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Abstract

MODEL FREE TECHNIQUES FOR REDUCTION OF HIGH-DIMENSIONAL DYNAM-
ICS

Tyrus Hunter Berry, PhD

George Mason University, 2013

Dissertation Director: Dr. Timothy Sauer

There is a growing need in science and engineering to extract information about complex

phenomena from large data sets. A rapidly developing approach to building a model from

data is manifold learning, and analysis of such a model may allow isolation of the desired

features of the data. By introducing an additional geometric structure, the techniques

of differential geometry become available for analyzing the model. In this dissertation

we extend previous methods of analyzing the geometry of data. Our key contribution is

the theory of local kernels, which generalizes previous nonparametric techniques such as

Laplacian eigenmaps and diffusion maps. We show that every geometry can be represented

by a local kernel in the limit of large data. Moreover, using the discrete exterior calculus

(DEC) we show that a local kernel can be used to introduce a discrete Hodge star operator

on a data set. This shows that local kernels introduce a discrete geometry on a data set

without the need for an explicit simplicial complex.

From the perspective of dimensionality reduction, the theory of local kernels represents

a nonlinear generalization of principal component analysis (PCA), where a geometric prior

replaces the linear generative model of PCA. From the perspective of signal processing and

time-series analysis, the theory of local kernels represents a generalization of Fourier



analysis where the basis can be adapted to the geometry of the reconstructed state space,

or even the Lyapunov geometry which is intrinsic to the dynamical system.

The wide variety of data types in science and engineering applications requires a frame-

work for integration of prior information with the model-free analysis. We outline a frame-

work based on geometry with several case studies demonstrating integration of different

prior data structures. The geometric framework naturally allows integration of prior infor-

mation about the structure of the data into the analysis. This is achieved by identifying

features of the geometry which are extrinsic and making the geometric construction invari-

ant to these features. We illustrate this approach by exploring the intrinsic geometry for

various data structures commonly found in dynamical systems, including temporal, spatial,

spatiotemporal data.

The most important theoretical contributions are the theory of local kernel functions

developed in Chapter 2 and the geometry of time delay embeddings developed in Chapter

3. Chapter 4 outlines how the theory of Chapter 2 can be applied to data with an a priori

spatial structure. Chapter 4 also connects the discrete geometry to emerging research on

data-adapted wavelet bases via the symmetry group of the geometry. Finally, Chapter 5

begins the ambitious program of integrating nonparametric analysis with existing paramet-

ric models. The ensemble Kalman filter is developed as a tool for extracting the portion of

the data explained by the model, which naturally leads to nonparametric model extension.



Chapter 1: Introduction

The rapid expansion of model complexity and data availability in the applied sciences

is quickly outpacing the classical approaches to mathematical modeling. Meeting this chal-

lenge requires developing methods which can provably find, reconstruct, and represent the

hidden stochastic, geometric, and algebraic structure of data. Classical approaches grav-

itate towards two different extremes. One extreme is fully parametric techniques which

require that an exact model is specified. On the other extreme are nonparametric meth-

ods, which require no explicit model. For dynamical systems, data assimilation techniques

are fully parametric while state space reconstruction techniques are nonparametric. Often,

the most successful analysis will find a middle ground between these two extremes, some-

times called semi-parametric modeling. Typically, integrating nonparametric techniques

into an existing parametric analysis is difficult and requires an improved understanding of

the nonparametric approach.

The difficulties with parametric modeling for complex problems are ubiquitous. The

curse of dimensionality fundamentally limits the ability to estimate large numbers of pa-

rameters with statistical significance, and for complex problems it is difficult to find models

with small numbers of parameters. Nonparametric techniques attempt to avoid over speci-

fying the model, leaving enough freedom that the best implicit parameters can be adaptively

selected and fit simultaneously from the data. However, this same freedom can allow non-

parametric techniques to focus on the most prevalent features of the data, and these are

usually features which can be well represented by a simple model. The goal of a nonpara-

metric approach is to maximize the freedom in the implicit model space, without allowing

the technique to rediscover the known features of the data.

To illustrate how nonparametric models may inadvertently rediscover structure in the

data which is already known, consider a time series sampled from a dynamical system

1
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evolving on a manifold. We may wish to learn features of the state space (such as geometric

or topological features of the manifold). However, there is another structure in the data.

Since temporally successive sample points will be nearby in state space, there is a linear path

through the state space given by the time ordering. If we are not careful, a nonparametric

technique may identify the state space as a one-dimensional linear space, but in fact it has

only rediscovered the time ordering. By failing to properly inform the nonparametric model

of our a priori information, namely that the data was time ordered, we wasted time and

data rediscovering this fact.

Since our focus is on applications to dynamical systems, the previous example is par-

ticularly important. However, dynamical data may also have an a priori spatial structure,

or even an existing model. In each case, we need to develop a specialized technique which

optimally combines the prior information with a nonparametric technique for analyzing the

residual structure. While we will begin to develop these specialized techniques, this appears

to be an inherently domain specific problem. The more urgent need is for a framework of

nonparametric techniques that can work naturally with various types of priors.

In particular we will focus on priors which involve (or can be well approximated by)

assumptions of continuity or smoothness. There is a rapidly developing literature focus-

ing on nonparametric modeling where the central assumption is that the data lies near

a topological or geometric manifold. In Chapter 2 we will develop these methods into a

general theory of local kernel functions, which we show can represent any geometry on a

compact manifold. We also show how to recover geometrically and topologically important

information from an abstract data set. In later chapters we will apply these techniques and

show how this information can be used to discover the hidden features of data. However,

as we have stressed above, a successful nonparametric modeling technique should be able

to ignore the known structure and focus on the unknown structure.

Coifman and Lafon first addressed this issue in [2] when they showed that it was possible

to build a nonparametric model which was invariant to the sampling distribution. This

was a significant technical achievement since previous techniques required the unrealistic
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assumption of uniform sampling of the data structure. However, more importantly, they

introduced the notion of intrinsic vs. extrinsic features. Of course, in some cases we may

want the sampling density to affect the geometry in which case this would be an intrinsic

geometric feature. However, when the sampling distribution is merely an artifact of an

unknown sampling processes, the approach of [2] could remove its influence. In general,

one would like the ability to construct a geometry which is invariant to any particular

set of extrinsic features, and while this may not be possible in general we will provide an

additional tool in Chapter 2 for constructing such geometries. Moreover, this gives a natural

framework for integrating the geometric approach to nonparametric modeling with various

priors. Namely, the prior determines which features of the geometry are intrinsic and which

are extrinsic.

In Chapters 3-5 we begin carrying out our program of integrating nonparametric mod-

eling with temporal, spatial, and existing model priors. Since we are focused on dynamical

systems, we begin with temporal structure in Chapter 3. Our key result in Chapter 3 is that

classical time-delay reconstruction severely biases the geometry in favor of the most sta-

ble Lyapunov component of the dynamics. Moreover, for dynamical systems the sampling

distribution can inform us about the invariant measure of the system. In this context, the

sampling distribution is an intrinsic feature of the geometry, and a previous result of Coif-

man and Lafon allows us to construct a geometry which respects this measure. Based on

our theory of local kernels, developed in Chapter 2, we outline an important new direction

which may allow reconstruction of the full intrinsic geometry of a dynamical system.

As our first case study, Chapter 3 demonstrates the importance of finding the intrinsic

geometry for a data set. In the context of time series, we provide a new interpretation of the

algorithm of Coifman and Lafon as a low-pass filter adapted to the geometry of the data.

We show that by leveraging the biased geometry of delays, the geometry adapted low-pass

filter can be used to separate time scales. This interpretation expands on work started

by Giannakis and Majda in [3, 4]. The major ideas of Chapter 3 are implemented in the

diffusion mapped delay coordinates (DMDC) algorithm which is detailed in the appendix.
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Numerical examples in Chapter 3 use the DMDC algorithm to separate time scales for high

dimensional data sets with complicated dynamical systems.

In Chapter 4 we begin to address the more complicated issue of integrating prior spatial

or spatiotemporal structure with a nonparametric model. Unlike temporal structure, which

has a natural intrinsic geometry, it is unclear which geometric features are intrinsic to

spatial data. What is clear is that a spatial structure introduces a notion of translation

within data samples. We show how to use this prior notion of translation to impose spatial

smoothness on the nonparametric model. This suggests that the geometry of a model with

spatial structure should locally decompose into the product of the spatial geometry and

the residual geometry (which represents the values of the data in the local spatial region).

However, spatial data structures such as images, and spatiotemporal systems are both

known to exhibit spatial discontinuity, which is poorly represented in the bases developed

in the previous chapters. To address this issue we overview the developing theory of diffusion

wavelets [5] and wavelets on graphs [1]. We suggest that the remaining weakness of these

techniques is that the symmetry group of the discrete geometries are poorly understood and

we suggest techniques to understand these symmetry groups using the theory developed in

Chapter 2.

In Chapter 5 we address a timely issue in the inference of dynamical systems from data,

where the prior information includes a sophisticated model, yet significant model error

remains. Clearly, the model should not be discarded as irrelevant since a nonparametric

technique might require impractical amounts of data in order to simply reproduce the model,

much less improve on it. Thus, the nonparametric technique must be combined with a data

assimilation technique, such as a generalized Kalman filter, which can extract the portion of

the data which is explained by the model. The remaining portion of the data is represented

as a residual time series called the innovations. We show that the innovation series is a

natural candidate for nonparametric modeling. We first show that the innovations can be

modeled as correlated white noise to automatically compensate for significant model error.

This novel technique is important as it optimally tunes the existing parameters of the filter
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to minimize the residual, thus extracting the maximum amount of information which can be

explained by the model. Finally, we suggest how a nonparametric technique such as DMDC

could be used to automatically extend the existing model as a nonparametric model for the

innovation sequence.



Chapter 2: Nonparametric modeling and the implicit

geometry of kernel functions

In this chapter we develop a geometric approach to nonparametric modeling, in which

we attempt to explain observed data by assuming that the data lies near a smooth manifold.

The key development of the chapter is the theory of local and shift-local kernels which gen-

eralize Gaussian kernels (also known as radial basis functions). In Section 2.4 we show that

in the limit of large data local kernels are equivalent to smooth geometries. Furthermore,

in Section 2.5 we demonstrate a novel connection between the theory of local kernels and

the discrete exterior calculus [6] which describes the geometry of a finite data set. Together

these results show that local kernels define a discrete geometry which converges to a smooth

geometry in the limit of large data. Shift-local kernels are a further generalization of local

kernels and we conjecture that they describe dynamically important elliptic operators and

are connected to Finslerian geometries.

Crucially, the choice of a local kernel determines which features of a data set are rep-

resented in the geometry. The challenge is to design a kernel which preserves the desired

features, which are called intrinsic, and is invariant to the remaining features, which are

called extrinsic. This chapter introduces the intrinsic/extrinsic dichotomy and continues a

program of Coifman and Lafon [2] to design kernels invariant to various features of data

which has no a priori structure. The remaining chapters will begin to address this challenge

for some ubiquitous data types such as time-ordered data or data with a spatial structure.

2.1 Overview

Nonparametric modeling, also known as model-free data analysis, employs priors which

are not defined by a fixed set of parameters. Perhaps the simplest type of non-parametric

6
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model is a histogram for a real valued random variable. By fixing a bin width we have

implicitly assumed that the density function we are estimating is sufficiently slowly varying

that its values inside the bin are well approximated by a constant function. Of course, one

could claim that this is a parametric model where the parameters are the means of the

density function in each bin. The sense in which it is non-parametric is that we do not

expect to use all of the infinite possible bins, and we do not know a priori which bins will

be used. Thus we do not keep track of all of the infinitely many parameters, but adaptively

select those most relevant to the data. Moreover, one can prove that if the density function

is continuous then in the limit as the number of samples goes to infinity the histogram

converges to the true density function. We refer to this as the limit of large data, and this

is an important step in establishing the validity of a non-parametric modeling technique.

Suppose that we know that in addition to being continuous, the density function must

be band limited. In this case, a histogram, which is discontinuous at each stage, would

not seem to be making the best use of the data given our prior. Instead, we know from

sampling theory how to interpolate a band limited function, and this technique makes much

better use of our a priori information. Alternatively, we may know that the density function

had a certain number of continuous derivatives or perhaps we know that it is continuously

differentiable. We refer to this type of a priori information as a smoothness prior, and kernel

density estimation is a well studied method to interpolate the data samples into a smooth

function which converges to the correct density in the limit of large data.

So far we have been considering a one dimensional random variable; but now consider

the case when each sample is multi-dimensional. In particular, consider the case where the

dimensionality is very high. In these cases, even if parametric models are available they

tend to be high-dimensional and the curse of dimensionality makes parameter estimation

extremely difficult. Thus, it is natural to assume that the data lies near a low dimensional

space which is embedded in the high dimensional observation space. This low dimensional

space is often called the latent space. If the latent space is linear, then principal compo-

nent analysis (PCA) can automatically identify the correct linear subspace and project the
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observed data onto the latent space. However, if the latent space is nonlinear then it could

appear that all of the coordinates are relevant and PCA may not be sufficient.

A low dimensional latent space which is continuos and nonlinear is a topological man-

ifold, and if the latent space is smooth then we can also associate a geometry to it. This

gives a us a natural nonparametric prior for our data, which is that the observations in the

high dimensional space lie near a low dimensional manifold. This chapter will explore the

geometric prior, including how to represent and estimate geometric information and how to

use this geometric information to reduce, decompose, and explore the observed data.

In Section 2.2, we explain the basic dimensionality reduction techniques which attempt

to generalize PCA to nonlinear data sets. This sets the stage for the geometric interpreta-

tion of Kernel PCA by Belkin and Nyogi [7] and the development of the intrinsic/extrinsic

dichotomy by Coifman and Lafon [2]. In Section 2.3 we summarize the important devel-

opments and techniques as found in [2, 5, 7–19] as well as presenting some new geometric

interpretations of the constructions. In Section 2.4 we generalize diffusion maps to a large

class of kernels called local kernels which are equivalent to Riemannian metrics in the limit

of large data, we also introduce a new notion of intrinsic geometry which extends that of

diffusion maps. In order to extend our understanding of the geometry to differential forms

we demonstrate a connection between local kernels and a theory of discrete geometry called

the discrete exterior calculus (DEC) [6,20] in Section 2.5. We show that using the using the

DEC with local kernels we can recover analogues of many important geometric operators

and even recover topological invariants such as Betti numbers and representatives of the

cohomology classes. Finally, in Section 2.6 we further generalize local kernels to shift-local

kernels and conjecture that these give discrete approximations of important elliptic oper-

ators. We also suggest connections to a generalization of Riemannian geometry known as

Finslerian geometry.
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2.2 Dimensionality reduction background

Dimensionality reduction techniques attempt to reduce the complexity of high-dimensional

data sets, called the observed data, by imposing assumptions on the structure of the data.

These assumptions should imply that a low dimensional set of variables, called the latent

variables, can explain the important phenomena of the observed data. One common defini-

tion for ”important phenomena” is the total variance of the data but what is important in

the data is dependent on the application. The goal of dimensionality reduction is to recover

the hidden latent variables using only the observed data.

In this section we give a brief overview of the basic dimensionality reduction techniques

which will be relevant to understanding the rest of the chapter. All the techniques in this

section are an attempt to generalize the incredibly successful linear technique known as

principal component analysis (PCA) described in Section 2.2.1. Moreover, many of the

technique developed in this chapter can be understood simplistically in terms of Kernel

PCA which is developed in Section 2.2.2 and Metric MDS which is developed in Section

2.2.3. However, these techniques will take on dramatically new interpretations as we develop

the geometry of discrete data sets.

2.2.1 Linear methods

Linear dimensionality reduction methods make the restrictive assumption that the ob-

served data, {y(i)}i=1,...,M ⊂ Rn, comes from an unknown linear observation function

y(i) = Wx(i) W TW = I

where {x(i)}i=1,...,M ⊂ Rp are unknown latent variables drawn from p independent Gaus-

sian distributions x(i)k = N (0, σk) where we assume σk are decreasing in k = 1, ..., p.

Several closely related techniques for recovering the latent variables are Principal Compo-

nent Analysis (PCA), Karhunen-Loeve Transform (KLT), and Multi-Dimensional Scaling

(MDS) [21]. These techniques are optimal in the sense of root mean squared reconstruction
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error which measures the average distance between the recovered latent variables x̂i and

the actual latent variables xi. In the rest of this section we will assume that the data sets

Y and X are arranged in matrix form with the i-th data point, y(i), arranged as the i-th

column of the matrix Y .

The key to Principal Component Analysis (PCA) is the assumption that the latent

variables, x(i), are drawn from independent Gaussian distributions. Since the observed

variables, y(i), are simply weighted sums of the latent variables, the observed variables follow

a multivariate Gaussian distribution. Moreover, the covariance matrix for the observed

variables has the following representation

cov(y(·)) = E[Y Y T ] = E[WXXTW T ] = W cov(x(·))W T

and since the latent variables are independent cov(x(·)) is a diagonal matrix and thus

the above decomposition is actually the unique diagonalization of the covariance matrix.

Thus, by diagonalizing the covariance matrix of the observed variables, we recover both the

variances (given by the eigenvalues) and the transformation W (given by the eigenvectors).

Since we assume that W TW = I (meaning that W is a change of variables matrix) we

can recover the latent variables by computing x̂(i) := W TWx(i) = W T y(i). Note that the

reconstruction may not be exact, since the rank of W could be less than the number of

latent variables but this reconstruction is optimal in the sense of the mean squared error

E[||x̂(i)−x(i)||22]. Finally, note that if W has rank p and n > p then there are redundancies

in the observed variables and PCA will produce latent variables with lower dimensionality

but that contain the same information as the redundant high-dimensional observations.

This justifies calling PCA a linear dimensionality reduction technique.

Multi-Dimensional Scaling (MDS) works with the same model as PCA and actually pro-

duces a numerically identical reconstruction, however the method is fundamentally different

and provides a natural extension to nonlinear techniques such as Isomap [21]. Instead of
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working with the covariance matrix of the observed data, MDS works with the Gram ma-

trix, which is the matrix of inner products Sij = 〈y(i), y(j)〉 so S = Y TY . It is immediate

that

S = Y TY = XTW TWX = XTX = UΛUT

where S = UΛUT is the unique eigenvalue decomposition of the symmetric matrix S. Thus,

setting X̃ = Λ1/2UT we recover the latent variables. To see that MDS and PCA give the

same result, that is X̃ = X̂, let Y = AΣB be the singular value decomposition (SVD)

of the matrix Y . Note that S = Y TY = BΣTΣBT so B = U and ΣTΣ = Λ and also

Y Y T = AΣΣTAT so V = A. Now we can use the SVD again to see that X̂ = V TY =

V TAΣB = V TV Λ1/2UT = X̃.

Note that MDS finds the latent variables using only the Gram matrix S whereas PCA

requires the observed variables Y to compute the latent variables. Moreover, MDS can

work with the distance matrix Dij = ||y(i) − y(j)||2 by reconstructing S from D using a

process called double centering (see Section 2.2.3 below). Thus, MDS can produce latent

variables without any explicit observed vectors, all it requires is a matrix of distances. This

proved useful for applications such as representing survey results. Instead of producing an

ad hoc representation of surveys in Euclidean space, it was more natural to simply measure

differences between survey responses and then apply MDS.

Finally, the Karhunen-Loeve Transform (KLT) is computationally identical to PCA and

MDS, however, it reinterprets the data as coming from a Gaussian stochastic process. This

is important to note as it is one of the few dimensionality reduction techniques targeted at

dynamical systems.

The methods in this section are called linear because of they reduce the dimensionality by

a linear projection and are only provably optimal for a linear generative model. However,

even when the generative model is not known to linear, these techniques are pervasive,

mainly because of a lack of stable, feasible, and demonstrably better alternatives. In Section

2.3 we will develop a certain type of extension of PCA to nonlinear generative models
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which will lead us to the definition of local kernels and the geometric approach to nonlinear

dimensionality reduction.

2.2.2 Kernel based extensions of PCA

Kernel based extensions of principal component analysis form a special Gram matrix

where the standard inner product is replaced by a new inner product that is defined by

a kernel function. Assume that the data lies in a subset U ⊂ Rn and that there exists a

nonlinear map φ : Rn → RN such that φ(U) is or lies near a linear subspace of RN . Then

we can define a new inner product on the data using the function φ by setting

〈x, y〉φ = 〈φ(x), φ(y)〉RN .

Thus, instead of forming the Gram matrix S we can instead form (Sφ)ij = φ(yi)
Tφ(yj) and

simply apply MDS to this Gram matrix. Of course, one would like to know when such a φ

exists and more importantly how to find it. As a matter of practical experience, it seems

that when the new dimension N is large enough, such a φ often exists, and the developments

of this chapter may provide some insight as to why this is the case. However, this raises

two practical problems, the first is finding an appropriate φ and the second is computing

the large inner products in the new space. The kernel trick allows one to bypass both of

these difficulties by using a kernel function.

A kernel function K : Rn × Rn → R assigns a real value to pairs of data points. The

kernel function is called symmetric if K(x, y) = K(y, x) for all x, y ∈ Rn, and is called

positive semidefinite if for all square integrable functions f we have

∫
Rn

∫
Rn
K(x, y)f(x)f(y)dxdy ≥ 0.

Often we only need the kernel to be positive semidefinite on a subset U ⊂ Rn, in which

case we can restrict the integrals to U . A symmetric and positive semidefinite kernel is
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guaranteed to yield an inner product since the matrix (SK)ij = K(xi, xj) is a symmetric

and positive semidefinite matrix, which guarantees SK is the Gram matrix for some set of

vectors.

A generalization of this fact is Mercer’s theorem [21], which states that a symmet-

ric and positive semidefinite kernel which is continuous and integrable can be written

K(x, y) =
∑∞

i=1 λiϕi(x)ϕi(y) where ϕi is a basis of L2(Rn) made up of eigenfunctions

of TKϕi(x) =
∫
Rn K(x, y)ϕ(y)dy = λiϕi(x). When we apply MDS to the Gram matrix SK ,

the eigenvectors we compute are a discrete approximation of the continious eigenfunctions

ϕi. This interpretation will be expanded on significantly in Section 2.3.

The phrase kernel trick refers to defining the embedding function φ implicitly via an

appropriate kernel function and makes Kernel PCA an efficient technique. However, we have

replaced the difficult problem of finding an appropriate embedding φ with the seemingly

equivalent problem of finding an appropriate kernel. As we will see starting in Section 2.3,

certain types of kernels are natural choices because they can recover geometric operators

in the limit of large data sets. Moreover, as we will show in Section 2.5, these kernels can

define a notion of discrete geometry on the finite data set. These facts will allow us to use

a large class of kernel functions called local kernels to truly explore the nonlinear features

of a data set.

