, we must get the same
result if we use l̄ to lift φ1 and l to lift φ2 (i.e. both ways must give the bracket of φl1 and
φl2). In other words

{φl1, φl2}AB = {φl1, φl̄2}AB = 1
2

(
{φl1, φl̄2}AB + {φl̄1, φl2}AB

)
. (9)

Using the same setup (contractible set U , a connection A vanishing on U , etc.) we have

{φl̄1, φl2}AB =
∑
x∈l∩l̄

Bij(X
i
l̄xφ1)(Xj

lxφ2)ε′(x).

Now the intersection number ε′(x) is taken relative to (l̄x, lx), which is just the reverse of
(lx, l̄x) (used for ε(x)). Thus ε′(x) = −ε(x), and so taking the average as in (9) we get

{φl1, φl2}AB = 1
2

∑
x∈l∩l̄

Bij

(
X i
lxφ1X

j

l̄x
φ2 −X i

l̄xφ1X
j
lxφ2

)
ε(x) (10)

= 1
2

∑
x∈l∩l̄

ε(x)〈Xlx ∧Xl̄x, dφ1 ⊗ dφ2〉. (11)

Recall that we have one point of intersection x coming from each pivot point ai ∩ āi. In
this case x must be associated with the same end in both l and l̄ (otherwise U would have
to contain pieces of ai and āi forming a closed loop, meaning U would not be contractible).
Consequently Xl̄x = Xlx for these points, and the wedge means that these terms drop out.
Recall that there is also one intersection point for each pair of ends α, β in l such that α > β
(the intersection point being α ∩ β̄). Therefore the sum becomes a sum over α > β. The
intersection number can be carefully checked in the general case for a pair of loops; a little
thought shows it is +1 exactly when lx > l̄x and −1 when l̄x > lx. Finally we get the
Atiyah-Bott bracket:

{φl1, φl2}AB = 1
2

∑
α>β

〈Xα ∧Xβ, dφ1 ⊗ dφ2〉. (12)

This is the same expression as for the Fock-Rosly bracket, except (?) for the factor of 1/2.

In the attached figures are relevant pictures for the one-holed torus and 3-holed sphere,
showing the graph l, the deformed graph l̄, and the contractible open set U . For some nice
applications of Fock and Rosly’s result to Goldman functions and integrable systems, see
the paper by Audin [2].
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