2.2.3 Distance based extensions of PCA: Isomap and path metric spaces

Metric Multi-Dimensional Scaling (MDS) gives a general technique for constructing

a low dimensional embedding which minimizes distortion of a metric. Given a metric d

represented by a matrix of squared distances Dij = d(yi, yj)
2 metric MDS reconstructs the

Gram matrix G then uses the first k eigenvectors of the Gram matrix G as an optimal

embedding of the data set xi into Rk. As shown in [21], the matrix of inner products can be

approximately recovered from a matrix of squared distance by double centering the matrix
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of squared distances

G ≈ D − 1

N
D1M −

1

M
1TMD +

1

M2
1TMD1M

where 1M is the vector of all ones in RM . By applying MDS to the reconstructed Gram

matrix G, one can show that Metric MDS gives an optimal low dimensional representation

of the data set in the sense of minimizing the distortion of the metric d [21].

Metric MDS seems to suggest a promising nonlinear extension of PCA to nonlinear

subsets of Rn. On any Riemannian (or even Finslerian) manifold, one can define a unique

distance between points which is given by the infimum of the path length over all paths

on the manifold. This distance is sometimes called the intrinsic metric, and a metric space

with the intrinsic metric is called a path metric space. Thus, if our data lies on a manifold

embedded in Rn, the euclidean distance will not make this data set a path metric space.

One may hope to ‘linearize’ the manifold by finding an embedding in a Euclidean space that

makes the manifold with the euclidean distance a path metric space. Unfortunately, this is

only possible for very special manifolds such as the developable surfaces we discuss below.

However, later we will return to this idea by considering an embedding into an infinite

dimensional linear space such that the ambient metric makes the embedded manifold a

path metric space.

Isomap [22] is a Nonlinear Dimensionality Reduction technique based on a modifica-

tion of Multi-Dimensional Scaling (MDS) [21]. Isomap requires that the high-dimensional

input data lies near a low-dimensional developable manifold. The idea is to construct low-

dimensional coordinates by applying MDS to inter-point distances which are computed on

the manifold. To find these distances, Isomap starts with a k-nearest-neighbor graph con-

sisting of Euclidean distances. Then all inter-point distances are computed as the length

of the shortest path in the graph. Finally, MDS is applied to the matrix of inter-point

distances.

The generative model for Isomap assumes that the data is uniformly sampled for a
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Figure 2.1: Isomap applied to a 2D manifold (left) produces the intrinsic coordinates (right)

special type of smooth manifold called a developable manifold. Developable manifolds can

always be parameterized in the form y = F (x) such that δ(yi, yj) = ||xi − xj ||2 where δ

is the geodesic distance on the manifold and y are the observed data and x are the latent

data. Under this model, and as the sampling density tends to infinity, Isomap will recover

the latent variables exactly [21]. Isomap has also been successfully applied to a broader

class of manifolds called geodesically convex manifolds, however in these cases Isomap may

distort the probability distribution of the latent variables [22].

2.3 The geometric approach to dimensionality reduction

For a finite set of points on a manifold embedded in a high-dimensional Euclidean space,

a diffusion map is a nonlinear map to a lower-dimensional space. In rough analogy to the

principal components from a singular value decomposition, the components of a diffusion

map [2, 12] are eigenvectors of a transition matrix for a random walk on the data set.

Under appropriate normalizations, the transition matrix is a discrete approximation to the

Laplace-Beltrami operator [23], which is by definition the divergence of the gradient on the

manifold inherited from the embedding. Thus the components of the diffusion map will be

approximations to eigenfunctions of this operator, and we will see that the diffusion map

minimizes an energy functional that measures the distortion of the manifold’s geometry.

In this section we introduce the notion of a geometric prior for a data set which motivates
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the geometric interpretation of certain kernel based extensions of PCA. We then overview

the results of the diffusion maps literature and the geometric interpretation of these results.

This will lead to a novel generalization of diffusion maps to a large class of kernel functions

called local kernels which are given a geometric interpretation in Section 2.4. While the

results of Section 2.4 are only true in the limit of large data, in Section 2.5 we show that

there is also a since in which local kernels define a discrete geometry for finite data sets.

2.3.1 The geometric prior

Consider a compact n-dimensional differentiable manifold M embedded in Rm by ι :

M→ Rm. For many applications we will not have any a priori knowledge of the underlying

manifold or the embedding. Instead we simply have a finite collection of vectors from

the embedding space Rm, and we would like to assume that this data set lies on or near

the image of the manifold under the embedding. This is a nonparametric model for our

data, since we assume that the manifold and embedding exist but we do not assume any

specific functional form for either. In this section we explore the assumptions needed to

study a geometry on M. For the rest of this chapter we use geometry as a short hand for

Riemannian geometry which is completely determined by a smoothly varying inner product

on the tangent spaces called the Riemannian metric. For convenience whenever we refer to

the metric on a manifold this means the Riemannian metric.

Letting x ∈M and u, v ∈ TxM, we can define the induced metric on M by

gιx(u, v) = 〈Dι(x)u,Dι(x)v〉Rm = (Dι(x)u)T (Dι(x)v) (2.1)

A simple approach to studying the geometry of an embedded manifold is to assume that

the geometry is given by the induced metric. This trivially implies that ι is an isometry.

Equivalently, one may assume that there is an existing metric g and that the embedding ι

is an isometry, which then implies that g = gι. If nothing is known about the embedding ι

then it would not be possible to study an existing metric g since ι could have distorted the
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geometry g and the problem is underspecified.

Suppose that gx(u, v) is an arbitrary metric on M, then the embedding will distort

gx. To make this distortion explicit, note that for any û, v̂ ∈ Tι(x)(ι(M)) we can define

Dι(x)† =
(
PTι(x)(ι(M))Dι(x)

)−1
where PTι(x)(ι(M)) is the projection onto of Rm onto the n-

dimensional tangent plane at ι(x). Now we can express the inner product in the embedding

space Rm as

〈û, v̂〉Rn = gx(Dι(x)†û, Dι(x)†v̂). (2.2)

By choosing a local coordinate system (x1, ..., xn) we can write the metric at x as a matrix

by setting gij(x) = gx
(
∂
∂xi
, ∂
∂xj

)
. We can also write Dι(x) as a matrix by setting Dιij(x) =〈

Dι(x) ∂
∂xi
, ej
〉
. Then for fixed x we can rewrite equation (2.2) as

〈û, v̂〉Rm = ûT (Dι†)T g(Dι†)v̂.

We can then define the induced volume form by setting

dvol =
√

det gij(x)dx1 ∧ · · · ∧ dxn. (2.3)

This volume form gives rise to a natural probability measure dµ by

dµ =
dvol∫
M 1dvol

. (2.4)

Example: Induced measure on the circle embedded in the plane. Let S1 be

parameterized by θ ∈ [0, 2π), and let u, v ∈ TθS
1 ∼= R. Then the embedding φ(θ) =

(
√

2 cos(θ), sin(θ))T ∈ R2 induces the metric

gθ(u, v) = uT (Dφ(θ))T (Dφ(θ))v = uT (1 + sin2(θ))v.
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Thus the induced measure for this embedding is dµ(θ) = 1∫ 2π
0

√
1+sin2(t)dt

√
1 + sin2(θ).

2.3.2 Diffusion maps

In this section we present the theory which motivates the diffusion maps algorithm as

established in [2]. The key result is that a certain type of kernel function can be used to

approximate the Laplace-Beltrami operator on a manifold embedded in euclidean space. If

a data set in euclidean coordinates can be assumed to satisfy a geometric prior, then we can

give a geometric interpretation of the kernel based extensions of PCA. We will explain the

geometric interpretation in Section 2.3.3, and then in Section 2.4 we will present a novel

generalization of these results.

Assume that N data points are sampled from an n-dimensional manifold M which is

embedded in Rm. Consider a symmetric kernel Jε(x, y) = hε(|x − y|); in our applications,

we use a Gaussian hε(z) = e−z
2/(2ε). The kernel is first used to interpolate the sampling

density p(x) of the data as

P (x) =

∫
M
Jε(x, y)p(y)dy ≈

N∑
i=1

Jε(x, xi) (2.5)

where {xi}Ni=1 ∈ M ⊂ Rm are the discrete observations, which are assumed to be sampled

from the true density p(x). In the limit of large N the discrete approximation becomes

equality.

The idea is to use a kernel density estimate to approximate the heat kernel e−t∆, where

∆ is the Laplace-Beltrami operator on M inherited from Rm. Here we use the convention

that the eigenvalues of ∆ are positive. Unfortunately, the sampling density will affect

such a kernel estimate, but a subtle renormalization can recover the correct operator. The

sampling bias parameter α will be introduced to control the influence that the sampling

density will have on the geometry.

Define the discrete version of the kernel to be the N×N matrix J , where Jij = Jε(xi, xj).
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The discrete version of the interpolated measure above is the N×N matrix P = diag(J1N ),

where 1N denotes the N -vector of ones. That is, P is the diagonal matrix where Pii is the

ith row sum of J .

An N × N matrix with nonnegative entries is stochastic if its rows add to 1. The

eigenvalues of a stochastic matrix are nonnegative and the largest eigenvalue is 1. In our

case, the matrix P−1J is stochastic. However, it is still biased by the sampling density.

The parameter α controls the influence of the sampling. For fixed ε > 0 and α ≥ 0,

define

K(x, y) =
Jε(x, y)

P (x)αP (y)α
K = P−αJP−α

Q(x) =

∫
M
K(x, y)p(y)dy Q = diag(K1N ) (2.6)

Fε,α(f)(x) =

∫
M

K(x, y)

Q(x)
f(y)p(y)dy T = Q−1K

where we have, by abuse of notation, listed the discrete counterpart of each operator on the

left as an N ×N matrix on the right. Note that T is a stochastic matrix.

The key result of diffusion maps is that the matrix T can be used to approximate a

differential operator L that captures the geometry of the data set. Namely, it is shown in

[2] that

Lϕ ≡ lim
ε→0

I − Fε,α
ε

ϕ = ∆ϕ+ 2
∇(p1−α)

p1−α · ∇ϕ.

Alternatively, if we write the sampling density as p = e−U , then

Lϕ = ∆ϕ− 2(1− α)∇U · ∇ϕ. (2.7)

In the special case α = 1, we recover the Laplace-Beltrami operator ∆; in the case of general

α, we recover a backwards Fokker-Planck operator L for a diffusion process.
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Now we can define the diffusion maps as in [2], which give a low-dimensional represen-

tation of the data. They are defined for each time scale t by the projection of the data

onto the eigenfunctions of the operator F
t/ε
ε,α ≈ T t/ε. Without loss of generality, on the

scale of 1 time unit, we can define the eigenfunctions of T 1/ε by T 1/εψl = λ2
l ψl where

1 = λ0 ≥ λ1 ≥ · · · ≥ λL > 0. Here we have used the fact since T is a stochastic matrix, it

has eigenvalues between 0 and 1, and therefore so does T t/ε for any t, ε > 0. The diffusion

map Ψα,t :M→ RL at the data point xi is given by

Ψα,t(xi) = [λt1ψ1(xi), ..., λ
t
LψL(xi)]

T (2.8)

where L is chosen large enough that λtL+1 is sufficiently negligible. Note that (ψl)i =

ψl(xi) = 〈ψl, δxi〉 is the ith coordinate of the lth eigenvector of the matrix T .

The eigenvalues and eigenvectors of the N × N nonsymmetric matrix T need to be

calculated. Fortunately, T is closely related to a symmetric matrix T̂ where calculations

can be done more stably, and which furthermore can be readily described as a matrix of

inner products, or a Gramian matrix. Define

T̂ = Q−1/2KQ−1/2 = Q1/2TQ−1/2.

It is preferable to do the eigenvalue calculation with the symmetric matrix T̂ , since it has

the same eigenvalues as T . If ξl are the eigenvectors of T̂ , then ψl = Q−1/2ξl are the

eigenvectors and λ2
l = a

1/ε
l are the eigenvalues of T 1/ε, collectively satisfying T 1/εψl = λ2

l ψl.

If we let U be the matrix whose columns are ξl, then T̂ = UΛUT where Λll = λ2ε
l . Then

we let V = Q−1/2U be the matrix whose columns are ψl and we let R = Q1/2U = QV be

the matrix whose columns are Rl = Qψl. This gives a biorthogonal decomposition of

T = Q−1/2T̂Q1/2 = Q−1/2UΛUTQ1/2 = V ΛRT = V ΛV TQ.
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Moreover, since T̂ is symmetric and positive definite it is a Gramian matrix, and similarly

V ΛV T is a Gramian matrix.

We now connect T t/ε to the Gramian matrix

(T t/εQ−1)ij =
N−1∑
l=0

λ2t
l ψl(xi)ψl(xj) ≈

L∑
l=0

λ2t
l ψl(xi)ψl(xj) = 〈Ψα,t(xi),Ψα,t(xj)〉 .

The distance which corresponds to the inner product above is the diffusion distance in the

space of functions L2(M, dµ/p(x)) such that

Dt(xi, xj)
2 = ||e−tLδxi − e−tLδxj ||2L2(M,dµ/p(x)) ≈ ||Ψα,t(xi)−Ψα,t(xj)||22 (2.9)

which is shown to satisfy the requirements of a distance in [2]. This shows that the Eu-

clidean distance between diffusion coordinates approximates the diffusion distance on the

underlying manifoldM. In fact, the theory of multidimensional scaling shows that the dif-

fusion coordinates give the best preservation of the diffusion distance of any L dimensional

representation of the data [2, 21].

As mentioned above, L = ∆ in the special case α = 1 in (2.7), and it is shown in [2]

that F
t/ε
ε,1 approximates the heat kernel in the sense that

lim
ε→0

F
t/ε
ε,1 = e−t∆.

The approximation T
t/ε
ij ≈ 〈δxi , e−t∆δxj 〉 becomes equality in the limit as ε → 0 where the

limit assumes that the number of samples N increases to infinity simultaneously. So for

α = 1, the matrix T t/ε is a discrete approximation to the heat kernel.

Finally, we give a new interpretation of the parameter α. Intuitively, α will determine

how much influence the sampling density will have on the operator L. More formally, we

now show that α corresponds to a conformal change of metric and that the operator L
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constructed by diffusion maps is related to the Laplacian with respect to the new metric.

Note that the manifoldM inherits a Riemannian metric g from the ambient space Rm and

a volume form dvol =
√
| det(g)|dω which is given by the sampling density

√
| det(g)| =

p = e−U . Consider the conformal change of metric g̃ = e4(1−α)U/(n−2)g and note that the

Laplacian with respect to this metric is given by

∆g̃ϕ = e−4(1−α)U/(n−2)(∆gϕ− 2(1− α)∇ϕ · ∇U) = e−4(1−α)U/(n−2)Lϕ.

This shows that the operator L constructed by the diffusion map is always a scalar function

multiple of a Laplacian ∆g̃ given by the conformal change of metric. Therefore the α

parameter determines the degree to which the sampling density influences the geometry of

the diffusion mapped data. By taking α = 1 we can remove this influence entirely, and

recover the Laplace-Beltrami operator L = ∆g.

The results of Section 2.3.3 will apply for arbitrary α, and we interpret the operator

F
t/ε
ε,α as a generalization of the heat kernel with respect to the conformal change in metric

described above. We will see in Sections 3.3.1 and 3.4 that for certain dynamical systems

α = 1/2 will allow us to adapt the diffusion map to the invariant measure.

2.3.3 Geometric interpretation of diffusion maps

In this section, we first show that the diffusion map gives intrinsic coordinates which

are independent of the observation space. Next we show that the diffusion coordinates give

a mapping (an embedding for L sufficiently large) of our manifold into RL that gives the

minimal distortion of the geometry of the manifold. Then we interpret the parameter t as the

‘scale’ of our approximation to the manifold, which allows us to reduce the dimensionality

while maintaining the geometry as well as possible. Finally, we will show that the parameter

α corresponds to a choice of measure which will allow us to match the invariant measure of

a dynamical system.

In Section 2.3.2 we saw that given a finite data set sampled from a manifold embedded
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in Rm, a diffusion map constructs a discrete approximation to a heat kernel on the man-

ifold (when α 6= 1 the heat kernel is with respect to a conformal change of metric). The

heat kernel on a manifold is equivalent to the Riemannian metric, so we can preserve the

geometry of an embedding by preserving the heat kernel. Since the diffusion coordinates

of (2.8) approximate the dominant eigenfunctions of the heat kernel, they give the best

low-dimensional approximation to the heat kernel. Moreover, since the the heat kernel

is invariant under isometries, the diffusion coordinates will be the same for any isometric

copies of the manifold. Thus, the diffusion coordinates are intrinsic and will not depend on

the observation space.

Note that since the matrix T t/εQ−1 is a Gramian matrix, the diffusion coordinates (given

by the eigenfunctions ψl) are the principal components of the associated inner product

space [21]. This naturally gives two interpretations to the diffusion maps. First, in terms

of Kernel Principal Component Analysis, we will see that the diffusion map maintains local

distances. Second, in terms of multidimensional scaling, we will see that the diffusion map

gives the minimum distortion of the nonlocal diffusion distances, which are a generalization

of geodesic distances.

First, to see that the diffusion map is a Kernel Principal Component Analysis, note that

the diffusion coordinates are given by the solutions of the generalized eigenvalue problem

Aψ = λBψ where Aij = K(xi, xj) and B = Q. As shown in [5], this implies that the

diffusion coordinates give an embedding into RL that minimizes the functional

E[Φ] =
L∑
l=1

∫
RN

∫
RN

(φl(x)− φl(y))2K(x, y)

Q(x)
p(x)p(y)dxdy

over maps x 7→ Φ(x) = (φ1(x), ..., φL(x)) subject to the constraint 〈φi, φj〉 = δij . Since

Kε,α is a localizing kernel with exponential decay, this functional penalizes moving points

apart that were close in the original space. In this sense, the diffusion coordinates seek to

minimizes the local distortion of distance. This shows that the diffusion map preserves the
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local geometry of the embedded manifold.

Whereas the above interpretation shows that the diffusion map minimizes a stress func-

tional, we can also interpret the diffusion map in terms of multidimensional scaling. In the

previous section we saw that the matrix T t/εQ−1 contains inner products, and that there is

a corresponding metric which is given by the diffusion distance from (2.9). The theory of

multidimensional scaling shows that the diffusion coordinates minimize the distortion given

by

P[Φ] =

N∑
i,j=1

(Dt(xi, xj)− ||Φ(xi)− Φ(xj)||)2

with Φ constrained as above [21]. Thus the Euclidean distance in the diffusion coordinates

is as close as possible to the diffusion distances on the manifold. Optimality in terms of

the functionals E and P shows that the diffusion map will maintain local distances, while

changing long distances to approximate the intrinsic diffusion distance.

Next we provide a geometric interpretation of the parameter t. The diffusion distances

were introduced in [2] and shown to be distances on the manifold for each value of the

parameter t. Intuitively, the parameter t controls the scale at which we approximate the

manifold. For example, as t → ∞, the diffusion distance between all points approaches

zero, and for t large our data set is approximated as a single point. Conversely, as t → 0

the diffusion distance is related to the geodesic distance d on the manifold by the equation

d(x, y) = lim
t→0
−4t log

〈
e−t∆δx, δy

〉

= lim
t→0
−4t log

(
||e−t∆/2δx||2 + ||e−t∆/2δy||2 −Dt/2(x, y)2

2

)
.

The geodesic distance is equivalent to the Riemannian metric, so as t→ 0 the diffusion dis-

tance captures all the details of the geometry. Thus, the parameter t allows us to control the

scale at which we try to represent the manifold: t large gives a coarse scale representation,
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and t small gives the fine scale.

Of course, to represent the fine scale will require a high dimensional diffusion map, and

often the fine scale will be dominated by noise. Thus by choosing t large we can approximate

our manifold at a coarse scale that will allow a low-dimensional representation while still

maintaining the geometry in the sense of the functionals E and P.

2.4 Generalization of diffusion maps to local kernels

In this section we define local kernels and show that, given the geometric prior, in the

limit of large data each local kernel defines a geometry on the embedded manifold. Section

2.4.1 introduces the formal definition of a local kernel and develops the theory of local

kernels as a natural generalization of the results of diffusion maps in [2]. In Section 2.4.3

we give an practical example of how local kernels can be used to regularize the geometry

on an embedded manifold. For convenience and clarity we restrict our construction in this

section to manifolds without boundary; we conjecture that the results could be extended

to manifolds with boundary following the technique of [2].

2.4.1 The limiting geometry of local kernels

As we saw in Section 2.3.2, the diffusion maps construction of Coifman and Lafon [2]

starts with a kernel which can be written as a scalar function of the Euclidean distance

squared, namely Jε(x, y) = h(||x−y||2/ε). Such a kernel is sometimes called a radial kernel.

In this section we introduce the terms local and isotropic which describe kernels that have

special properties. We show that all radial kernels with fast decay are local and isotropic,

and that this strongly restricts the geometry which a radial kernel can describe. The key

lemma in the theory of diffusion maps (in [2]) applies to radial kernels, and in Lemma 2.4.2

we generalize this result to all local kernels. This leads to our main result in Theorem

2.4.1 which shows that every local kernel defines a geometry on the embedded manifold.

The geometry is determined by the limit of the Hessian matrix of the local kernel. The

limit of large data is needed, as shown in [2] and summarized in Section 2.3.2, in order
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to approximate the integral operator Gε (defined below) and coincides implicitly with the

limit ε→ 0.

The key result of diffusion maps is that (I−Fε,1)/ε→ ∆M as ε→ 0 so that the extrinsic

effect of the sampling density is removed and the intrinsic Laplace-Beltrami operator on

the manifold is recovered. We will show that this results depends on two properties of the

kernel Jε(x, y). The first property is that the kernel is local.

Definition 2.4.1 (Local Kernel). A kernel K : Rm × Rm → R is called local if it can

be written in the form K(x, y) = K(x, y − x) where K(x, z) is smooth and nonzero in a

neighborhood of z = 0 with the properties

1. (fast decay) For some c, σ > 0 and all x, z ∈ Rn we have 0 ≤ K(x, z) ≤ ce−σ||z||2 .

2. (centered) For all x ∈ Rn, K(x, z) has a local maxima at z = 0.

We will make extensive use of the scaling Kε(x, y) = K
(
x, y−x√

ε

)
which intuitively describes

the geometry at scales coarser than ε (see Section 2.5). We will use this scaling to define

a geometry in the limit of ε → 0. The fast decay property will allow the kernel operator

Gεf(x) = ε−n/2
∫
ι(M)Kε(x, y)f(y)dy to be localized to a

√
ε-neighborhood of x, which will

be important in Lemma 2.4.2. In Section 2.6 we will discuss the possibility of non-centered

kernels to describe more general geometries. The following proposition establishes notation

that will be used below as well as some important homogeneity properties of a scaled local

kernel.

Proposition 2.4.1 (Homogeneity of Local Kernels). Let K(x, y) = K(x, y − x) be a local

kernel and define the ε-scaled kernel Kε(x, y) = K
(
x, y−x√

ε

)
. The diagonal k = Kε(x, x) and

the Hessian matrix Kx = −εHy Kε(x, y)|y=x are independent of ε and there exists a unique

symmetric positive definite square root of Kx which we denote K
1/2
x .

Proof. For any x ∈ Rm we have k = Kε(x, x) = K(x, 0) and Kx = −εHyKε(x, x) =

−HzK(x, z)
∣∣
z=0

which reveals these expressions to be independent of ε. Since K(x, z)
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has a maximum at z = 0 the Hessian matrix HzK(x, 0) is negative definite and thus

Kx = −HzK(x, 0) is positive definite and so the symmetric positive definite square root

K
1/2
x exists and is unique.

Throughout this section, by a slight abuse of terminology, we will refer to the positive

definite matrix Kx as the Hessian of the local kernel K.

The second property of Jε in the diffusion maps construction is that the kernel is

isotropic.

Definition 2.4.2 (Isotropic Local Kernel). A local kernel K : Rn × Rn → R is called

isotropic if there exists a constant c 6= 0 such that for all x ∈ Rn the Hessian matrix

Kx = cIn×n.

In the diffusion maps construction, the base kernel J is assumed to be of the form J(x, y) =

h(||x− y||2) where h is a smooth scalar function with fast decay and is decreasing at zero,

we first show that any kernel of this form is local and isotropic.

Proposition 2.4.2 (Radial kernels are local and isotropic). Assume a kernel J can be

written in the form J(x, y) = h(||x − y||2) where h has fast decay, at least two continuous

derivatives at zero, and is decreasing at zero, then J is local and isotropic.

Proof. Since h has fast decay, we only need to show that J is centered and isotropic. We first

write J(x, y) = J(x, y − x) where J(x, z) = h(||z||2). Note that ∂
∂zi
J(x, z) = 2h′(||z||2)(zi)

so DzJ(x, 0) = 0. Similarly we have

∂

∂zj

∂

∂zi
J(x, z) = 4h′′(||z||2)zizj + 2h′(||z||2)

∂

∂zj
zi

so for i 6= j we have ∂
∂zj

∂
∂zi
J(x, 0) = 0 and for i = j we have ∂

∂zj
∂
∂zi
J(x, 0) = 2h′(0) = c < 0

so Kx = HzJ(x, 0) = cIn×n which implies that J is isotropic. Since HzJ(x, 0) is negative
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definite and DzJ(x, 0) = 0 we conclude that J is centered and therefore J is local. Thus J

is local and isotropic.

We highlight two examples of radial kernels which are local and isotropic which will be

used later.

Example 2.4.1 (Examples of radial kernels). The standard kernel for the diffusion maps

construction uses h(x) = e−x as the base function so that J(x, y) = e−||x−y||
2
. In Lemma

2.4.2 below we use the local isotropic kernel defined by h(x) = max{1− x, 0}.

While Jε is local and isotropic, the diffusion maps kernel Kε,α has a very special type

of anisotropy which is determined by the α parameter. As we have seen, this anisotropy is

allows the diffusion maps construction to access different geometries which are conformally

equivalent to the geometry induced by the ambient space. Our goal is to allow any type of

anisotropic kernel and find the operators which can be approximated in the limit of ε→ 0

using local kernels. The following example is the prototype of a local kernel which can be

used to define a geometry.

Example 2.4.2 (Prototypical local kernels). Let A(x) be a matrix valued function on

the embedded manifold ι(M) such that each A(x) is a symmetric positive definite m-by-

m matrix. Note that K(x, y) = e−(x−y)TA(x)(x−y) is a local kernel with Hessian Kx =

A(x) +A(x)T .

In order to understand the limiting behavior of local kernels, we first need to generalize

the following lemma from [2] which allows the approximation of the integral operator Gε.

Lemma 2.4.1 (Expansion of Radial Kernels, Coifman and Lafon [2]). Let f be a smooth

real-valued function on ι(M) ⊂ Rm and let h have fast decay, then we have

Gεf(x) = ε−n/2
∫
ι(M)

h

(
||x− y||2

ε

)
f(y)dy = m0f(x) + εm2(ω(x)f(x) + ∆f(x)) +O(ε2)
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where m0 and m2 are constants determined by h, and ω(x) depends on the induced geometry

of ι(M). The operator ∆ is the Laplace-Beltrami operator for ι(M) with the induced metric.

The next lemma generalizes this result to local kernels. We introduce the standard

notation div and ∇ to refer to the intrinsic operators on the embedded manifold such that

∆ = −div ◦ ∇ is the Laplace-Beltrami operator for ι(M) with the induced metric. Note

that the Hessian matrix Kx is m-by-m and is a linear operator on the tangent space of the

ambient space TxRm ∼= Rm, whereas the tangent space Txι(M) is only n-dimensional. In

order for Kx to operate on a tangent vector u ∈ Txι(M) we need the m-by-n matrix Ξx

of the inclusion map Txι(M) → TxRm, however for convienence we identify Kx and K
1/2
x

with ΞTxKxΞx and ΞTxK
1/2
x Ξx respectively.

Lemma 2.4.2 (Expansion of Local Kernels). Let f be a smooth real-valued function on

ι(M) ⊂ Rm and let K(x, y) be a local kernel. For each x ∈ ι(M) let Kε,Kx and K
1/2
x be

defined as in Proposition 2.4.1. We have the following expansion

Gεf(x) = ε−n/2
∫
M
Kε(x, y)f(y)dy

= m0f(x) + εm2(ω(x)f(x)−∆ĝf(x)) +O(ε3/2)

where ĝ = K
1/2
x gK

1/2
x and g is the induced metric on ι(M). The constants m0 and m2 are

determined by K, and ω(x) depends only on the induced metric g.

Proof. Let x ∈M, since Kε is a local kernel it is centered so we can expand Kε in a Taylor

series for the variable y based at x as

Kε(x, y) = Kε(x, x)− (y − x)THyKε(x, x)(y − x) +O(||y − x||3)

= k − (y − x)T
Kx

ε
(y − x) +O(||y − x||3)

Since the kernel is local it has fast decay, thus we can restrict the integral in Gε to a
√
ε
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neighborhood of x.

Gεf(x) = ε−n/2
∫
N√ε(x)

Kε(x, y)f(y)dy +O(ε3/2)

= ε−n/2
∫
N√ε(x)

(
k − (y − x)T

Kx

ε
(y − x)

)
f(y)dy +O(ε3/2)

Now make the change of variables ŷ−x = K
1/2
x (y−x) so that dŷ =

√
det(Kx)dy and define

the radial kernel h(||ŷ − x||2/ε) = max{k − ||ŷ − x||2/ε, 0} then we can write

Gεf(x) =
ε−n/2√
det(Kx)

∫
K

1/2
x N√ε(0)+x

h(||ŷ − x||2/ε)f(K−1/2
x (ŷ − x) + x)dŷ +O(ε3/2)

=
ε−n/2√
det(Kx)

∫
Nλ
√
ε(x)

h(||ŷ − x||2/ε)f̂(ŷ)dŷ +O(ε3/2(1 + λ−3))

=
ε−n/2√
det(Kx)

∫
ι(M)

h(||ŷ − x||2/ε)f̂(ŷ)dŷ +O(ε3/2)

where λ > 0 is the infimum of the smallest singular values of the matrices K
1/2
x on the

compact manifold and f̂(ŷ) = f(K
−1/2
x (ŷ − x) + x). Note that f̂(x) = f(x) so by the

previous lemma we have

Gεf(x) = m0f(x) + εm2

(
ω(x)f(x)− ∆gf(K−1/2

x (ŷ − x) + x)
∣∣∣
ŷ=x

)
+O(ε3/2)

= m0f(x) + εm2(ω(x)f(x)−∆ĝf(x)) +O(ε3/2)

To justify the final equation, note that for ŷ in a small enough neighborhood of x, the map

κ(ŷ) = K
−1/2
x (ŷ − x) + x is a diffeomorphism such that κ(x) = x and Dκ(x) = K

−1/2
x . In

this small neighborhood of x, the change of variables y = κ(ŷ) induces the pullback metric
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ĝx(u, v) = gx(Dκ(x)−1u,Dκ(x)−1v) = gx(K
1/2
x u,K

1/2
x v). Exactly at the point ŷ = y = x

Laplacian ∆g of f̂(ŷ) = f ◦ κ(ŷ) is equivalent to the Laplacian ∆ĝ of f(y) via the change of

variables y = κ(ŷ). Denoting the new metric by ĝ = K
1/2
x gK

1/2
x completes the proof.

Note that when Kx is the identity map then ĝ = g and we recover Lemma 2.4.1 extended

to all local isotropic kernels. The following theorem is the main result of this chapter and

shows that given the geometric prior, a local kernel can be used to approximate the Laplace-

Beltrami operator with respect to the Riemannian metric ĝ = K
1/2
x gK

1/2
x in the limit as

ε→ 0.

Theorem 2.4.1. Let K(x, y) be a Riemannian local kernel, let ĝ be defined as in Lemma

2.4.2, and set

Lεf =
Id(f)− (Gε1)−1Gεf

ε
.

Then limε→0 Lε = c∆ĝ where c is a constant depending on K.

Proof. By the Lemma 2.4.2 we have Gε1 = m0 + εm2(ω(x) + ∆ĝ1) +O(ε3/2). Note that for

constants a, b, c, d with c > 0 we can expand the ratio

a+ εb

c+ εd
=
a

c
+ ε

cb− ad
c2

+O(ε2).

Thus we can expand the ratio

(Gε1)−1Gεf = f(x) + ε
m0m2(ω(x)f(x) + ∆ĝf(x))−m0m2ω(x)f(x)

m2
0

+O(ε3/2)

where m0,m2 are evaluated at ε = 0. Thus we have

Lεf =
−m2

m0
∆ĝf(x) +O(

√
ε)
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which implies the desired limit limε→0 Lε = c∆ĝ.

The Laplacian ∆ĝ is equivalent to the Riemannian metric ĝ in the sense that either

can be uniquely recovered from the other [23]. Since the previous theorem shows that a

local kernel defines the Laplacian with respect to the metric ĝ, we conclude that every local

kernel determines a geometry on the embedded manifold. Of course, many local kernels

could define the same geometry, and Lemma 2.4.2 reveals that it is the Hessian at Kx that

determines the geometry. This establishes the central result of this chapter, which is that

every local kernel defines a geometry in the limit of large data. The next theorem establishes

the converse, that every Riemannian geometry on a manifold can be represented by a local

kernel.

Theorem 2.4.2. Let ι(M) be an embedded Riemannian manifold with g the induced metric.

Let ĝ be another Riemannian metric on M, then there exists a local kernel K such that for

Lε defined as in Theorem 2.4.1 we have limε→0 Lε = c∆ĝ.

Proof. For each x ∈ ι(M) choose local coordinates {xi}ni=1 and write gx and ĝx as symmetric

positive matrices (see Section 2.3.1). Then we can define the symmetric positive definite

square roots g
1/2
x and ĝ

1/2
x and Sx = ĝ

1/2
x g

−1/2
x so that

ĝx = ĝ1/2
x ĝ1/2

x = SxgxSx

where we have used the fact that all the matrices are symmetric. Now let Ax = S2
x and

extend Ax to act on all of TxRm by setting Ax to be the identity on (Txι(M))⊥. Note that

the extended Ax is still positive definite and is smooth in the variable x since gx and ĝx

are smooth on Txι(M) and Ax is constant on (Txι(M))⊥. Thus we can define the smooth

local kernel K(x, y) = exp{−(y−x)TAx(y−x)/2} so that the Hessian is given by Kx = Ax

and K
1/2
x = Sx. By Theorem 2.4.1, the local kernel K(x, y) yields limε→0 Lε = ∆ĝ as

desired.
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Together, Theorems 2.4.1 and 2.4.2 show that Riemannian metrics are in one-to-one

correspondence with equivalence classes of local kernels that have the same Hessian matrix

Kx for all x ∈ ι(M). Of course, it is also possible to use diffusion maps the find the Laplacian

with respect to any Riemannian metric. By Nash’s theorem [24], every Riemannian manifold

admits an isometric embedding into RM for M large enough. To recover a given metric ĝ

with diffusion maps we would have to find a global isometric embedding of our manifold

into a Euclidean space and use this to re-embedd our data. With the re-embedded data set

we could use diffusion maps to find ∆ĝ since ĝ is the induced metric of this embedding. Of

course in practice finding such a global isometric embedding is impractical.

The theory of local kernels provides an alternative which is valuable in two respects.

First, just as the kernel trick provides a more efficient technique of computing a Gram

matrix (see Section 2.2.2), a local kernel allows one to easily change the metric using only

local information without having to construct a globally consistent embedding. This is a

significant advantage when trying to form data driven techniques to modify the metric as

we will see in the following sections. Second, the theory of local kernels gives an impor-

tant geometric interpretation to many existing techniques which use local kernels such as

K(x, y) = e
−||y−x||2

A(x) where A(x) defines a special distance measure on the embedded data.

The theory of local kernels shows that these techniques are changing the geometry of the

embedded data, an analogy which will be explored further in Section 2.5. As we will see in

later sections, understanding the geometric content of kernel based methods provides novel

avenues for analyzing the data.

In the next section we demonstrate the numerical application of a local kernel to modify

the geometry of a data set, and in the following section we demonstrate a new technique

for data driven geometric regularization using local kernels.

2.4.2 Numerically recovering the flat metric on a torus with a local kernel

In this section we show that a local kernel can recover the flat metric on a torus embedded

in R3 with nonzero Riemannian curvature. Let θ, φ ∈ [0, 2π] be the intrinsic coordinates of
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the torus, the flat metric is given simply by gθ,φ = Id, this is the product metric induced

by the structure T 2 = S1 × S1. Now consider the embedding ι : T 2 → R3 given by

ι((θ, φ)) =


(2 + sin θ) cosφ

(2 + sin θ) sinφ

cos θ

 Dι((θ, φ)) =


cos θ cosφ −(2 + sin θ) sinφ)

cos θ sinφ (2 + sin θ) cosφ

− sin θ 0



which induces a curved metric on the torus. Our goal is to use a local kernel to undo the

curvature induced by the embedding and recover the flat metric.

We generated 8100 points on a uniform grid in [0, 2π]2 to represent the intrinsic variables

and then mapped these points into R3 via ι to generate the observed variables. We first ap-

plied the Diffusion Maps algorithm to the observed data set with α = 1 (since the points are

not uniformly distributed on the embedded manifold) in order to approximate the first four

eigenvectors of the Laplacian with respect to the curved metric from the embedding space.

In Figure 2.2 we show these eigenfunctions plotted against the intrinsic variables along with

the diffusion map embedding defined by the first three eigenfunctions (see section 2.3.2. As

shown in Section 2.3.2, the diffusion maps algorithm estimates the Laplacian with respect

to the Riemannian metric induced by the embedding, up to a conformal transformation.

To show that a local kernel could recover the Laplacian with respect to the flat metric

we defined the following local kernel

K(x, y) = exp
{
−(y − x)TA(x)(y − x)

}
A(x) =

(
Dι(ι−1(x))†

)T
Dι(ι−1(x))†.

Thus we have K(x, z) = e−z
TA(x)z which implies that Kx = A(x) and K

1/2
x = Dι(ι−1(x))†.

Since the metric induced by the embedding is gx = (Dι(x))TDι(x), Theorem 2.4.1 implies
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Figure 2.2: Top row, Left: First (blue) and second (green) eigenfunctions of the Laplacian
with respect to the induced metric approximated by the diffusion maps construction, the red
curves are sine functions with the same phase as the eigenfunctions; Middle: Eigenfunctions
five (blue) and six (green), note that all the plots contain the same number of points and the
vertical spread in this plot indicates the θ dependence; Right: The diffusion maps embedding
of the torus using eigenfunctions one, two, and five. Bottom row, Same as above but using
eigenfunctions from the local kernel construction described in the text, Left: Eigenfunctions
one (blue) and two (green); Middle: Eigenfunctions three (blue) and four (green), Right:
Embedding using eigenfunctions one, two, and three. Note that the surface shown in the
bottom right plot is flat (zero Riemannian curvature) as expected but is not an embedding
of the torus; this is because a smooth isometric embedding of the flat torus requires four
dimensions.

that using the local kernel K approximates the Laplacian with respect to the metric

ĝx = K1/2
x gxK

1/2
x = I

which is the flat metric on the torus. In Figure 2.2 we confirm this result numerically using

the data set described above.

Of course, this kernel is not purely data driven since we have assumed knowledge of the

embedding ι. However, the point of this example is simply that a local kernel can achieve

a desired change of metric without having to re-embed the data. Note that the first four
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eigenfunctions of Laplacian with respect to the local kernel K(x, y), as shown in Figure 2.2,

approximate (sin(θ + θ0), cos(θ + θ0), sin(φ + φ0), cos(φ + φ0)) up to a phase shifts θ0 and

φ0. Since these coordinates give an isometric embedding of the flat torus into R4 we see

that we have recovered the flat metric.

The example in this section illustrates the power of local kernels to modify the ge-

ometry of data, however, this example made use of the embedding function which is not

typically known. In the next section we will examine a data driven approach to regularizing

the geometry of data using local kernels and show how this is a natural extension of the

regularization achieved by diffusion maps via the α parameter.

2.4.3 Data driven geometry regularization via local kernels

Diffusion maps correctly claims that in many applications the sampling distribution is

an extrinsic factor which we do not wish to influence the geometry. However, as we have

shown in Section 2.3.1, unless we know a priori that the embedding is isometric, the entire

embedding geometry could be considered extrinsic. In this section we apply a data-driven

anisotropic local kernel to regularize the geometry. Consider the example shown in Figure

2.3 where we have two data sets where one has simply be stretched in the y-coordinate.

We can imagine a case where some unknown type of stretching has corrupted our data and

we would like to find a construction which is independent of this type of effect. Since this

stretching changes the embedding, the induced Riemannian metric is also changed, and this

fact is reflected in the eigenfunctions estimated by diffusion maps as shown in Figure 2.3.

Motivated by this example, we introduce the following kernel. Let Jε(x, y) = e−||x−y||/ε

be the initial kernel. For each data point xi, we consider the localized data set

zj = Jε(xi, xj)(xj − xi)

centered at xi where xj ranges over the ε ball surrounding xi, this guarantees the the

regularized kernels will have fast decay. Letting Z be the matrix with zj as its columns
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we can attempt to remove the bias towards any particular direction by finding the singular

value decomposition Z = UΛV T and then forming Ẑ = UV T . We define the partially

regularized kernel by K̂(xi, xj) = ||ẑj ||, where ẑj is the jth column of Ẑ. We define the

fully regularized kernel by letting Z̃ = UΛ−1V T and K̃(xi, xj) = ||z̃j ||, where z̃j is the

jth column of Z̃. These kernels use a localized SVD to define a data driven anisotropy

in an attempt to regularize the geometry and remove extrinsic features of the embedding.

In Figure 2.3 we demonstrate the effects of these new kernels. Note that for these closely

related data sets, the corresponding eigenfunctions for the diffusion maps construction look

very different, while the eigenfunctions for the regularized kernels are more similar.
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Figure 2.3: In the first column we show two data sets where the second data set is formed
simply by multiplying the y-coordinates of the first data set by 3. In each row we plot
the second eigenfunction of the Laplacian (associated to the first nonzero eigenvalue) for
the corresponding data set by using the diffusion maps regularization (second column,
α = 1), using partial SVD regularization (third column) and full SVD regularization (fourth
column).

An important remaining goal is to describe analytically the new geometry defined by the

local SVD regularization. Moreover, the idea of regularizing the geometry is to remove all

the geometric content of the embedding. This is closely related to a theoretical idea called

geometrization, which seeks to define an intrinsic geometry by choosing an arbitrary initial

Riemannian metric and then evolving the metric according to a PDE called a geometric
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evolution equation. One example is the Ricci flow which is given by a nonlinear PDE and

intuitively expands areas of negative curvature and contracts areas of positive curvature to

regularize the metric.

2.5 Local kernels and the discrete exterior calculus

In the previous section we saw that local kernels define a geometry in the limit of large

data. In this section we show that local kernels can be used to define discrete geometries

on finite data sets. This is achieved by translating the diffusion maps construction of the

Laplacian into a formal language for describing a discrete geometry called the discrete

exterior calculus, which was developed in [6, 20]. For simplicity we restrict the discussion

to the kernel used by diffusion maps; we conjecture that the result generalizes to all local

kernels.

In Section 2.5.1 we show the formal connection between the discrete exterior calculus

and diffusion maps by showing that the corresponding approximations of the Laplacian

differ only by multiplication by a constant. In Section 2.5.2 we complete the translation

of diffusion maps into the discrete exterior calculus by introducing an abstract simplicial

complex on the data set given by the Vietoris-Rips complex. Moreover, using the results of

[25] we show that for sufficiently dense sampling, the discrete geometry should have the same

homology as the true manifold. Finally, in Section 2.5.3 we use the discrete geometry to

compute Betti numbers for a torus and a genus-2 surface. We also show how to numerically

approximate closed representatives of the cohomology classes.

2.5.1 The discrete geometry of local kernels

In [6,20] an alternative discrete construction of Laplacian operators is defined via a sim-

plicial complex on a data set. In this section we unify the two constructions by interpreting

the normalized transition matrix of Diffusion Maps as a weighted simplicial complex corre-

sponding to a Riemannian Metric on the underlying manifold. This new interpretation will

be give a new geometric insight into the Diffusion Maps construction and will be important



39

in correctly interpreting the results of Diffusion Maps applied to complex dynamical data.

We will define a simplicial complex on our data set by simply taking the complete graph of

the data set and including every possible simplex. While this seems excessive, we will use a

probabilistic metric to insure that almost all these simplices are given a negligible weight.

This reveals the power of Diffusion Maps as a probabilistic approach to geometry, Diffusion

Maps weights simplices continuously instead of making a binary decision for each simplex.

Let {xi}Si=1 be our discrete observations, following [6] we let the basic k-simplices be

given by ordered collections of k + 1 data points. Thus there are Sk+1 k-simplices, and we

represent k-chains as column vectors of length Sk+1 with each entry giving the weight of the

corresponding simplex. We now construct the discrete boundary operator on 1-simplices

following [6] as

∂{xixj} = {xj} − {xi}

which extends linearly to a sparse operator taking 1-chains to 0-chains. We represent k-

forms as row vectors of length Sk+1 and define the discrete exterior derivative d = ∂t to be

the transpose of the discrete boundary operator. Note that

d{xi} =
∑
j 6=i
{xjxi} − {xixj}.

The operators ∂ and d are purely topological in nature, however to construct the Laplacian

we will need a Riemannian Metric. Again, following [6] we define the Riemannian Metric

through the Hodge star and the equation

〈
γk, βk

〉
= γT ?k β
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but instead of the Hodge star in [6] we set

?0{xi} =
1

pε,α(xi)
{xi} (2.10)

?1{xixj} = Kε,α(xi, xj){xixj} (2.11)

using pε,α and Kε,α from equation (2.6). This allows us to define the codifferential δ as the

adjoint of the exterior derivative d under the Riemannian Metric. Thus δ is defined through

the formula

δ{xixj} = − ?0 d
T ?1 {xixj} = − ?0 ∂ ?1 {xixj} (2.12)

= −Kε,α(xi, xj)

(
{xj}

pε,α(xj)
− {xi}
pε,α(xi)

)
.

So finally we define the discrete Laplacian on 0-forms by ∆0 = (δ + d)2 = δd and a simple

computation confirms that

∆0 = 2(T − I) = −2ε∆

which differs from the Diffusion Maps discrete Laplacian by a constant multiple (includ-

ing the well known sign difference). This confirms that for each α the operator given by

limε→0
I−Fε,α

ε is the Laplacian with respect the Riemannian metric defined by equation

(2.10).

To make the connection to the Riemannian metric explicit, note that each tangent

space is represented by discrete 1-chains. The Riemannian metric, which is locally an

inner product, is related to the Hodge star, ?1, simply by choosing local bases of 1-chains.

For each vertex {xl} we can form n 1-chains {γls}ns=1 such that the Euclidean vectors

γls =
∑

k γls(k)(xk − xl) are linearly independent. Thus {γls} define local coordinates on



41

the tangent space at {xl} and the metric is given by

gij(xl) = 〈γli, γlj〉 = γTli ?1 γlj =
∑
k

γli(k)γlj(k)Kε,α(xl, xk).

The connection between Diffusion Maps and the geometric construction provides valu-

able insights into both methods. The geometric formulation reveals that the choice of α

in Diffusion Maps is actually a choice of Riemannian metric, this will allow us to better

understand the effect of time-delay coordinates on Diffusion Maps. In particular this reveals

that when α = 1 the Riemannian metric is chosen to be that inherited from the ambient

space (since the input to Diffusion Maps is always given as an embedding in an ambient

Euclidean space). Moreover, the results of Diffusion Maps in [2] show that a normalization

by 1
2ε will be required for the discrete Laplacian ∆0 to converge to the correct operator in

the limit as ε→ 0.

The key to diffusion maps is the construction of a discrete approximation to the Laplace-

Beltrami operator ∆ using the data set. However, the Laplace-Beltrami operator is simply

the zeroth order Laplacian ∆ = ∆0, which operates on functions. Topological features

in the de Rham cohomology can be inferred from the higher order Laplacians, ∆k which

operate on k-forms. In fact, the harmonic k-forms (solutions of ∆kψ = 0) exactly pick out

the various equivalence classes of k-forms. So, for example, on the torus there are exactly

two solutions to ∆1ψ = 0 and each solution corresponds to an intrinsic variable on the

torus. This is a powerful generalization of the fact, pointed out in [2], that the harmonic

forms found in diffusion maps correspond to the connected components of the data set

(since the connected components are the equivalence classes of the zeroth order de Rham

cohomology).

2.5.2 The Vietoris-Rips complex and Laplacians on k-forms

In the previous section we showed that the downside of the Discrete Exterior Calculus

formalism was that it required a consistent simplicial complex in addition to the raw data
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points. Simplicial complexes are not available for many data sets; moreover they can be

quite costly to construct and may bias the discrete geometry. Diffusion maps avoids this

difficulty by focusing on the limiting continuous geometry however, this means that, a

priori, diffusion maps may not give a consistent discrete geometry. Of course, the previous

section showed that the equations for the discrete Laplacian (which completely determines

the geometry) are equivalent. This might suggest that a diffusion map implicitly defines a

simplicial complex. We will see that this is not the case, since the implicitly defined cells

of a diffusion map do not necessarily satisfy the intersection requirements of a simplicial

complex. Instead, we show that the diffusion maps construction is consistent with an

abstract simplicial complex known as the Vietoris-Rips (VR) complex. In this section we

will explore this implicit cell complex and show how to construct higher order Laplacians

in this context.

We can understand the VR complex implicit to the diffusion maps construction by

looking at the Hodge star operator defined in the previous section. Since the Hodge star on

1-forms assigns a non-zero value to every pair of data points, every single possible 1-simplex

must be included in the complex. Each of these simplices are given a weight which decays

exponentially in their length. Of course, this means that many of these simplices are given

negligible weight by the Hodge star. Thus we can economize, and form a sparse Hodge

star operator, by removing all simplices with length greater than ε. In [5] it was shown

that the sparse construction still converges to the Laplace-Beltrami operator in the limit of

large data. We cannot expect that all of these simplices will satisfy the requirements of a

simplicial complex (in particular they may intersect at points which are not in the data set;

this will be very likely for high dimensional embeddings or for noisy data sets). However,

by taking the collection of all simplices in a ball of radius ε we form the VR complex which

is an abstract simplicial complex.

The connection to the VR complex is particularly interesting because of a recent paper

[25]. The authors show that for a closed Riemannian manifoldM, and any metric space N

sufficiently close toM (as measured by the Gromov-Hausdorff distance) the VR complex of
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N is homotopy equivalent to M. Our non-parametric model assumes that the data set N

is sampled from an embedded manifoldM which is compact and hence closed. The results

of [25] imply that if our discrete samples are sufficiently dense and near the embedded

manifold, then the VR complex which is implicit to the diffusion maps construction is

homotopy equivalent to the manifold M.

Now that we understand that the Vietoris-Rips complex is implicit to the diffusion maps

construction of the Laplace-Beltrami operator, we can use this fact to perform an analogous

construction of higher order Laplacian operators. In fact, constructing the higher order

Laplacians is natural in the context of the Discrete Exterior Calculus. Following [6] the

boundary ∂k and exterior derivative dk operators can be easily extended to k-forms. We

now generalize the Hodge star construction of diffusion maps to k-simplices by setting

?k{xi1xi2 · · ·xik+1
} = Kε(xi1 , xi2 , ..., xik+1

){xi1xi2 · · ·xik+1
}. (2.13)

Since each 1-simplex was weighted by a function exponentially decaying in length, we gener-

alize to k-simplices by a function exponentially decaying in volume. Explicitly, the k-simplex

formed by the vectors {xi1xi2 · · ·xik+1
} is part of a parallelotope defined by the columns

of the matrix X =
[
xi2 − xi1 , xi3 − xi1 , ..., xik+1

− xi1
]
. The volume of the parallelotope is

given by the Grammian determinant
√

det(XTX). The volume of the k-simplex is given

by

vol({xi1xi2 · · ·xik+1
}) =

√
det(XTX)

k!

so we define the kernel function K as

Kε(xi1 , xi2 , ..., xik+1
) = exp

(
−1

ε
vol({xi1xi2 · · ·xik+1

})2

)
= exp

(
−det(XTX)

k!2ε

)
.

Now that we have defined the higher order Hodge star operators, we can construct the
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discrete codifferential δ on k-forms as δk = (−1)k ?−1
k−1 ∂

k?k and the Laplacian on k-forms

∆k = δk+1dk + dk−1δk

following the definitions of [6].

2.5.3 Computing the de Rham cohomology and representatives

The construction of a discrete Laplacian on k-forms is particularly interesting because

it allows us to compute the de Rham cohomology Hk(M) ∼= Kernel(∆k). Moreover, each

k-form in the kernel of ∆k corresponds to a unique cohomology class. Of course, really we

are finding the cohomology groups of the Vietoris-Rips complex of the metric space given

by our discrete samples, however, as shown in [25] this will be the same as the homology

of M for dense sampling sufficiently near M. In the following examples we carry out the

construction of the Laplacian on 1-forms for a torus and a genus-2 torus. We show that we

get the correct Betti number and show how to approximate closed representatives of each

cohomology class.

Example 2.5.1. Eigenforms on a Torus In this example we carried out the above con-

struction for ∆1 using 8000 points generated on a torus embedded in R3 as shown in Figure

2.4. Since ∆1 is a discrete approximation to the Laplacian on 1-forms, the eigenvectors of

this matrix give discrete 1-forms which assign a scalar value to each vector in the tangent
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Figure 2.4: Representatives of the de Rham cohomology classes for a torus. Corresponding
vector fields in the kernel of the Laplacian on 1-forms shown in the latent coordinates
[0, 2π]2.

bundle. We computed the 8 smallest eigenvalues to be



−7.75× 10−17

−8.3× 10−18

2.260× 10−4

2.261× 10−4

4.081× 10−4

6.056× 10−4

6.190× 10−4

6.191× 10−4



.

Since these eigenvalues are computed numerically with double precision, we recognize the

first two eigenvalues as machine zero. Since the kernel of ∆1 is isomorphic to the de

Rham cohomology H1(M) this computation correctly finds the first Betti number to be

b1 = dim(kernel(∆1)) = 2.

To get a closer look at the eigenforms, we convert a 1-form into a vector field by averaging
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Figure 2.5: Eigenforms of the Laplacian on 1-forms for a torus shown in the latent coordi-
nates [0, 2π]2. The corresponding eigenvalues are 2.260× 10−4, 2.261× 10−4, 6.190× 10−4,

and 6.191× 10−4

all of the 1-simplices (which are vectors in the ambient space) according to their weight

assigned by the 1-form. In Figure 2.4 we show the two vector fields in the kernel of ∆1. For

clarity we draw these vector fields on a square which represents the latent coordinates for

the torus (this causes some distortion near the edges which are supposed to be identified).

Finally, in order to generate closed representatives of the cohomology classes, we chose a

random point on the torus and generated a trajectory by following the vector field given

by a 1-form in the kernel of ∆1 (we discarded any initial transient to find a closed orbit).

As shown in Figure 2.4, these closed representatives accurately depict the two cohomology

classes. We used ε = 0.25 to create Figure 2.4, however the shape of the vector fields and

the Betti number of b1 = 2 was robust to a large range of ε values from 0.02 up to 1.

Since eigenforms are quite difficult to compute analytically, in Figure 2.5 we plot the

vector fields associated to the eigenforms associated to the eigenvalues listed in the caption.

Example 2.5.2. Eigenforms on a Genus-2 Surface With the above machinery in place

we repeated the above computations for a dataset consisting of 8000 points sampled from
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Figure 2.6: Representatives of the de Rham cohomology classes for a genus 2 surface.

a genus-2 surface. In this case the first 8 eigenvalues of ∆1 were



−2.18× 10−17

−9.6× 10−18

−1.5× 10−18

8.40× 10−17

1.812× 10−4

3.298× 10−4

6.101× 10−4

6.626× 10−4



.

which correctly identifies the first Betti number of the genus-2 surface as b1 = 4. In Figure

2.6 we draw closed representatives of the cohomology classes, each coming from one of the

1-forms in the kernel of ∆1.

2.6 Shift-local kernels and drift-diffusion processes

In the Section 2.4 we showed that local isometric kernels approximate the geometry

induced by the embedding. By removing the isometric requirement, we showed that local
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kernels in general give rise to a Riemannian metric which is determined by the Hessian of

the kernel. In this section we speculate as to a further generalization of local kernels called

shift-local kernels and conjecture that these kernels define Finslerian geometries (see for

example [26]).

Let K(x, y) = K(x, y − x) = K(x, z) be a kernel given by K(x, z) = e−z
TAxz+2bTx z so

that the scaled kernel is given by

K

(
x,

z√
ε

)
= exp

{
−z

TAxz

ε
+

2bTx z√
ε

}
.

Setting zs =
√
εA−1

x bx we can complete the square to find

K

(
x,

z√
ε

)
= exp

{
−(z −

√
εA−1b)TA(z −

√
εA−1b)

ε
+ bTA−1b

}
= e−

(z−zs)TA(z−zs)
ε eb

TA−1b

Since the kernel is no longer centered at the base point x these kernels are no longer local.

Moreover, the new maximum is at zs which has an ε dependence. Motivated by this example,

we introduce a generalization of local kernels which we call shift-local kernels since they no

longer satisfy the centered property of a local kernel. Instead, the center of the kernel will

be shifted by a vector whose length is order O(
√
ε) so intuitively shift-local kernels are only

centered in the limit as ε→ 0.

Definition 2.6.1 (Shift-local kernel). A kernel K : Rm × Rm → R is called shift-local if it

can be written in the form K(x, y) = K(x, y − x) where K(x, z) is smooth and nonzero in

a neighborhood of z = 0 with the properties

1. (fast decay) For some c, σ > 0 and all x, z ∈ Rn we have 0 ≤ K(x, z) ≤ ce−σ||z||2 .

2. (Finslerian) For bx =
√
εDzK(x, 0) and Kx = −εHzK(x, 0) we have bTxK

−1
x bx < 1.

We conjecture that every shift-local kernel defines a Finslerian geometry. Moreover, we

hypothesize that shift-local kernels can approximate certain elliptic operators such as the
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Fokker-Planck operator, which are important to the study of dynamical systems. In the

next section we present a numerical experiment which motivates these conjectures.

2.6.1 Ulam’s method and approximation of elliptic operators

The results in [2] show that for a data set generated by a stochastic differential equation

of the form

dXi = ∇U dt+ 1 dWi (2.14)

one can numerically construct a discrete operator which (in the limit of large data) converges

to the evolution operator that solves a Fokker-Planck equation. In short, the diffusion maps

approach uses a discrete set of observations, {X(tk)}Nk=1, to find a kernel density estimate of

the operator O and the solution semigroup. Since the construction of the discrete operator

is based on distances between the observed points and not their coordinates, the method

is extremely robust to nuisance variables and redundant variables. With this construction,

given any distribution which is localized near the observed data, one can push forward this

density to find the future distribution. Note that while the dynamics are assumed to follow

the gradient of a potential, ∇U is not known and is implicitly recovered by the construction.

Of course, equation (2.14) is very restrictive. In this section we explore the conjecture of

the previous section in an attempt to approximate a Fokker-Planck evolution. The most

general setting in which the evolution is governed by the classical Fokker-Plank equation is

dXi = f(X) dt+
∑
j

hij(X) dWj , (2.15)

that is, where the gradient dynamics is generalized to having an arbitrary drift term. The

properties of the solution semigroup in this case are well established, see for example [27],

so the difficulty is finding a data-driven construction to recover the operator when f and

hij are unknown.

We conjecture that approximating the forward operator of a stochastic dynamical system

will require a shift-local kernel, and since the vector field f(x) is not known, we must
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Figure 2.7: (a) 5000 samples from simulation of equation (2.16); this is the only input to
both the diffusion map algorithm and the shift-local kernel. (b) Angle of the first moment
of the Monte Carlo simulation (blue, solid), K∗ε (green, dashed), and diffusion maps (red,
dot-dashed). (c) Distribution of sin θ at time t = 2π/3 (same coloring as middle).

take a data driven approach. In this section we approach this problem by using the time

orientation of the data and incorporating the known time-scaling for the Brownian noise.

Thus we introduce the shift local kernel K∗ε (x, y) = hε(|x−φ√ε(y)|), where φ√ε evolves the

initial condition forward in time by
√
ε. This information is readily available in the data by

simple taking φ√ε(xi) = xi+N where N is the number of steps corresponding to an elapsed

time of
√
ε. We conjecture that this procedure recovers the correct Fokker-Planck solution

semigroup and that the kernel K∗ε is a discrete Finsler function for our manifold. Our next

example gives numerical evidence which seems to support these conjectures.

Example 2.6.1. In this numerical example we show that an operator approximated with

a shift-local kernel is able to track the first moment of a density which evolves according

to (2.15), whereas the baseline diffusion maps method cannot. Define X(t) ∈ R2 in polar

coordinates as the solution of

dr = r(1− r) dt+
1

3
dW1 (2.16)

dθ = 1 dt+
1

3
dW2

This simple system clearly does not follow the gradient of a potential. We first simulate

this system to generate 5000 data points. This data is used by both diffusion maps operator
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Kε,1
∼= eε∆ and the shift local kernel K∗ε to predict the evolution of a distribution which is

initially a delta function at (r, θ) = (1, 0). Note that these data points are the only input

to the two algorithms, and neither knows anything about the analytic form of the system.

We can then compare the results to the true evolution, which is estimated by repeatedly

simulating (2.16) with the same initial condition (giving a Monte Carlo estimate of the true

density). In Figure 2 we compare the evolution of the first moment of the true density

(estimated by Monte Carlo) to those of the two algorithms. The diffusion maps operator

loses track of the first moment immediately, because it attempts to interpret the data as

following the gradient of a potential, whereas Kε∗ gives a reasonable approximation of the

first two moments.



Chapter 3: Leveraging temporal structure

In this chapter we consider data which has an a priori temporal structure and demon-

strate how this structure should inform a nonparametric analysis. In particular, we consider

data generated by a dynamical system such that there is a natural notion of intrinsic ge-

ometry given by the Lyapunov metric. The key result is Theorem 3.2.1 which shows that

time delay embeddings bias the geometry in favor of the most stable component of such a

dynamical system. This bias can be beneficial or detrimental depending on which aspects

of the dynamics are of interest, so we provide a preliminary method of reinforcing or ame-

liorating this effect via a simple weighting scheme for the delay embedding. A more far

reaching program based on the theory of local kernels is outlined in the discussion.

We also demonstrate that the geometric approach to nonparametric modeling naturally

generalizes linear techniques and improves on previous approaches to state space reconstruc-

tion. Moreover, we show that the temporal structure allows us to interpret the nonpara-

metric analysis as a generalization of the Fourier basis which is adapted to the dynamics

and leads to a kind of time-scale separation for certain systems. As this is first and most

important case study of integrating prior structure with a nonparametric analysis, we give

many examples which demonstrate the importance of the geometric perspective and the

intrinsic/extrinsic dichotomy.

3.1 Overview

The method of time-delay embedding was first introduced by Takens, Ruelle and others

for the purpose of reconstructing dynamical attractors from data [28–31]. With a series

of generic delayed observations, it was shown that topological properties are preserved in

reconstruction dimensions greater than 2d, for a smooth attractor of dimension d [28], and

52
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for an attractor of fractal dimension d [32]. Considerable effort followed to develop methods

of estimating attractor dimension, in order to carry out embeddings in a Euclidean space

of minimal dimension.

More recently, the development of pervasive and cheap sensors has caused a shift in

emphasis toward methods capable of handling large quantities of time-ordered data. For

example, we could imagine a complex system with a relatively low-dimensional attractor,

possibly chaotic, where the observations are represented by a high-dimensional multivariate

time series. In such a case, it is of great interest to apply a data analysis technique to a

video of an experiment, for instance, and to seek ways to selectively project that data onto

various dynamical time scales of interest.

Dealing with multivariate recordings in high dimensions requires some form of dimen-

sionality reduction. In 1985, Broomhead and King [33] combined the ideas of time-delay

embedding and singular value decomposition (SVD) to project high-dimensional recon-

structions to lower dimension for analysis. This idea is in the tradition of Karhunen-Loeve

decompositions of dynamical systems. Local versions of the same idea were used later to

develop algorithms for time series prediction [34] and noise reduction. One purpose of this

chapter is to provide a theoretical explanation for the power of time delays when combined

with dimensionality reduction, as demonstrated in the following simplistic scenario.

Example 3.1.1. Consider the task of analyzing a video which contains a single black pixel

which moves periodically in a circle, surrounded by grayscale static. The input to our

method is the video, a set of time-ordered frames, each a two-dimensional array of pixel

values. The deterministic dynamics of the underlying dynamics can be represented by a

single variable: the angular position of the black pixel. However, such a representation

of our data would contain only a tiny fraction of the variance of the data set (which is

dominated by noise) and the reconstruction error would be large. Directly applying a

standard dimensionality reduction technique like the SVD, which is greedy for variance,

would ignore the black dot and instead focus on learning the moments and correlations in

the noise. On the other hand, if delay coordinates are used followed by a projection by
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dimensionality reduction. In 1985, Broomhead and King [5] combined the ideas
of time-delay embedding and singular value decomposition (SVD) to project high-
dimensional reconstructions to lower dimension for analysis. This idea is in the tra-
dition of Karhunen-Loeve decompositions of dynamical systems. Local versions of
the same idea were used later to develop algorithms for time series prediction [23]
and noise reduction. One purpose of this article is to provide a theoretical explana-
tion for the power of time delays when combined with dimensionality reduction, as
demonstrated in the following simplistic scenario.

Fig. 2. Upper trace: Four sample images from a video of the black pixel moving on a noisy
circle; Middle trace: Reconstruction of the four sample images using first 32 SVD modes; Lower
trace: Reconstruction with SVD applied to time-delay embedding, using the first 32 SVD modes.
The snapshots are taken from the video fig2vid.mpeg.

Example 1.1. Consider the task of analyzing a video which contains a single
black pixel which moves periodically in a circle, surrounded by grayscale static. The
input to our method is the video, a set of time-ordered frames, each a two-dimensional
array of pixel values. The deterministic dynamics of the underlying dynamics can be
represented by a single variable: the angular position of the black pixel. However,
such a representation of our data would contain only a tiny fraction of the variance
of the data set (which is dominated by noise) and the reconstruction error would be
large. Directly applying a standard dimensionality reduction technique like the SVD,
which is greedy for variance, would ignore the black dot and instead focus on learning
the moments and correlations in the noise. On the other hand, if delay coordinates
are used followed by a projection by SVD into the dominant directions, the desired
dynamics are isolated from the noise. In Figure 2, taken from video fig2vid.mpeg,
we show the results of applying the SVD to the images with and without delays.
This example shows intuitively a seldom-appreciated feature of delay coordinates:

2

Figure 3.1: Top row: Four sample images from a video of the black pixel moving on a noisy
circle; Middle row: Reconstruction of the four sample images using first 32 SVD modes;
Bottom row: Reconstruction with SVD applied to time-delay embedding, using the first 32
SVD modes.

SVD into the dominant directions, the desired dynamics are isolated from the noise. In

Figure 3.1, we show the results of applying the SVD to the images with and without delays.

This example shows a key feature of delay coordinates: they project the data onto the most

stable dynamical variables. We will describe this feature more quantitatively in Section 3.2.

Although useful in Example 3.1.1, a severe limitation of SVD is that it is a linear projec-

tion. Generic linear projections of complicated sets retain their topological characteristics,

if the image dimension is large enough, but fine details of the geometry are in general

lost. More refined dimensionality reduction techniques do less damage to the geometry. In

particular, diffusion maps, developed by Coifman and his collaborators [2, 12–14], are able

to partially retain geometric properties of attractor manifolds under projection from high
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dimensions. In a second example, we explore replacing the SVD projection by a diffusion

map.

Example 3.1.2. In this example we analyze a video with two periodically moving artificial

objects. The largest variance component of the video is made up of white stripes that move

diagonally across the image as shown in Figure 3.2(a). A smaller variance component is a

localized “defect” which moves periodically on a circle. As in Example 1.1, we consider the

input “data” to be the unprocessed video itself. In Figure 3.2, we consider two versions of

the video, where the stripes move slower (Figure 3.2(b)), respectively faster (Figure 3.2(c))

than the defect. The projection using SVD with time delays (green trace) picks out the

higher variance component (the stripes) in both versions. On the other hand, pairing the

delay-coordinate embedding with a diffusion map projection (black trace) projects to the

slower mode in both versions: the stripes in Figure 3.2(b) and the defect in Figure 3.2(c).

(a)

8 10 12 14 16
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Figure 3.2: (a) A frame from the video with arrows added to indicate the dynamics; the
stripes follow the red arrow and the defect moves along the blue circle. (b) When the
stripes move more slowly than the defect, both SVD (green trace) and DMDC (black trace)
reconstruct the phase of the slow moving stripes (red). (c) When the stripes move more
quickly, DMDC (black) finds the phase of the defect (blue) on its circular trajectory, however
SVD (green) still finds the phase of the stripes because they have higher variance.

The goal of this chapter is to explain the mechanisms behind the above examples, namely

(1) the contribution of delay coordinates to reconstructing intrinsic attractor geometry and

(2) the use of diffusion maps to control the metric properties of the reconstructed attractor.



56

We will use this knowledge to build a flexible computational framework called Diffusion-

Mapped Delay Coordinates (DMDC) that can be used to analyze high-dimensional data

such as videos for low-dimensional dynamics. In particular, we are interested in separating

time scales in the data, by projecting onto the stablest dynamical directions (using weighted

delay coordinates) and further slicing the dynamics there into Fourier-like components (us-

ing diffusion maps).

Nonlinear dimensionality reduction has been successfully applied to very high dimen-

sional observations such as images [21, 22]. However, these methods are typically designed

for data that have no dynamics. Dynamical data, meaning data with a time ordering, is

a unique problem with different goals than generic dimensionality reduction. In our view,

the key to success of nonlinear dimensionality reduction techniques is the imposition of

appropriate assumptions on the structure of the data. Whereas the goal of generic di-

mensionality reduction is typically to minimize the reconstruction error, or to maximize

the variance of the low dimensional representation, such a representation may not contain

dynamically interesting information.

To adapt nonlinear dimensionality reduction for use on data measured from dynamical

systems, we find it important to separate the extrinsic features of the data, such as the

observation and embedding space, from the intrinsic dynamical features, such as Lyapunov

exponents and associated invariant manifolds. These intrinsic dynamical features are inde-

pendent of the observation space and can be represented by an intrinsic geometry on the

state space, given by the Lyapunov metric, which is a Riemannian metric that character-

izes the Oseledets splitting [35]. In Section 3.2, we show that the classical technique of

time-delay embeddings, with appropriate weights, effectively recovers the Lyapunov metric

in the most stable Lyapunov direction.

Within the most stable direction there may still be multiple time scales. A periodic or

quasi-periodic trajectory such as Example 1.2 may have a zero Lyapunov exponent along the

trajectory that harbors a fast mode and a slower mode. For other examples, see Sections 3.4

and 3.5 below. We separate time scales within the most stable Lyapunov direction using the
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reconstructed eigenfunctions of the Laplace operator with respect to the Lyapunov metric.

The Laplace operator is approximated by a diffusion map [2], as we discuss in Section 3.3.

Previous work on time-scale separation from dynamical data includes the work [14]

on stochastic systems governed by Brownian motion in a potential field. Ideally, time-

scale separation finds a hierarchy of slow variables which are independent of the higher

frequency oscillations of the dynamics. For example, the evolution of a dynamical system

is independent of the fast oscillations of observation noise, as in Example 3.1.1. Moreover,

if the system contains a slow manifold, then the evolution on the slow manifold will be

independent of the faster dynamics. Time-scale separation involves finding the variables

that are governed by these slow dynamics and ordering the variables according to the

relevant time-scale. Our goals of projecting onto slow dynamics have some overlap to those

of [14, 17, 36, 37], although we assume no knowledge of the equations generating the data,

or availability of surrogates such as microscopic models or legacy solvers. Furthermore, in

analyzing video data of experiments, we are reduced to assuming that the observations are

related to the true system state in an unknown way.

In Section 3.2 below, we show that for data which is not necessarily observed in its

latent state space, the standard technique of time-delay embeddings will partially recover

the Lyapunov metric. This improves significantly on the results of Takens, which show that

time-delay coordinates reconstruct the topology of the latent state space. This will allow

the diffusion map to be applied to generic observations of a dynamical system.

In Section 3.3 we explain how diffusion maps can be used for dimensionality reduction

and for time-series analysis. As a method for dimensionality reduction, we show how a

diffusion map can be interpreted as a kernel Principal Component Analysis, resulting in

an optimal low-dimensional embedding of a data set with respect to a conformal transfor-

mation of the geometry. In fact, the diffusion map constructs an operator L which is the

Laplacian operator with respect to the geometry introduced by the conformal transforma-

tion. Moreover, when the data has a time ordering, the diffusion map coordinates can also

be interpreted as time-series give by the projection of the dynamics onto eigenfunctions
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of L. We show that for a dynamical system with an invariant measure, the conformal

transformation will adapt the operator L to this invariant measure.

In Section 3.4 we show how projecting the dynamics onto the eigenfunctions of the

operator L can lead to time scale separation. If the dynamics are elliptic when restricted to

the most stable Lyapunov direction, then the operator L can be written as a Laplacian plus

lower order terms (with respect to a special Riemannian metric which depends on L). In

many cases the most stable Lyapunov direction will be one-dimensional, and the Laplacian

will be unique up to a choice of measure. Then the eigenfunctions will simply be spatial sine

and cosine functions which are rescaled to the invariant measure on the stable manifold.

Projecting the dynamics onto this adapted Fourier basis on the manifold will regularize the

lower order terms which is analogous to the smoothing of a low-pass filter. We interpret

the projection onto each eigenfunction as a solution of a reduced dynamical system with a

specific time scale which is related to the corresponding eigenvalue.

In Section 3.5 we implement the proposed new technique and apply it to the high dimen-

sional observations of spatiotemporal dynamics. We apply DMDC to a computation model

of a meandering spiral wave. We find that even for these complex dynamics, the method

produces a time-scale separation, in addition to producing decorrelated latent variables and

achieving significant noise reduction.

The appendix includes a self-contained description of the DMDC algorithm and imple-

mentation details.

3.2 Geometry of time-delay coordinates

The theory of time-delay coordinates as introduced by Takens [28] shows that by ap-

pending delayed values of a generic observation of a dynamical system, one achieves a

diffeomorphic copy of the attractor in some Euclidean space. The fact that the embed-

ding is given by a diffeomorphism of the attractor shows that the time-delay embedding

is topology-preserving, although crucially it introduces a new geometry to the data set.

In this section, we will see that the new geometry is related to the Lyapunov metric [38]
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restricted to the most stable Oseledets subspace. In the past, the increased dimension of

the ambient Euclidean space was a limitation for time-delay embeddings, and significant

effort was made to look for parsimonious time-delay embeddings using as few delays as

possible. However, as we will see Section 3.3, diffusion maps are not adversely affected by

the ambient dimension, which will allow us to take hundreds or even thousands of time

delays and computationally study the effect of the delay embedding on the geometry of the

attractor.

The context for this section will be the natural setting of the Multiplicative Ergodic

Theorem (MET) on a smooth manifold. Let M be an n-dimensional smooth compact

Riemannian manifold which is the attractor of a system denoted ẋ = f(x), with invariant

measure µ for the induced flow Ft. To accommodate discrete observations of the dynamics

we will consider the flow Fτ for a fixed time step τ > 0. According to Oseledets [35],

there exist real numbers σ1 < . . . < σk, with k ≤ n, such that for µ-almost every x

there is a splitting TxM =
⊕k

i=1Ei(x), where dimEi = di, and where d1 + . . . + dk = n.

Each Oseledets space Ei(x) is invariant under the dynamics, meaning any nonzero vector

ui ∈ Ei(x) has image DF−jτ (x)ui ∈ Ei(F−jτ (x)). Moreover, for any ui,x ∈ Ei(x),

lim
j→∞

1

j
ln ||DFjτ (x)ui|| = σi,

lim
j→−∞

1

j
ln ||DFjτ (x)ui|| = −σi.

Assume a multivariate observation of dimension r, given by a smooth nonlinear h ∈

C∞(M,Rr). For κ, τ > 0 define the κ-weighted delay coordinate map H :M→ Rr(s+1) by

H(x) = [h(x), e−κh(F−τ (x)), e−2κh(F−2τ (x)), . . . , e−sκh(F−sτ (x))]T . (3.1)

Under weak technical assumptions [32], by choosing r(s + 1) ≥ n, the delay coordinate

map is an immersion for a prevalent choice of h. Additionally, for r(s+ 1) > 2n, the delay
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coordinate map H is an embedding of the manifold M into Rr(s+1). There is no reason to

assume that this embedding preserves the metric on the manifold, and thus geometry of

the embedded manifold H(M) is an extrinsic factor from our point of view.

For ε > 0, the ε-Lyapunov metric 〈u, v〉ε is defined by

〈ui, vi〉ε =
∑
j∈Z

e−2(σij+ε|j|)〈DFjτ (x)ui, DFjτ (x)vi〉TxM

for ui, vi ∈ Ei(x). The Lyapunov metric is intrinsic to the dynamics because, when measured

in this metric, the dynamics satisfy the uniform bounds

e−(σi+ε)j ||ui||ε ≤ ||DF−jτ (x)ui||ε ≤ e−(σi−ε)j ||ui||ε.

Thus we will consider the Riemannian metric of interest onM to be the Lyapunov metric.

We now return to the extrinsic geometry and investigate the metric induced on the

embedded manifold H(M). Let u = u1 + . . . + uk, v = v1 + . . . + vk ∈ TxM, where

ui, vi ∈ Ei(x) and denote û = DH(u), v̂ = DH(v) in TH(x)H(M). Then the inner product

〈·, ·〉 in the Euclidean reconstruction space Rr(s+1) is

〈û, v̂〉 =

s∑
j=0

e−2jκ〈Dh(F−jτ (x))DF−jτ (x)u,Dh(F−jτ (x))DF−jτ (x)v〉Rr

=

k∑
i=1

s∑
j=0

e−2jκ〈Dh(F−jτ (x))DF−jτ (x)ui, Dh(F−jτ (x))DF−jτ (x)vi〉Rr .

The main theorem of this chapter shows that with the right choice of κ, the metric 〈·, ·〉 in

the embedding space projects onto the most stable Oseledets subspace E1.

Theorem 3.2.1. Let M be a compact manifold, u, v ∈ TxM and let û = DH(u) and

v̂ = DH(v) be the images under the time-delay embedding H in (3.1). Let ui = πi(u)
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be the projection onto the ith Oseledets space, and assume u1 and v1 are nonzero. Let

0 < κ < −σ1. Then for a prevalent choice of h and for all i 6= 1,

lim
s→∞

〈ûi, v̂i〉
||û|| ||v̂||

= 0 and therefore lim
s→∞

〈û, v̂〉 − 〈û1, v̂1〉
||û|| ||v̂||

= 0.

Proof. First note that

|〈ûi, v̂i〉| =

∣∣∣∣∣∣
s∑
j=0

e−2jκ〈Dh(F−jτ (x))DF−jτ (x)ui, Dh(F−jτ (x))DF−jτ (x)vi〉Rr

∣∣∣∣∣∣
≤

s∑
j=0

e−2jκ||Dh(F−jτ (x))DF−jτ (x)ui||Rr ||Dh(F−jτ (x))DF−jτ (x)vi||Rr

≤ h2
max

s∑
j=0

e−2jκ||DF−jτ (x)ui||ε||DF−jτ (x)vi||ε

≤ h2
max||ui||ε||vi||ε

s∑
j=0

e−2j(σi+κ−ε)

for all ε > 0, where hmax is the maximum of the matrix norm ||Dh|| over the compact

manifold M. This bounds the growth rate in all Oseledets subspaces.

Next we need to show that the component of û in the most stable direction dominates

as s increases. Thus we will bound ||û|| from below and we will focus on the component

u1, which is assumed to be nonzero. Choose k ≥ 0 such that r(k + 1) ≥ n; then the delay

coordinate map is an immersion for a prevalent choice of h [32]. From this we only need

the fact that for all x ∈M and all j ≥ 0, the rank of the r(k + 1)× n matrix

Aj(x) =


e−κjDh(F−jτ (x))DF−jτ (x)

...

e−κ(k+j)Dh(F−(k+j)τ (x))DF−(k+j)τ (x)


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is n, implying that the kernel of the matrix is zero. For any nonzero vector u1 ∈ E1(x) the

vector Aj(x)u1 is nonzero, and for some j ≤ l ≤ j + k the r-vector

e−κlDh(F−lτ (x))DF−lτ (x)u1 6= 0.

Thus for each x ∈ M we have maxj≤l≤j+k ||Dh(F−lτ (x))e1||Rr > 0 for any unit vector

e1 ∈ E1(x). Since M is compact we can define

hmin ≡ min
x∈M

min
j≥0

max
j≤l≤j+k

||Dh(F−lτ (x))e1||Rr

= min
x∈M,j≥0,y=F−jτ (x)

max
0≤l≤k

||Dh(F−lτ (y))e1||Rr

≥ min
x∈M

max
0≤l≤k

||Dh(F−lτ (x))e1||Rr > 0.

This allows us to establish the lower bound

||Aj(x)u1||Rr(k+1) ≥ hmine
−j(κ+σ1+ε)||u1||ε

for all x ∈ M. We can use this to obtain a lower bound on ||û|| by splitting the s terms

into bs/kc (the greatest integer less than s/k) blocks of size k so that

||û||2 ≥
s∑
j=0

e−2jκ||Dh(F−jτ (x))DF−jτ (x)u1||2Rr

≥
bs/kc∑
l=0

||Alk(x)u1||2

≥ h2
min||u1||2εe−2kbs/kc(σ1+κ+ε)

≥ h2
min||u1||2εe−2s(σ1+κ+ε).
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By combining the upper and lower bounds we have

|〈ûi, v̂i〉|
||û|| · ||v̂||

≤
(
h2

max

h2
min

· ||ui||ε
||u1||ε

· ||vi||ε
||v1||ε

) ∣∣1− e−2(s+1)(σi+κ−ε)
∣∣

e−2s(σ1+κ+ε)
→ 0

as s → ∞ for i 6= 1 since by hypothesis σ1 + κ < 0 and σ1 < σi. To find the second limit

note that û = û1 ⊕ û⊥1 and by writing û⊥1 =
∑

i 6=1 ũi with ũi ∈ Ei we can apply the first

limit on each component.

For large s we have 〈û, v̂〉 ≈ 〈û1, v̂1〉, so the metric in the embedding space is negligible

in all but the most stable Lyapunov direction. The proof fails when the hypothesis 0 <

κ < −σ1 is not satisfied. When κ ≤ 0, we cannot bound the matrix norm of A(x), and

in fact the construction does not yield a well defined metric. When κ ≥ −σ1, the norm

converges to a finite value in each Oseledets component, destroying the projection onto the

stable component.

The constants hmin, hmax allow for local deviations from the long term behavior of the

dynamical system, which is governed by the Lyapunov exponents. These constants are an

extrinsic feature of the observed dynamics in the sense that they are accidental aspect of the

observation function h. Of course, the dynamics would be uniform if we could reconstruct

the intrinsic Lyapunov metric. Unfortunately, delays alone cannot reconstruct the Lyapunov

metric, because we have shown that delay coordinates project the tangent spaces onto the

most stable Oseledets subspace. The proof also illuminates the natural tradeoff in the choice

of κ. For κ near zero, the reconstruction projects strongly onto the stable component, but

the dynamics may not be regular on this component. As we increase κ the dynamics are

increasingly regularized on the stable projection until we get to close to −σ1, at which point

the projection fails, according to Theorem 3.2.1. See Example 3.2.1 for an illustration of

this tradeoff.

If the dynamics are reversible, the least stable Oseledets space in forward time is the

most stable in reverse time. For a time series we can easily reverse time by inverting the
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time ordering of the data. Thus for 0 < κ < maxi{σi} the algorithm can be applied to the

reversed time series to project onto the least stable Oseledets space. This is equivalent to

taking sequels instead of delays in the original time series. The bottom row in Figure 3.3

demonstrates the projection onto the least stable Oseledets space for the cat map.

This new interpretation of weighted time-delay coordinates reveals that they not only

reconstruct the topology of the state space, but that they can also regularize the dynamics,

while projecting onto the most stable Lyapunov direction. Of course, if the other Lya-

punov directions correspond to dynamical noise this projection could be a useful feature.

Moreover, even if the other Lyapunov directions correspond to interesting dynamics, these

dynamics will be less stable, and therefore operate on a faster time-scale, than the most

stable directions. Most importantly, the projection onto the most stable manifold will often

achieve a significant dimensionality reduction.

Example 3.2.1. (Cat Map.) In this example we illustrate the effect on the geometry of

the torus by weighted time-delay embedding via Arnold’s cat map, a discrete time map on

the torus S1 × S1 given by

aj+1 = 2aj + bj mod 1

bj+1 = aj + bj mod 1.

We choose a point (a0, b0) ∈ [0, 1]2 randomly and apply the cat map for N iterations,

producing the points {(aj , bj)}Nj=0.

To test Theorem 3.2.1, we embed the torus into R3 via

xj = (2 + sin 2πaj) sin 2πbj

yj = (2 + sin 2πaj) cos 2πbj

zj = cos 2πaj
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Fig. 4. The top row shows the first nontrivial eigenfunctions of the Laplace-Beltrami operator
in the (a, b)-plane, calculated from DMDC, for a time-delay embedding of the cat map with s = 2048
delays and κ = 1.2, 0.8, 0.4, 0.01 from left to right. When κ = 1, Theorem 2.1 does not apply, and
the projection to the stable direction fails. When 0 < κ < −σ1 ≈ 0.962, the projection reconstructs
the stable Oseledets direction. The bottom row shows DMDC applied to the time series in reverse
order for the same values of κ. The entire range of κ ∈ [.01, 1.2] for the top and bottom rows is
visualized in the videos fig4vida.mov and fig4vidb.mov, respectively

3. Diffusion maps for delay coordinates. In the previous section we found
that an appropriately-weighted time-delay embedding can reconstruct the intrinsic
geometry of a smooth attractor from a generic observable. In cases where the observ-
able is high-dimensional, such as a video, we will want to pair the delay embedding
with a dimensionality reduction technique that preserves the geometry as faithfully as
possible. In this section we show that a nonlinear technique known as a diffusion map
will give, in a specific sense, the best preservation of the delay geometry. Moreover, we
will show that the diffusion map has a natural dynamical interpretation when applied
to time series.

For a finite set of points on a manifold embedded in a high-dimensional Euclidean
space, a diffusion map is a nonlinear map to a lower-dimensional space. In rough anal-
ogy to the principal components from a singular value decomposition, the components
of a diffusion map [8, 9] are eigenvectors of a transition matrix for a random walk on
the data set. Under appropriate normalizations, the transition matrix is a discrete
approximation to the Laplace-Beltrami operator [19], which is by definition the di-
vergence of the gradient on the manifold inherited from the embedding. Thus the
components of the diffusion map will be approximations to eigenfunctions of this op-
erator, and we will see that the diffusion map minimizes an energy functional that
measures the distortion of the manifold’s geometry.

We have seen that a time-delay embedding introduces a natural geometry on a dy-
namical system and we wish to preserve this geometry in the new (lower-dimensional)
coordinates. Unfortunately, the sampling density in the embedding space also influ-
ences the geometry. The power of the diffusion maps technique is the ability to control
the influence of the sampling density on the geometry in the new coordinates. We will
see that for a certain normalization a diffusion map can match the invariant measure
of a dynamical system.

In general there are many techniques for dimensionality reduction (see [20] for an

10

Figure 3.3: The top row shows the first nontrivial eigenfunctions of the Laplace-Beltrami
operator in the (a, b)-plane, calculated from DMDC, for a time-delay embedding of the cat
map with s = 2048 delays and κ = 1.2, 0.8, 0.4, 0.01 from left to right. When κ = 1.2,
Theorem 3.2.1 does not apply, and the projection to the stable direction fails. When
0 < κ < −σ1 ≈ 0.962, the projection successfully reconstructs the stable Oseledets direction
in theory. As κ → 0, the stable projection remains but regularization begins to fail. The
bottom row shows DMDC applied to the time series in reverse order for the same values of
κ.

and observe the dynamics through the weighted delay coordinates

wj = [xj , yj , zj , e
−κxj−1, e

−κyj−1, e
−κzj−1, ..., e

−sκxj−s, e−sκyj−s, e−sκzj−s].

Here we have chosen r = 3 in the application of Theorem 3.2.1.

The system is ergodic on the torus with one positive Lyapunov exponent and one neg-

ative. We can visualize the geometry of the time delay embedding by plotting the eigen-

functions of the Laplace-Beltrami operator on the embedded torus (see Figure 3.3). These

eigenfunctions are computed using diffusion maps, described in Section 3.3; they are shown

here to display the effect of varying κ.

When κ > −σ1 = − log 1
2(3 −

√
5) ≈ 0.962, we do not achieve the projection onto the

stable Oseledets space and thus the Riemannian metric of the torus in R3 (our observation

space) is recovered. This is shown in Figure 3.3 when κ = 1.2 by the eigenfunction oscillating
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vertically in the (a, b)-plane, which corresponds to the large circle on the torus in the (x, y, z)-

space. As κ decreases the metric becomes increasing localized in the stable Lyapunov

direction. Note that for κ < −σ1 the eigenfunctions become constant in the unstable

direction (1, (
√

5 − 1)/2) ≈ (1, 0.618), and oscillatory in the orthogonal stable direction.

Thus the eigenfunctions of the Laplacian in the embedding space are only representing the

location of the point on the stable manifold.

3.3 Diffusion maps for delay coordinates

In the previous section we found that an appropriately weighted time-delay embedding

can reconstruct the intrinsic geometry of a smooth attractor from a generic observable. In

cases where the observable is high-dimensional, such as a video, we will want to pair the

delay embedding with a dimensionality reduction technique that preserves the geometry as

faithfully as possible. In this section we show that a carefully chosen diffusion map will

give, in a specific sense, the best preservation of the delay geometry. Moreover, we will

show that the diffusion map has a natural dynamical interpretation when applied to time

series.

We have seen that a time-delay embedding introduces a natural geometry on a dynamical

system and we wish to preserve this geometry in the new (lower-dimensional) coordinates.

Unfortunately, the sampling density in the embedding space also influences the geometry.

The power of the diffusion maps technique is the ability to control the influence of the

sampling density on the geometry in the new coordinates. We will see that for a certain

normalization a diffusion map can match the invariant measure of a dynamical system.

In general there are many techniques for dimensionality reduction (see [21] for an

overview). For the application to delay coordinates, a diffusion map is the natural choice

because (1) it preserves geometry and (2) it has a dynamical interpretation. First, we will

see that for any dimension l, a diffusion map into Rl yields the minimum distortion of the

metric (and for l > 2n the map will generically be an embedding). Secondly, when the data
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is a time series, each coordinate function of the diffusion map can be interpreted as a time

series. In fact, each coordinate function will correspond to a generalized low-pass filter of

the time series. In Section 3.4 we will show that this dual interpretation, as a geometry-

preserving map and a low-pass filter, can be readily exploited for time-scale separation. In

this section we review the main results of diffusion maps [2] and give a new interpretation

of the construction as a conformal change of metric. We then interpret diffusion maps for

generic observations of ergodic dynamical systems as a generalization of Fourier analysis.

3.3.1 Time series interpretation of diffusion maps

In Section 3.2 we saw how κ-weighted time-delay coordinates give an embedding of the

invariant manfold into Euclidean space, where the Riemannian metric inherited from the

ambient space is intrinsic to the dynamical system. Of course, while the Riemannian metric

is intrinsic, the embedding itself is not and will depend on the details of the observation.

Moreover, the dimension of the ambient space will be very large, preventing efficient analysis.

For the delay coordinates to be useful we need to map them to a lower dimensional ambient

space while maintaining the intrinsic geometry.

We now extend the interpretation of diffusion maps to the case when our data has a

time ordering and show that setting the sampling bias parameter α = 1/2 will match the

invariant measure. Note that a diffusion map estimates the values of the eigenfunctions ψl

of a heat kernel at the discrete points xi which are the input to the diffusion maps algorithm.

If the input points have a time ordering, we can give the eigenfunctions a time ordering

by setting ψ̂l(ti) = ψl(xi) = ψl(x(ti)). In Section 3.4 we will further investigate these time

series. In this section we will show that if yi = y(ti) is a trajectory of a dynamical system

with an invariant measure, then the diffusion map interprets y(ti) as the trajectory of a

simplified system which has the same invariant measure.

As a simple example, assume that the data {xi} ∈ M ⊂ Rm are generated by a path of
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the stochastic differential equation

dx = −∇U(x) dt+
√

2 dBt (3.2)

where U(x) is a smooth potential function on the manifoldM, Bt is Brownian motion, and

xi = x(iτ) where τ is a sampling interval. The backward Fokker-Planck equation for the

system given by (3.2) is

−∂ϕ
∂t

= ∆ϕ−∇ϕ · ∇U (3.3)

and it was shown in [2] that

Lϕ = ∆ϕ− 2(1− α)∇ϕ · ∇U,

so clearly when α = 1/2, the diffusion map approximates the backward Fokker-Planck

operator. The invariant measure of this system is given by the eigenfunction with eigenvalue

zero of the corresponding forward Fokker-Planck operator

L∗ϕ = ∆ϕ+∇(ϕ∇U).

Thus, e−U is the invariant measure for (3.2) since L∗(e−U ) = 0. Moreover, the invariant

measure is also given by the eigenfunction q0(xi) = (Qψ0)(xi) ≈ p(xi) = e−U(xi).

Next we generalize to the case of dynamics that are more complex than those of (3.2).

Assume that the data {yi = y(ti)} are sampled from a trajectory of a dynamical system

that has an invariant measure µ(y) > 0 on a smooth manifold M. Defining the potential

function U(x) = − logµ(x), equation (3.2) is a stochastic system for x(t) that has the same

invariant measure as y(t). Note that µ = e−U is the invariant measure for both y(t) and x(t),

so in particular it is the sampling density for y(t). A diffusion map with α = 1/2 applied to

the data set {yi} will construct the Fokker-Planck operator for (3.2) with U = − logµ. The
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eigenfunctions of this operator give a basis for square integrable functions on M, and this

basis is adapted to the invariant measure of our system. Thus, even when the trajectory is

not governed by a stochastic differential equation of form (3.2), diffusion maps with α = 1/2

will treat the data as if it were generated by (3.2) but with U = − logµ. The resulting

eigenfunctions will be a generalization of the Fourier basis which is adapted to the correct

invariant measure of y(t) on M.

3.4 Time-scale separation

The goal of time-scale separation is to decompose a dynamical system by a coordi-

nate transformation such that the transformed variables are ordered by time scale and are

approximately independent. In this chapter we are interested in working directly with mul-

tivariate time series where no equations are known. In this section we show how a basis

of eigenvectors for an operator on the state space can be used to separate time scales. In

particular we show that diffusion maps, combined with delay embeddings to reconstruct and

simplify the state space, can separate time scales for a large class of interesting systems.

A diffusion map approximates eigenfunctions ψl :M→ R of a heat kernel on a manifold;

these are generalizations of sine and cosine. Note that the eigenfunctions of the Laplacian

and the heat kernel are the same but the eigenvalues are different. We previously denoted

the eigenvalues of the heat kernel by 1 = λ0 ≥ λ1 ≥ · · · > 0, so that γl = − log(λl) are the

eigenvalues of the Laplacian operator. Moreover the eigenvalues 0 = γ0 ≤ γ1 ≤ · · · order

the eigenfunctions according to how oscillatory they are. Intuitively, given a continuous

trajectory y(t) : R → M the time series formed by composing ψ̂l(t) = ψl(y(t)) will be

more oscillatory for large l and less oscillatory for small l. We will see that this time scale

separation is most effective when the Laplacian operator is adapted to the dynamics of y(t).

Consider a trajectory y : R →M which is reconstructed at discrete times {ti}Ni=1 by a

delay embedding as {y(ti)}Ni=1 ⊂ Rr(s+1). A diffusion map applied to the samples {y(ti)}

will ignore the time ordering and treat these data points merely as a collection of samples
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from the manifoldM embedded in Rr(s+1). If µ is the invariant measure for the evolution of

y(t), then we have seen in Section 3.3.1 that a diffusion map with α = 1/2 will approximate

the operator

L(ϕ) = ∆ϕ−∇ϕ · ∇(log(µ(x))).

Moreover, the diffusion map will approximate the eigenfunctions ψl evaluated at the sample

points {y(ti)}. Thus we can consider the diffusion mapped modes to be time series given

by ψ̂l(ti) = ψl(y(ti)) = 〈ψl, δy(ti)〉. The delta function ϕ(x, t) = δy(t)(x) along the trajectory

of the dynamics allows us to apply harmonic analysis on the manifold to the trajectory.

Moreover, the harmonic analysis is adapted to the dynamics because it matches the invariant

distribution in the limit as t→∞.

Since diffusion maps can only approximate the operator L, we now assume that we can

write the full evolution as a non-autonomous perturbation of L so that

∂ϕ

∂t
= −L(ϕ) + F(x, t). (3.4)

We have seen that a diffusion map will produce a basis {ψl} ⊂ L2(M) consisting of eigen-

functions of L such that the eigenvalues are sorted as 0 = γ0 ≤ γ1 ≤ γ2 ≤ · · · . Therefore,

the solution ϕ(x, t) and the unknown function F have a decomposition in this basis so that

(3.4) becomes

d

dt
〈ϕ(x, t), ψl(x)〉 = −γl 〈ϕ(x, t), ψl(x)〉+ 〈F(x, t), ψl(x)〉

which is an ODE. Moreover, the time series ψ̂l(t) = 〈ϕ(x, t), ψl(x)〉 is precisely the output

of our diffusion map. Setting F̂(t) = 〈F(x, t), ψl(x)〉 we find that the l-th diffusion map

mode satisfies

d

dt
ψ̂l(t) = −γlψ̂l(t) + F̂(t)
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which has solution

ψ̂l(t) = ae−γlt + b

∫ t

0
e−γl(t−s)F̂(s)ds.

Thus, the eigenvalue γl will determine the amount of history from the non-autonomous

term F̂ is integrated into the mode ψ̂l. For F̂ sufficiently regular the time scale of ψ̂l will

be determined by γl. Of course, if F̂ is large then we may not be able to separate time

scale with this method. However, since (3.2) and (3.4) have the same invariant measure,

we expect at least the slowest time scales to be well approximated. Note that this method

could be improved in the future by finding better methods of approximating L̂ which would

make F̂ smaller and improve the time scale separation.

Previous work on time scale separation was motivated by singular perturbation theory,

and focused on approximating the local dynamics. In particular, the local evolution of

the slow variables was approximated by repeated simulations of the fast variables using

legacy code [36], or stochastic simulators [17]. A closely related technique in [37] requires

knowledge of the local fast and slow directions to decompose the tangent bundle to the state

space. Since we have no knowledge of the system, the local factorizations in the observation

space may not consistently identify the correct global fast and slow directions. Thus we have

taken two methods of incorporating global information. First, the time delay embedding

projects onto the most stable space and incorporates the long term behavior into the local

geometry. Second, by projecting onto eigenfunctions of the Laplacian we are guaranteed a

globally consistent coordinate transformation. While it is not yet clear whether this global

technique will be able to achieve the higher order perturbation expansions of [36, 37], we

have seen that for many interesting systems the global technique can at least project onto

the slow manifold (see Example 3.4.1 also).

The ideas of this section are a generalization of the more formal approach taken in

[12, 14]. It was shown in [14] that if a dynamical system had the simple form (3.2), then

each spectral gap λk >> λk+1 produced a coarse time-scale version of the dynamics. This
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(a) (b) (c)

Figure 3.4: Reconstruction of dynamics from noisy observations using various values of κ.
All plots show the x, y-plane dynamics in blue. (a) The noisy observations are shown in red
(b) The reconstructed dynamics for κ = 1 is shown in red. (c) Same as (b), but κ = 0.02.
The projection onto the slow manifold is shown in green.

means that in the coordinates r(t) = Ψ1/2,sk(x(t)) given by the diffusion map at scale

sk = −1/ log(λk+1) we have

ṙ = F (r, ω)

for some F which depends only on the reduced coordinates r and on a stochastic noise

vector ω. While this is a strong result, exactly the type we are interested in, it applies

in only a very narrow context. In fact, solutions of (3.2) simply follow the gradient of

a potential and are driven purely by Brownian motion. This is a reasonable context for

studying systems with large numbers of particles, although for a single trajectory (3.2)

precludes even periodic dynamics. In contrast, many simple physical systems follow the

gradient of a potential under the influence of a non-automous energy input as in (3.4).

Example 3.4.1. As an illustration, we analyze a simple dynamical system with two time

scales. The dynamics lie on a one-dimensional subset of the torus embedded in R3 and are
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given by

ẋ = −y +
bzx√
x2 + y2

ẏ = x+
bzy√
x2 + y2

ż = −b(
√
x2 + y2 − a)

where we set a = 6, b = 20. We can write this system as a slow/fast system by changing

to cylindrical coordinates where r2 = x2 + y2 and tan θ = y/x. Setting ε = 1/b the system

becomes

θ̇ = 1

εṙ = z

εż = −(r − a)

so setting ε = 0 we find a slow system given by z = 0, r = a and θ̇ = 1. The slow system

simply oscillates in the x,y-plane, and the fast direction is primarily in the z, r-plane.

To test our algorithm in an equation-free setting, we use only a time series of sim-

ulated data points, and do not incorporate any information from the above equations.

The data will be given in the x, y, z coordinates and to further illustrate the advantage

of the delay geometry we introduce Gaussian observational noise (see Figure 3.4). The

ODE with initial conditions (x(0), y(0), z(0)) = (6, 0, 2) was simulated for N = 8000

equally spaced time steps from t = 0 to t = 12π. We form the delay coordinates wi =

[xi, yi, zi, ..., e
−sκxi−s, e−sκyi−s, e−sκzi−s] with s = 500 time delays with various values of κ

to study the time delay geometry.

Letting ψl be the eigenvectors (as described in Section 2.3.2) we note that (ψl)i−s =

ψl(wi) = 〈ψl, δwi〉 for i = s + 1, ..., N . Thus each eigenvector can be interpreted spatially
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(as a function of the location wi in state space) and temporally (as a function of the time

step i). In this way, we can interpret the eigenvectors as component time series, each of

which represent the dynamics at a unique time scale. We can project the observed time

series onto the span of the first L+ 1 eigenfunctions by setting

ŵi =
L∑
l=0

Wlψl(wi) where Wl = 〈w, ql〉 =
N∑

i=s+1

wiql(wi) =
N∑

i=s+1

wi(ql)i−s.

For L = 2 we achieve the projection onto the slow manifold as shown by the green curve

in Figure 3.4(c). For L = 60 we achieve a low pass filter that removes high frequency

oscillations as shown by the red plots in Figure 3.4(b)(c). Note that to determine the slow

manifold and to successfully remove noise, having the correct geometry is crucial as shown

by the failure of the reconstruction in Figure 3.4(b).

Furthermore, by taking the discrete Fourier spectrum of each of the time series ψl(wi),

the time-scale separation is illustrated by the localized peaks in the Fourier spectrum of each

eigenfunction and the ordering of the peaks as shown in Figure 3.5. Moreover, we can see

that introducing the delays improves the time-scale separation. Finally, by reconstructing

the dynamics using only the first few eigenvectors we can form the projection onto a slow

time-scale. These projections can reveal slow manifolds as shown in Figure 3.4(c).

3.5 Time-scale separation for spatiotemporal dynamics

In this section we apply the proposed algorithm to video data. The first goal is to

apply the algorithm to a meandering spiral wave, a reasonably complex model exhibiting

spatiotemporal dynamics which are intrinsically low-dimensional. We will demonstrate how

DMDC extracts meaningful low-dimensional dynamics and separates time scales.

We assume that observations take the form of still images which are discretized versions

of h(x), where x is a dynamical state of an n-dimensional attractor M and h : M → Rr,

where r represents the number of pixels of the still image. The delay coordinate map is
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Figure 3.5: The Fourier spectrum of the first 64 eigenvectors of the Laplacian in the embed-
ding geometry of Example 3.4.1 viewed as time series. The x-axis indicates the frequency
of the oscillation, the y-axis indicates the eigenvectors and color represents norm of the
Fourier coefficient for the relevant eigenvector at the indicated frequency. The top plot is
for κ = 10, effectively no delays, the middle is for κ = 0.1, and the bottom is for κ = 0.02.

then H :M→ Rr(s+1) from (3.1), where s is the number of delays, which has the effect of

concatenating s+ 1 still images.

Note that both DMDC and SVD (on the delay embedding space) produce time series.

For SVD the time series are linear projections of the time-delay embedding of the images

(which are observations of the state), whereas for DMDC the time series are eigenfunctions

of the Laplacian on the embedding. Let xi be the i-th image in the observed video. Note

that as in Example 3.4.1 we can project the observed time series onto the span of the first
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Figure 3.6: Images from spiral wave dynamics with ρ = 0.01, a = 0.48, b = 0.01 shown at
time steps 0.3 apart (every sixth observed frame is shown).

L+ 1 DMDC modes by setting

x̂i =

L∑
l=0

Xlψl(xi) where Xl = 〈x, ql〉 =

N∑
i=s+1

xiql(xi) =

N∑
i=s+1

xi(ql)i−s.

For video data the inner products Xl = 〈x, ql〉 are averages of the images xi weighted by

the l-th projection ql. Thus, each Xl is an image which shows the parts of the image which

are varying synchronously with the l-th DMDC mode. Thus we call the image Xl the l-th

component of the decomposition. Note that SVD gives an orthonormal basis (instead of the

biorthogonal system of DMDC) so for SVD the modes (analogous to {ψl}) and projections

(analogous to {ql}) are both given by the singular vectors of the centered delay coordinates.

3.5.1 Meandering spiral waves

We begin by applying DMDC to a model of meandering spiral waves. We find that

resulting modes have a natural ordering which is determined by the time scale on which

the mode is active. Then we compare results to the more conventional singular value

decomposition in the delay-embedding space in order to illustrate the significant advantages

of the DMDC modes. Moreover, we show that time-delay coordinates are crucial to finding

the best decomposition, in that an application of a diffusion map without delays is not

sufficient even for ideal observations from a computational model.
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Figure 3.7: Top: First 10 modes of variation found from delay coordinates projected by
SVD. Bottom: First 10 modes of variation found by DMDC. Images show the DMDC
components (produced by averaging the spiral images weighted by a SVD or DMDC mode
respectively). Note the first two DMDC modes are localized near the tip of the spiral and
pick out the vertical and horizontal component of the slow-moving tip location.

Consider the reaction-diffusion system

ut = ∆u+
1

ρ
u(1− u)

(
u− v + b

a

)
vt = u− v

where the parameters ρ = 0.01, a = 0.48, b = 0.01 determine the behavior of the meandering

spiral waves. In [39,40] bifurcations of the parameter space are explored and the system is

shown to be related to a two-dimensional ODE, indicating the presence of a low-dimensional

state space for the dynamics. Instead of working with the equations, our method will work

directly with a sequence of still images separated by τ = 0.05 (see Figure 3.6). The variables

u and v are held to zero at the boundary and the initial condition is u(x, y) = v(x, y) = sin 7x

where the domain is (x, y) ∈ [0, 1]2. While the behavior is robust to adding small amounts

of noise to the initial condition, totally random initial conditions often die out quickly and

do not lead to self sustaining spirals.

In parallel with Example 3.1.2, we find that while SVD modes are organized according

to variance, the DMDC modes are organized according to time-scale. For example, Figure

3.7 shows that the 7th and 8th DMDC modes correspond to the position of the main body

of the spiral, which oscillates once per 60 frames. These modes are the first two modes

found by SVD because they are the modes of largest variance in the video. In contrast,



78

the first two DMDC modes represent the location of the tip of the spiral wave. These

modes represent a slow precession in the spiral tip which oscillates every 240 frames. Thus

the DMDC modes have identified an important slow mode of oscillation which has a low

variance and thus would be very difficult to extract with SVD or an ad hoc technique.

Figure 3.8: Top row: Fourier spectra of SVD modes reveals no time scale ordering, Bottom
row: Fourier spectra of DMDC modes shows ordering according to Fourier spectral peak.

To underscore this point, Figure 3.8 shows that the time series corresponding to the

DMDC modes are ordered according to the peaks in the Fourier spectra. The figure com-

pares the Fourier spectra of the first 64 SVD modes with the first 64 DMDC modes. Note

that the SVD spectra are spread out horizontally, indicating that SVD modes contain in-

formation about many different time scales, whereas the DMDC spectra are horizontally

localized, indicating that the modes have a definite time-scale. Moreover, the DMDC spec-

tra are ordered in the sense that higher order DMDC modes contain information at faster

time scales. Thus, in analogy with the results of [14], projecting on the first k DMDC

modes would contain all the information about oscillations on a sufficiently slow time scale.

For example, the first two DMDC modes contain all the information relevant to the slow

precession of the spiral tip which has a period of approximately 240 frames. In contrast,

the first two SVD modes capture the primary spiral oscillation which occurs approximately
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every 60 frames.

Finally, we note that DMDC can be used for noise reduction. In Figure 3.9 we show an

example of additive Brownian noise. In order to make a fair comparison, notice in Figure

3.7 that the first two SVD modes represent the main spiral oscillation, and will be the best

SVD modes in terms of noise reduction. Figure 3.7 shows that these modes also appear in

the DMDC analysis, but occur later because of the time ordering. Thus these modes can be

fairly compared for noise content, and in Figure 3.10 we show the dramatic noise reduction

that DMDC achieves.

Figure 3.9: Same images from spiral wave dynamics as Figure 3.6, but with white noise
added with standard deviation of 850% of the mean.

Intuitively, this noise reduction is achieved because DMDC is attempting to maximize

the variance as measured on the manifold which the dynamics are near, whereas SVD tried

to maximize the variance as measured in the ambient space in which the data is embedded,

as shown in Section 2.3.3.

(a) (b)

Figure 3.10: Embedding of noisy spiral images from Figure 3.9, using (a) first two SVD
modes (b) equivalent two DMDC modes.
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A further interpretation of the noise reduction results is that DMDC provides a data-

adapted Fourier transform. If the invariant measure is uniform, or if we take α = 1 in the

diffusion map analysis to eliminate sampling effects, then the DMDC modes are given by

the inner product with the eigenfunctions of the Laplace-Beltrami operator on the manifold

Σ. This is a well known generalization of Fourier analysis to manifolds, and in this natural

basis of generalized Fourier modes the observation noise will be concentrated in the high

frequency modes. In the case where the invariant measure is nontrivial this analysis gives

a possible further generalization of Fourier analysis adapted to measures on manifolds.

3.6 Discussion

The main theme of this chapter is that the methodology used to analyze complex data

should depend on the end goal of the analysis. In the case under discussion, we are concerned

with reconstructing the topology and geometry of dynamical data, without knowledge of

the governing equations. Depending on the purpose, different parts of the reconstructed

geometry can be considered intrinsic or extrinsic to the data, the intrinsic geometry be-

ing simply that part which relates to the features of the data which one wishes to study.

Previous applications of diffusion maps [2] tend to consider the sampling density of a data

set an ‘extrinsic’ detail of the geometry, whereas the angles defined by the geometry were

considered ‘intrinsic’.

In this chapter we have applied the extrinsic/intrinsic dichotomy more broadly. Dy-

namical data, unlike generic data, has the additional structure of a time-ordering. There

is a more fundamental notion of intrinsic geometry for dynamical systems which goes be-

yond the geometry of the observations. This is the geometry of the Lyapunov metric [38],

which is independent of the embedding space of the dynamical system. Thus, for studying

dynamical data, the natural extension of the ideas of diffusion maps is to try to isolate the

intrinsic geometry of the Lyapunov metric, and remove the extrinsic factors of the observed

embedding. This is the focus of Sections 3.2 and 3.3 of this chapter. Our use of diffusion

maps in the algorithm focuses on its preservation of the local geometry on the reconstructed
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manifold. The choice of the sampling bias parameter α allows a flexible choice of measure,

which is crucial to isolating the slow dynamical modes. The end goal of the DMDC algo-

rithm is to construct a version of harmonic analysis for the observed system, that is specially

adapted to the system by using the observed data to approximate its heat kernel.

While the idea of combining nonlinear dimensionality reduction with a time-delay recon-

struction has been explored previously, most notably in [4], DMDC provides the theoretical

connection between these techniques. Moreover, we have shown that careful adjustment of

the time-delay embedding (via our weighting scheme) and the diffusion maps algorithm (via

careful selection of parameters) is necessary for these techniques to work together optimally.

The theory of nonlinear dimensionality reduction is quickly advancing with an emphasis

on understanding the geometry of data, and the theory developed here provides the basis for

future techniques to leverage the intrinsic geometry of dynamical systems. For example, it

is interesting to compare this technique to the approach of local SVD in the embedded state

space, mentioned in the introduction. While a local SVD can preserve, or even finely adjust,

the local geometry, it currently cannot generate a global low-dimensional representation.

On the other hand, a diffusion map gives a global low-dimensional representation, but

it inherits the local geometry given by the embedding and cannot currently leverage the

geometric information of a local SVD. Combining the global approach of diffusion maps

with the extra information available from a local SVD is a question that has only begun to

be addressed (for example in [10]). This is a fundamental shortcoming of diffusion maps,

and future developments should allow promising new extensions of DMDC.

Although the theory in Section 3.2 was written for deterministic dynamics, assuming

the existence of a standard Oseledets splitting, the arguments can be adapted to hold in the

case of stochastic dynamics, as in the more general splitting of [41]. Here Takens’ theorem

would be replaced by a stochastic version as in [42, 43]. Moreover, the basic idea of the

theorem, that stable directions are magnified in backward time by the delay coordinates,

may apply in more generality, such as within multidimensional Oseledets subspaces, leading

to finer notions of time scale separation.
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Incorporating the temporal structure of data into the theory of local and shift-local

kernels is a promising direction for future research. In particular, since local kernels can

define new geometries on the data, it may be possible to approximate the full Lyapunov

geometry empirically using a well designed local kernel. Moreover, improving the approx-

imation of the forward operator would dramatically improve the ability to separate time

scales as discussed in Section 3.4. If shift-local kernels can be used to approximate Fokker-

Planck operators we speculate that the associated eigenbases may provide natural time scale

separations for complicated dynamical systems.



Chapter 4: Leveraging spatial and spatiotemporal structure

The previous chapter focused on the temporal structure of data. However, many data

sets will also have a spatial structure, which should inform our analysis. The most obvious

examples are images (including 3-dimensional and hyper-spectral images), and it is imme-

diately clear that treating the pixels as independent and unrelated observations, as PCA

does for example, is a considerable underutilization of the data. Many ad hoc solutions

are available, each specially tuned to various data types and applications, but the growing

complexity of these problems calls for a more unified strategy. In this section we present

some preliminary ideas and related computational examples which motivate the geometric

approach to understanding the spatial structure of data.

We propose a two-step approach to utilizing the spatial structure of data. In the first

step a user-supplied spatial structure, such as a pixel layout or a network structure, is

used to develop a harmonic analysis or multi-scale wavelet analysis on the supplied spatial

structure. We refer to this first step as the spatial analysis. Combined with the temporal

analysis, the in situ spatial and temporal structure of the data set can be fully utilized. In

the second step we modify the spatial structure to fit the actual content of the data, to

form an adapted spatial analysis.

4.1 Learning spatial structure

Many large data sets have a known spatial structure, meaning that at any time each

data coordinate has a fixed relationship to the other coordinates. In an image the pixels

have a certain layout, and each pixel has a known relative distance to every other pixel.

Weather, economic, and commercial data may be associated with various sensor, survey,

and factory locations for example. In even greater generality, information networks, neural

83
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networks, and even social networks often have a priori notions of relative distances between

the various coordinates which make up a data set. Of course, these a priori notions of

distance may not always capture the perfect notion of similarity (we will address this in

the next section), but they usually capture at least some information about the similarity

of the various coordinates.

In each example described above, the spatial structure consists of a notion of distance

between the various coordinates of a data set. If the data can be viewed as n-dimensional

vectors, a spatial structure will be defined to be an n × n distance matrix S whose i, j

entry represents the spatial distance between the ith and jth coordinates of the data vector

v ∈ Rn. Thus, if v were a 1024 × 1024 pixel image represented as a 10242-dimensional

vector, then S would be a 10242× 10242 matrix containing the distances between each pair

of pixels. For simplicity we assume here that the spatial structure is the same for each v

and that the full matrix S is known, although these are not required.

The key to the proposed spatial analysis is to consider the ith coordinate of the vector

v to be a node xi on the underlying spatial structure, and then consider the data vector

v to be a function on the set of the spatial nodes {xi}. As a concrete example, consider

an image, where Ω is the plane of the image and the spatial nodes xi are the pixels. The

image v can be viewed as a function assigning a value to each pixel, or v : Ω → R. We

consider v ∈ L2(Ω) to be a square integrable function, written in the standard basis of

delta functions v(x) =
∑N

i=1 v(xi)δxi(x). In analogy to classical signal processing, we could

smooth or localize the vector v by writing it with respect to Fourier bases or wavelet bases

on Ω. In fact, we develop special versions of Fourier analysis and wavelet analysis on this

spatial structure to allow us to represent v in more suitable bases.

Note that the distance matrix S which represents our spatial structure also defines a

weighted graph between the nodes {xi}. The notion of harmonic analysis on graphs for

data analysis began with Belkin and Niyogi [7] who considered the eigenfunctions of the

graph Laplacian to be generalizations of sine and cosine functions. These ideas were made

formal by Coifman and Lafon in [2] who showed that a subtle renormalization of the graph
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Figure 4.1: Examples of generalized harmonic modes of the proposed approach. The rows
represent spatial structure of (top) temperature data from the NOAA database, where
the left-right periodicity reveals the spherical geometry; (middle) tree-ring growth index
data from the NCDC database (note in particular the harmonic mode in the third frame
localized on three locations in Africa, an effect that would be absent in classical Fourier
analysis); and (bottom) U.S. zip code demographic data where proximity is defined using
demographic data from the 2010 Census and dot size indicates relative areas of the zip
codes. These generalized harmonic modes provide an efficient basis for representing data
defined on these spatial coordinates; intuitively they provide a custom low pass filter which
allows the user to define proximity in a way that can isolate intrinsic properties of the data
set.

Laplacian is required to approximate the Laplace-Beltrami operator when the graph nodes

are sampled from a smooth manifold. In [2], Coifman and Lafon also introduced the notion

of a multiscale distance on the graph, and in [5] Coifman and Maggioni used a sparse

orthogonalization technique to build wavelets and a multi-scale analysis on a general graph.

Finally, [1] developed an abstract construction of wavelets on graphs and a fast wavelet

transform based on a Chebyshev polynomial expansion of the mother wavelet which is then

applied to the graph Laplacian. In Figures 4.1 and 4.2 we construct examples of harmonics

and wavelets on various type of spatial graphs that correspond to different data types.

In previous work, graph harmonic and wavelet analysis constructions have been applied

directly to the full data set using the distances between the full data vectors. Such an

analysis implicitly assumes that the coordinates have no special relationships, since the

distance between two vectors collects all the coordinate differences simply by summation.
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Figure 4.2: Example of spatial scale collapse in small world network. The spatial structure
begins with an 64-by-64 pixel where each pixel is connected to the 256 nearest neighbors
using the planar distance. To create a small world, we progressively introduce (top to
bottom) 0,70,140, and 210 short connections (short cuts) between randomly chosen pixels.
For each number of short connections, we show a graph wavelet centered in the image at 10
spatial scales (left to right) constructed using the technique of [1] with a second derivative
of a Gaussian for the mother wavelet and using 100 Chebyshev polynomial terms. Note
that there are 224 possible connections in this graph, and initially 220 are active, and yet
adding just 210 connections leads to the collapse of at least five spatial scales.

While this simplifying assumption has led to good results in toy examples, in the examples

below we will indicate how a spatial analysis can dramatically improve the understanding

of data structure. For example, Figure 4.2 shows how a common spatial structure, known

as a small world graph, leads to the collapse of spatial scales. A dataset represented on a

collapsed spatial scale (such as the naive full representation on the basis of delta functions)

would be very inefficient.

4.2 Dynamically-adapted spatiotemporal analysis

In Section 4.1 we showed how to leverage an existing spatial structure to improve the

representation of data. However, often the spatial structure that is available is only partially

defined and does not fully capture the correct notion of similarity in the data set. In this

section we propose a radical restructuring of the data, by using the data itself, together

with the given spatial structure (if available), to construct an adapted spatial analysis.

We will present a preliminary technique applied to images, which is based on building
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a over-complete dictionary for the adapted spatial structure by sampling sub-images. A

related idea was suggested in [5] and developed in [16]; however, it was not realized that the

data samples have to be considered a over-complete dictionary and not a basis. Moreover,

this technique is limited to two scales, a micro-scale at the level of sub-images, and a

macro-scale that represents the full images. We propose to generalize this technique from

images to arbitrary spatial structures using a wavelet basis to capture the initial notion

of localization. This wavelet basis will also allow a full multi-scale generalization of the

two-scale approach. Finally, we propose to investigate the theoretical foundations of such

a micro/macro or multi-scale splitting of data, we believe that underlying these splittings

are fundamental connections to abstract algebraic structures represented by symmetries in

the data, as described next.

Consider a collection of related images, as from a video. Often there are similarities

between sub-images across this set, even within each image. For example, in a video of an

object moving in the plane of the screen, the content of the frames is substantially the same

but with the sub-images rearranged. More generally, natural images tend to be dominated

by sharp one-dimensional boundaries and smooth two-dimensional regions, a fact that has

been exploited using sparse optimal basis reconstruction [44]. The weakness of an optimal

basis construction, obtained through residual minimization, is that it does not recognize the

geometry of the sub-image space, and thus it cannot generalize to slightly different elements.

If a video contains a rotating object, then the optimal basis will require a different basis

element for each angle in the rotation. Instead, by automatically finding the symmetries

of the sub-image space, our proposed method will summarize all these angles into a single

basis element plus a variable that gives the angle. Of course, since we are going to study

the geometry of the entire subimage space, there is no need to restrict ourselves to a basis,

and thus we will use an over-complete representation of the sub-image space.

For the sake of clarity we present a concrete example. Figure 4.3 shows frames from a

video of a liquid crystal being driven periodically at 10 and 12 volts. At 10 V, the dynamics

are dominated by rolls, which appear as continuous lines from the bottom left of the image
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Figure 4.3: Frames from a recording of liquid crystal experiment at 10 V (top) and 12
V (bottom) produced by Dr. John Cressman’s lab in the Physics Department at George
Mason University.

Figure 4.4: Nonlinear components from the space of sub-images for 10V (top) and 12V
(bottom). Each sub-image is constructed using a principal eigenmode of the adapted spatial
Fourier basis.

to the top right. These rolls move slowly. The other dynamical features of the video are the

defects, which are breaks between rolls. The defects move in the plane of the image much

faster than the rolls. When the voltage increases to 12 V, the defects become the dominant

features and the dynamics become highly complex. These liquid crystal dynamics are an

ideal illustration of how sub-images of a collection of images can have a relatively simple

structure that is opaque to current data analysis.

To find the geometry of the sub-image space we randomly sample 4096, 20-by-20 pixel

sub-images {xj}4096
j=1 from various locations and frames of a liquid crystal video. These 4096

sub-images are considered points sampled from a manifold Ω embedded in R400, and we use
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the technique of Section 4.1 to build an adapted Fourier basis on the manifold of sub-images.

When we compare these sub-images we do not take their location into account; however the

location is used when the sub-images are considered as an over-complete basis for the set of

all full images. Each element of the adapted Fourier basis is a function ψi : Ω→ R defined

on this manifold, and thus we can represent ψi as a sub-image by setting Xi =
∑

j ψi(xj)xj .

Using this method, we constructed the ten lowest frequency eigenfunctions of the Fourier

basis for the 10 V and 12 V liquid crystal videos; these modes are shown in Figure 4.4. The

Xi sub-images can be thought of as the nonlinear generalization of principal components for

the micro-scale model. Note that these sub-images automatically pick out the characteristic

features that make up the larger images, namely the rolls and the defects.

Now we can integrate the micro-scale model into the macro-scale analysis on the full

image by realizing each full image Y as both a vector represented in the over-complete

dictionary {xj}4096
j=1 of all sub-images and simultaneously as a function on the sub-image

space Ω. For this technique to be valid the set of sub-images (considered as full images that

are zero outside the sub-image location) must be large enough to satisfy the frame condition

for the subspace of L2(Ω) generated by the full images. In other words, the sub-images must

sufficiently sample the manifold Ω so that each full image Y can be reconstructed from the

collection of inner products {〈Y, xj〉} with all the localized sub-images. Thus we can consider

each full image to be equivalent to this collection of inner products, however this data set

can also be considered as discrete samples f(xj) = 〈Y, xj〉 of a function f : Ω→ R defined

on the space of all sub-images. Thus, when we write this function in a Fourier or wavelet

basis on the space of sub-images, we have represented the full image in this basis. Now

we can significantly improve our understanding of the full image space since the adapted

geometry of the sub-images efficiently represents the features of the images.

We propose two generalizations of the technique presented in this section for general

spatio-temporal analysis. First, in the micro/macro-scale dichotomy, the basis elements

could be sub-videos, consisting of a sub-images taken across multiple frames. This would

allow the spatial and temporal structures to interact at the micro scale. Second, we propose
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Figure 4.5: Left: The 4-D geometry of the sub-image space defined by the liquid crystal dy-
namics at 10V; the fourth dimension is represented as color. Middle: The first 2 dimensions
represent the phase of the horizontal rolls in the sub-image as an annulus. Representative
sub-images are plotted at their location in the 2-dimensional subspace spanned by the first
two modes. Right: The third and fourth dimensions represent the darkness of the roll and
the amount of defect in the sub-image respectively.

to expand the micro/macro-scale model into a full multi-scale model by using a spatial

wavelet basis as constructed in Section 4.1. This would also allow us to more easily apply

our method to arbitrary spatial structures such as weighted networks where the notion of

sub-image may not have a natural generalization. In the multi-scale approach, we first

build a full wavelet basis ψi,s where i ranges over all the spatial coordinates (for images

it ranges over the pixels) and s ranges over the dyadic scales. Note for a macro data

point Y , at any fixed location i, the collection of inner products Yi,s = 〈Y, ψi,s〉 represent

the local information in Y centered at the ith spatial node. The coefficients {Yi,s}Ss=1 are

therefore a multiscale generalization of a sub-image to an arbitrary spatial structure. In

analogy to our analysis of the micro-scale geometry, we propose to study the multiscale

geometry using the data set {Ŷi,s = (Yi,s, i, s) : 1 ≤ i ≤ N, 1 ≤ s ≤ S} and distance

d(Ŷi,s, Ŷj,t) = |Yi,s − Yj,t| + σ1|i − j| + σ2|s − t|. This generalizes the notion of distance

between sub-images by comparing the wavelet coefficients at each location and scale; then

σ1 and σ2 allows us to introduce spatial and scale heterogeneity respectively. In the simple

case where σ1 = σ2 = 0 we are simply assuming that the geometry is uniform at all locations
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and across the scales. Alternatively, if we did not include the first term and set σ2 = 0 we

would recover the initial spatial distance. Thus d is a data-adapted spatial distance, and

the parameter σ1 controls the influence of the a priori spatial structure. The distance d

gives us a new spatial structure on the data and we can use the methods of Section 4.1 to

construct data-adapted versions of Fourier and wavelet bases.

4.3 Diffusion wavelets and symmetries

A successful data-adapted spatial analysis depends on a redundant structure in which

similar patterns are repeated at various times and locations. Hopefully these repeated

patterns have small changes that can be represented in a low-dimensional feature space.

Understanding the symmetries in the underlying feature space may allow one to isolate a

particular desired feature. We now overview the emerging field of wavelets on manifolds

and graphs as another context where understanding the symmetries of nonlinear space is

important.

Diffusion wavelets were introduced in [5] and seek to generalize the construction of

wavelet bases to smooth manifolds where there is still a natural notion of translation given

by the local coordinate maps. However, since there is no dilation operator on a manifold,

Maggioni and Coifman substitute a diffusion operator. Since then, a related combinatorial

construction has also been developed in [1]. For a smooth manifold Ω, the prototype of a

diffusion operator is the heat kernel of the laplacian on a manifold given by

Tφ =

∫
Ω
K(t, x, y)φ(y)dy = et4φ

which is always a smoothing operator. Thus, instead of dilations on a Euclidean domain,

diffusion wavelets are adapted to a diffusion operator such as T . In [1,5] it is shown that one

can define a multiresolution adapted to the operator T in analogy to the classical wavelet

construction. Moreover, algorithms for constructing scaling functions and wavelets from
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the operator T are presented in [1, 5].

The key to constructing a wavelet analysis from the multiresolution is finding a basis

which is made up of translates of a single function. Since there is no reason to expect the

eigenfunctions of T (the generalized Fourier basis) to have this property, another approach

is required to construct such a basis. Both [5] and [1] consider a simple notion of translation

which allows one to move anywhere on the manifold or the graph. However, translation on

a manifold can be considerably more complex than on the Euclidean domains of classical

wavelet analysis. In particular, curved manifolds can have nontrivial holonomy, which

implies that parallel transport around a closed loop can change the coordinate system.

A more detailed understanding wavelets on a nonlinear domain requires respecting the

symmetry group which defines translation on that domain. For example, we may wish

to consider wavelets which are invariant to only a certain subgroup of the full symmetry

group. In the remainder of this section we will explore the challenges of understanding the

symmetries of the discrete geometry and introduce some possibilities for addressing them.

In the geometric context, a symmetry is simply a map, called an isometry, from the

manifold to itself which preserves the geometry. In the context of discrete geometry, [45,46]

introduced the idea of invariance under the diffusion geometry as a generalization of isome-

try. This was followed by a method for finding intrinsic symmetries in a data set using the

eigenfunctions of the Laplace-Beltrami operator with isolated eigenvalues [47]. However,

isolated eigenvalues correspond to simple reflection symmetries, and we are more interested

in repeated eigenvalues which correspond to subgroups of orthogonal matrices. These com-

plex group structures may represent significant inefficiencies in the data representation.

Moreover, in the case of many interconnected symmetries, there may be efficient represen-

tations which correspond to group factorizations. Finally, by finding partial symmetries we

may be able to produce new, unobserved data by generating the data points that would

complete these symmetries. We propose to investigate how known symmetry groups can

be represented in image spaces with the goal of finding a theoretical basis for the reduction

achieved by the data-adapted methods proposed in this section.
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Example 4.3.1. In this example we illustrate how the eigenfunctions of the Laplace-

Beltrami operator can be used to search for symmetries. Using the same data from Figure

4.5 above, we applied the diffusion maps construction to build a discrete approximation to

the Laplace-Beltrami operator. We found that many features of the subimage space were

well represented by using just 8 eigenfunctions, so we will restrict this analysis to just those

eigenfunctions. The first eigenfunction has eigenvalue zero and represents the sampling

density on the manifold. The fourth eigenvalue was isolated and may have described a

reflection symmetry, but here we are interested in continuous symmetries so we will focus

on repeated eigenvalues. The second and third eigenvalues were very close numerically, and

also the fifth through eighth were very close numerically. This implies that any subgroup

of SO(2)⊕ SO(4) (where SO(n) is the special orthogonal group of dimension n over R) is

a candidate for a symmetry.
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Figure 4.6: Comparison of a naive symmetry (black trajectory) using only modes 2 and 3
and an improved symmetry (red trajectory) using modes 2-3 and 5-8. Top left, modes 2,3
and 6 plotted for the data set (blue) a naive symmetry (black) and improved symmetry (red).
Top right shows modes 2,3, and 7. Each row of images shows a reconstructed symmetry,
the top row is the naive symmetry and the bottom row is the improved symmetry shown
in the plots above. Note that the improved symmetry captures the phase of the stripes.
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Naively, we first select a rotation θ ∈ SO(2) of π/60 radians. We selected a random

subimage, and applied the group element θ ⊕ IdSO(4) ∈ SO(2) ⊕ SO(4) to the generalized

Fourier coefficients of the subimage. In Figure 4.6, we see that the naive rotation in the

second and third coefficients did not stay on the manifold. This is not inconsistent, any

symmetry must correspond to a subgroup of SO(2)⊕SO(4), however many such subgroups

will not correspond to symmetries. Clearly, θ ⊕ IdSO(4) does not generate a symmetry on

this manifold. Next, we constructed a more complex symmetry θ⊕(θ⊕2θ) which stays much

closer to the manifold, as shown in Figure 4.6, and is probably close to a real symmetry.

In Figure 4.6 we also reconstruct the images that correspond to the paths of these two

candidate symmetries. This reveals that the well constructed symmetry captures the phase

of the stripes in the subimage, while the poorly constructed symmetry does not seem to

capture a feature of the data set.

The above example demonstrates the challenges of finding symmetries. The construction

of Section 2.5 gives a strong possibility for finding these symmetries. As we have seen,

eigenforms of the Laplacian on 1-forms correspond to vector fields on the manifold. These

vector fields generate deterministic dynamical systems whose solutions give one parameter

translation groups on the manifold. The prospect of using the discrete geometry to find

symmetries which represent data features illustrates how the geometric perspective of data

analysis leads to new ways of understanding data.



Chapter 5: Leveraging existing models

So far we have seen that time ordering, spatial structure, and meta-data provide a priori

structure to a data set which should inform the analysis. Existing models also provide an

a priori structure to the data which can be extremely sophisticated. In some sense, these

models can be considered a compression or summary of many specialized experiments or

related data sets which are not available and would be difficult to connect to the full

analysis. However, even if all this data was available, existing models often implicitly

incorporate physical constraints or first-principles modeling assumptions which amount to

extremely complex priors. Nevertheless, modeling errors, or differences between the model

and reality, are ubiquitous and difficult to quantify or compensate for.

As we have previously emphasized, non-parametric modeling is strongly limited by the

curse-of-dimensionality, making it unrealistic and wasteful to expect a non-parametric tech-

nique to recover an existing model. The natural opportunity for non-parametric modeling

is to improve an existing model by compensating for model error. However, compensating

for model error first requires extracting the component of the data which is not already

explained by the model.

In this chapter we show that filtering techniques, such as the Kalman filter and its

many extensions, naturally extract the portion of the data which is not explained by an

existing model. As we will see, a Kalman-type filter produces a time series of errors, called

innovations, which are the difference between the model prediction and the observed data.

However, the innovation is a complex mixture of model error and uncertainty in the state

variables. This makes using the innovations to extend the model in a way which can be

used by the filter is non-trivial. As a first step towards resolving this difficulty we present

a novel technique for extending the model with a stochastic term. In the discussion section

we will indicate how this is a natural first step towards non-parametric model extensions.

95
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5.1 Overview

The Kalman filter is provably optimal for systems where the dynamics and observations

are linear with Gaussian noise. If the covariance matrices Q and R of the model error and

observation error, respectively, are known, then the standard equations provided originally

by Kalman [48] give the maximum likelihood estimate of the current state. If inexact Q

and R are used in Kalman’s equations, the filter may still give reasonable state estimates,

but it will be suboptimal.

In the case of linear dynamics, [49, 50] showed that the exact Q and R could be recon-

structed by auxiliary equations added to the Kalman filter, in the case of Gaussian white

noise model error. This advance opened the door for adaptive versions of the filter. More

recently, approaches to nonlinear filtering such as the Extended Kalman Filter (EKF) and

Ensemble Kalman Filter (EnKF) have been developed [51–55]. Proposals have been made

[56–59] to extend the idea of adaptive filtering to nonlinear filters. However, none of these

showed the capability of recovering an arbitrary Q and R simultaneously, even in the sim-

plest nonlinear setting of Gaussian white noise model error and observation error. One goal

of this chapter is to introduce an adaptive scheme in the Gaussian white noise setting that is

a natural generalization of Mehra’s approach, and that can be implemented on a nonlinear

Kalman-type filter. We demonstrate the reconstruction of full, randomly-generated error

covariance matrices Q and R in Example 5.4.1.

The technique we describe builds on the innovation correlation method of Mehra. Signif-

icant modifications are required to lift this technique to the nonlinear domain. In particular,

we will explicitly address the various stationarity assumptions required by Mehra which are

violated for a nonlinear model. As shown by Mehra and later [57] and [56], the innovation

correlations are a blended mixture of observation noise, predictability error (due to state

uncertainty), and model error. Disentangling them is nontrivial due to the nonstationarity

of the local linearizations characteristic of strongly nonlinear systems. Many previous tech-

niques have been based on averages of the innovation sequence, but our technique will not
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directly average the innovations.

Instead, at each filter step, the innovations are used, along with locally linearized dy-

namics and observations, to recover independent estimates of the matrices Q and R. These

estimates are then integrated sequentially using a moving average to update the matrices

Qfilt
k and Rfilt

k used by the filter at time step k. By treating each innovation separately, using

the local linearizations relevant to the current state, we are able to recover the full matrices

Q and R when the model error is Gaussian white noise, and to improve state estimates in

more complicated settings.

Gaussian white noise model error is an unrealistic assumption for practical applications.

Typically, more significant model errors, as well as partial observability, must be addressed.

In this case, we interpret the covariance matrix Qfilt
k (see equation (5.2)) as an additive

covariance inflation term whose role is to prevent filter divergence and to improve the

estimate of the underlying state.

Covariance inflation, originally suggested in [60], adjusts the forecast error covariance

to compensate for systematic underestimation of the covariance estimates given by the

Kalman filter. There is a rapidly growing list of approaches to covariance inflation strategies

[58,61–66]. In [58,67,68] techniques are presented for finding inflation factors that implicitly

assume a very simple structure for the noise covariance. There are also many techniques

based on the covariance of the implied observation errors at each time step [61,69–72]. These

were actually anticipated and rejected by Mehra, who called them covariance matching

techniques in [50]. He showed that these techniques were not likely to converge unless the

system noise was already known. Since untangling the observation noise and system noise is

the key difficulty of adaptive filtering, we do not wish to assume prior knowledge of either.

At the same time, new theory is emerging that begins to give mathematical support

to particular applications, including the recent article [73] that shows convergence of the

EnKF in the sense of the existence of a shadowing trajectory under reasonable hyperbolicity

assumptions. In their approach, there is no system noise, and perfect knowledge of the

(deterministic) model and the observation noise covariance matrix are necessary to make the
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proof work. Furthermore, optimality is not addressed, which naturally leads to the question

of the optimal choice of the covariance matrices used by the filter. We speculate that an

appropriate adaptive filter may be the key to finding the optimal covariance matrices.

We begin the next section by demonstrating the importance of knowing the correct Q

and R for the performance of a Kalman filter. Next we recall the adaptive filter developed in

[49,50] that augments the Kalman filter to estimate Q and R in the case of linear dynamics.

In Section 5.3 we describe an adaptive filter that can find Q and R in real time even for

nonlinear dynamics and observations, building on the ideas of Mehra. In Section 5.4 we test

the adaptive filter on a 40-dimensional model of [74] and show the dramatic improvements in

filtering that are possible. In addition, we show that this adaptive filter can also compensate

for significant model error in the Lorenz96 model. We also propose new ideas to extend our

technique to the cases of rank deficient observations and non-additive noise, and discuss an

implementation that augments a localized version of the ensemble Kalman filter.

5.2 Extensions of the Kalman filter

Kalman filtering [48] is a well-established part of the engineering canon for state and

uncertainty quantification. In the linear case with Gaussian noise, Kalman’s algorithm is

optimal. Since our main interest is the case of nonlinear dynamics, we will use notation that

simplifies exposition of two often-cited extensions, the Extended Kalman Filter (EKF) and

the Ensemble Kalman Filter (EnKF). For simplicity we will work in the discrete setting,

and assume a nonlinear model of the form

xk+1 = f(xk) + ωk+1

yk+1 = h(xk+1) + νk+1 (5.1)

where ωk+1 and νk+1 are zero-mean Gaussian noise with covariance matrices Q and R,

respectively. The system is given by f , and Q is the covariance of the one-step dynamical

noise. The value of an observation is related to x by the function h, with observational
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noise covariance R. To simplify notation, we assume the covariance matrices are fixed in

time, although in later examples we allow Q and R to drift and show that our adaptive

scheme will track slow changes.

We are given a multivariate time series of observations, with the goal of estimating

the state x as a function of time. The Kalman filter follows an estimated state xak and

an estimated state covariance matrix P ak . Given the estimates from the previous step, the

Kalman update first creates forecast estimates xfk+1 and P fk+1 using the model, and then

updates the forecast estimate using the observation yk+1. The goal of nonlinear Kalman

filtering is to correctly interpret and implement the linear Kalman equations

xfk+1 = Fkx
a
k

yfk+1 = Hk+1x
f
k+1

P fk+1 = FkP
a
kF

T
k +Qfilt

k

P yk+1 = Hk+1P
f
k+1H

T
k+1 +Rfilt

k

Kk+1 = P fk+1H
T
k+1(P yk+1)−1

P ak+1 = (I −Kk+1Hk+1)P fk+1

xak+1 = xfk+1 +Kk+1

(
yk+1 − yfk+1

)
. (5.2)

where P yk+1 is the covariance of the observation, and yfk+1 is the forecast observation implied

by the previous state estimate. The matrices Qfilt
k and Rfilt

k should be chosen to equal Q

and R, respectively, in the linear case; how to choose them in general is the central issue

of our investigation. The EKF extends the Kalman filter to systems of the form (5.1) by

explicitly computing linearizations Fk and Hk+1 from the dynamics. In the EnKF, these

quantities are computed more indirectly, using ensembles; we give more complete details in

Section 5.4.
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Filter performance depends strongly on the covariances Qfilt
k and Rfilt

k that are used in

the algorithm. In fact, for linear problems the algorithm is provably optimal only when the

true covariances Qfilt
k = Q and Rfilt

k = R are used. For nonlinear problems, even for Gaussian

white noise model error, using the exact Qfilt
k = Q can lead to filter instability (see Figure

5.5(c)-(d)). This is because the local linearizations Fk and Hk+1 introduce an additional

model error which may systematically underestimate P fk . More generally, the model error

in applications is typically not Gaussian white noise, and Qfilt
k must be interpreted as an

additive inflation which attempts to compensate for the covariance structure of the model

error.

In Figure 5.1 we illustrate the effect of various suboptimal Qfilt
k and Rfilt

k on a nonlinear

problem by running an EnKF on a 40-site Lorenz96 model [74, 75]. (Full details of the

model are given in Section 5.4.) In the limit of large Qfilt
k or small Rfilt

k we find that the

RMSE of filtered state estimates approach the RMSE of the unfiltered signal. Intuitively,

when Qfilt
k is large and Rfilt

k is small the filter has no confidence in the forecast relative to

the observation and the filter simply returns the observation. For a filter to be nontrivial

we must use a smaller Qfilt
k and a larger Rfilt

k . However, as shown in Figure 5.1, when the

former is too small or the latter is too large, the RMSE of the filtered signals can actually

be higher than the RMSE of the original noisy signals. In one extreme the filter becomes

trivial, and in the other extreme it is possible for the filter to actually degrade the signal.

Figure 5.1 illustrates that a key to filter performance lies in the choice of Qfilt
k and Rfilt

k .

In Section 5.3 we present a novel adaptive scheme that augments equation (5.2) to also

update the matrices Qfilt
k and Rfilt

k at each filter step based on the observations. Since the

adaptive scheme is a natural generalization of the Kalman update, it can be used in many

of the extensions of the Kalman filter for nonlinear problems.
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Figure 5.1: Results of EnKF on a Lorenz96 data set (see Section 5.4) with 400 different

combinations of diagonal Qfilt
k and Rfilt

k matrices. RMS error was computed by comparing

the filter output to the time series without observation noise. The correct Q and R (used to
generate the simulated data) were diagonal matrices with entries Qii = 0.01 and Rii = 0.2,
respectively. The RMS error of the signal prior to filtering was 0.44 (shown as red dotted

line) the RMSE of the optimal filter using Qfilt
k = Q and Rfilt

k = R was 0.20 (shown as black

dotted line). In (a) we show the effect of varying Rfilt
k when Qfilt

k = Q and in (b) the effect

of varying Qfilt
k when Rfilt

k = R.

5.3 An adaptive nonlinear Kalman filter

For the case of linear dynamics with linear full-rank observation, the adaptive filtering

problem was solved in two seminal papers [49, 50]. Mehra considered the innovations of

the Kalman filter, which are defined as εk = yk − yfk and represent the difference between

the observation and the forecast. In his innovation correlation method, he showed that the

cross-correlations of the innovations could be used to estimate the true matrices Q and R.

Intuitively, this is possible because cross-correlations of innovations will be influenced by the

system and observation noise in different ways, which give multiple equations involving Q

and R. These differences arise because the perturbations of the state caused by the system

noise persist and continue to influence the evolution of the system, whereas each observation

contains an independent realization of the observation noise. When enough observations

are collected, the resulting system can be solved for the true covariance matrices Q and R.

5.3.1 Adaptive Kalman filter for linear dynamics.

In the case of linear dynamics with linear full-rank observations, the forecast covariance

matrix P f and the Kalman gain K have a constant steady state solution. Mehra shows
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that for an optimal filter we have the following relationship between the expectations of the

cross-correlations of the innovations and the matrices involved in the Kalman filter:

Γ0 ≡ E[εkε
T
k ] = HP fHT +R

Γ1 ≡ E[εk+1ε
T
k ] = HFP fHT −HFKΓ0.

Now consider the case when the Kalman filter is not optimal, meaning that the filter

uses matrices Qfilt
k and Rfilt

k that are not equal to the true values Q and R. In this case we

must consider the issue of filter convergence. We say that the filter converges if the limit of

the state estimate covariance matrices exists and is given by

M ≡ lim
k→∞

P fk = lim
k→∞

E[(xk − xfk)(xk − xfk)T ]

where P fk is the estimate of the uncertainty in the current state produced by the Kalman

filter at time step k. The filter is called non-optimal because the state estimate distribution

will have higher variance than the optimal filter, as measured by the trace of M . As shown

in [49, 50], for the non-optimal filter, M is still the covariance matrix of the state estimate

as long as the above limit exists. Moreover, M satisfies an algebraic Riccati equation given

by

M = F
[
(I −K∞H)M(I −K∞H)T +K∞RKT

∞
]
F T +Q (5.3)

where K∞ is the limiting gain of the non-optimal filter defined by Qfilt and Rfilt. Note that

the matrices Q and R in (5.3) are the true, unknown covariance matrices.

Motivated by the appearance of the true covariance matrices in the above equations,

Mehra gave the following procedure for finding these matrices and hence the optimal filter.

After running a non-optimal filter long enough that the expectations in Γ0 and Γ1 have
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converged, the true Q and R can be estimated by solving the equations

M = (HF )−1(Γ1 +HFK∞Γ0)H−T

R = Γ0 −HMHT

Q = M − F
[
(I −K∞H)M(I −K∞H)T +K∞RKT

∞
]
F T . (5.4)

Clearly this method requires H to be invertible, and when the observation had low rank

Mehra could not recover Q with his method. With a more complicated procedure he was

still able to find the optimal Kalman gain matrix K even when he could not recover Q.

However, this procedure used the fact that the optimal gain is constant for a linear model.

5.3.2 Extension to nonlinear dynamics.

Our goal is to apply this fundamental idea to nonlinear problems. Unfortunately, while

the technique of Mehra has the correct basic idea of examining the time correlations of the

innovation sequence, there are many assumptions that fail in the nonlinear case. First, the

innovation sequence is no longer stationary, and thus the expectations for Γ0 and Γ1 are

no longer well-defined. Second, the matrices H and F (interpreted as local linearizations)

are no longer fixed and the limiting values of K and P f no longer exist, and therefore all

of these matrices must be estimated at each filter step. Third, Mehra was able to avoid

explicitly finding Q in the case of a rank deficient observation by using the limiting K,

which does not exist in the nonlinear case. For nonlinear dynamics the optimal Kalman

gain is not fixed, making it more natural to estimate Q directly. When the observations are

rank-deficient, parameterization of the matrix Q will be necessary.

Consequently, the principal issue with lifting Mehra’s technique to a nonlinear model

is that the local linear dynamics are changing with each time step. Even in the case of

Gaussian white noise model error, the only quantities which may be assumed fixed over

time in the nonlinear problem are the covariance matrices Q and R. With this insight, we

solve Mehra’s equations (5.4) at each filter step and update Qfilt
k and Rfilt

k at each step with
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a exponentially weighted moving average. Thus our iteration becomes

P ek = (Hk+1Fk)
−1(εk+1ε

T
k +Hk+1FkKkεkε

T
k )H−Tk

Qek = P ek − Fk−1P
a
k−1F

T
k−1

Rek = εkε
T
k −HkP

f
kH

T
k

Qfilt
k+1 = Qfilt

k + δ(Qek −Qfilt
k )

Rfilt
k+1 = Rfilt

k + δ(Rek −Rfilt
k ) (5.5)

where δ must be chosen small enough to smooth the moving average. Note that these

equations naturally augment the Kalman update in that they use the observation to update

the noise covariances. This iteration is straightforward to apply with the Extended Kalman

Filter, because Hk and Fk are explicitly known. For the Ensemble Kalman Filter, these

quantities must be estimated from the ensembles. This extra step is explained in detail in

Section 5.4.

To explain the motivation behind our method, first consider the following idealized

scenario. We assume that the unknown state vector xk is evolved forward by a known time

varying linear transformation xk+1 = Fkxk+ωk+1 and observed as yk+1 = Hk+1xk+1 +νk+1.

Furthermore, we assume that ωk+1 and νk+1 are stationary white noise random variables

which are independent of the state, time, and each other, and that E[ωωT ] = Q and

E[ννT ] = R. In this scenario, we can express the innovation as

εk = yk − yfk = Hk(xk − xfk) + νk.

If we were able to average over all the possible realizations of the random variables xk, x
f
k ,

and νk (conditioned on all previous observations) at the fixed time k we would have

E[εkε
T
k ] = E[Hk(xk − xfk)(xk − xfk)THT

k ] + E[νkν
T
k ] = HkP

f
kH

T
k +R.
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However, the most important realization is that only the last expectation in this equation

can be replaced by a time average. This is because unlike νk, which are independent,

identically distributed random variables, the distribution P fk is changing with time and

thus each innovation is drawn from a different distribution. In our idealized scenario, the

non-stationarity of εk arises from the fact that the dynamics are time varying, and more

generally for nonlinear problems this same effect will occur due to inhomogeneity of the

local linearizations.

Since we have no way to compute the expectation E[εkε
T
k ], we instead compute the

matrix

Rek = εkε
T
k −HkP

f
kH

T
k

= νkν
T
k +Hk(xk − xfk)(xk − xfk)THT

k −HkP
f
kH

T
k + νk(xk − xfk)THT

k +Hk(xk − xfk)νTk .

Note that the last two terms have expected value of zero (since E[νk] = 0 for all k), and for

each fixed k the difference

Hk(xk − xfk)(xk − xfk)THT
k −HkP

f
kH

T
k

has expected value given by the zero matrix. Since these terms have expected value of zero

for each k, we can now replace the average over realizations of νk with an average over k

since νk is assumed to be stationary. Thus we have

lim
K→∞

1

K

K∑
k=1

Rek = Ek[Rek] = Ek[νkνTk ] = Eνk [νkν
T
k ] = R

where Ek denotes an average over time and Eνk denotes an average over possible realizations

of the random variable νk. This motivates our definition of Rek as the empirical estimate

of the matrix R based on a single step of the filter. Our method is to first recover the
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stationary component and then average over time instead of averaging the innovations.

Thus the equation for Rk is simply a moving average of the estimates Rek. Of course, in

real applications, the perturbation νk will not usually be stationary. However, our method

is still advantageous since the matrix εkε
T
k is largely influenced by HkP

f
kH

T
k and thus by

subtracting these matrices we expect to improve the stationarity of the sequence Rek.

A similar argument motivates our choice of P ek and Qek as the empirical estimates of the

forecast and model error covariances respectively. First, we continue the expansion of the

k-th innovation as

εk+1 = yk+1 − yfk+1 = Hk+1(xk+1 − xfk+1) + νk+1

= Hk+1(Fkxk + ωk+1 − Fkxak) + νk+1

= Hk+1(Fkxk − Fk(xfk +Kkεk)) +Hk+1ωk+1 + νk+1

= Hk+1Fk(xk − xfk)−Hk+1FkKkεk +Hk+1ωk+1 + νk+1.

By eliminating terms which have mean zero we find the following expression for the cross

covariance

εk+1ε
T
k = Hk+1Fk(xk − xfk)(xk − xfk)THT

k −Hk+1FkKkεkε
T
k .

Note that the expected value of (xk − xfk)(xk − xfk)T is the forecast covariance matrix P fk

given by the filter. Solving the above equation for (xk − xfk)(xk − xfk)T gives an empirical

estimate of the forecast covariance from the innovations. This motivates our definition of

P ek , the empirical forecast covariance, which we find by solving

Hk+1FkP
e
kH

T
k = εk+1ε

T
k +Hk+1FkKkεkε

T
k .

It is tempting to use the empirical forecast to adjust the filter forecast P fk , however this is
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infeasible. The empirical forecast is extremely sensitive to the realization of the noise and

since the forecast covariance is not stationary for nonlinear problems there is no way to

average these empirical estimates. Instead, we isolate a stationary model error covariance

which can be averaged over time by separating the predictability error from the forecast

error.

In our idealized scenario, the forecast error P fk = P pk +Q is the sum of the predictability

error P pk and the model error Q which we wish to estimate. We can estimate the pre-

dictability error using the dynamics and the analysis covariance from the previous step of

the Kalman filter as P pk ≈ Fk−1P
a
k−1F

T
k−1. Finally, we estimate the model error covariance

by

Qek = P ek − Fk−1P
a
k−1F

T
k−1.

As with Rek, in our example of Gaussian white noise model error, this estimate of Qek

is stationary and thus can be averaged over time in order to estimate the true model

error covariance Q. While in real applications the actual form of the forecast error is

more complicated, a significant component of the forecast error will often be given by the

predictability error estimated by the filter. Thus it is natural to remove this known non-

stationary term before attempting to estimate the stationary component of the model error.

If the true values of Q and R are known to be constant in time, then a cumulative

average can be used, however this would take much longer to converge. The exponentially

weighted moving average allows the estimates of Qfilt
k and Rfilt

k to adjust to slow or sporadic

changes in the underlying noise covariances. A large delta will allow fast changes in the

estimates but results in Qfilt
k and Rk varying significantly. We define τ = 1/δ to be the

stationarity time scale of our adaptive filter. Any changes in the underlying values of Q and

R are assumed to take place on a time scale sufficiently greater than τ . In the next section,

we will show (see Figure 5.2) that our iteration can find complicated covariance structures

while achieving reductions in RMS error.
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5.3.3 Compensating for rank-deficient observations.

For many problems, Hk or Hk+1Fk will not be invertible because the number of observa-

tions per step m is less than the number of elements n in the state. In this case, the above

algorithm cannot hope to reconstruct the entire matrix Q. However, we can still estimate

a simplified covariance structure by parameterizing Qek =
∑
qpQp as a linear combination

of fixed matrices Qp. This parameterization was first suggested by Bélanger in [76]. To

impose this restriction we first set

Ck = εk+1ε
T
k +Hk+1FkKkεkε

T
k −Hk+1FkFk−1P

a
k−1F

T
k−1H

T
k

and note that we need to solve Hk+1FkQ
e
kH

T
k = Ck. Thus we simply need to find the vector

q with values qp that minimize the Frobenius norm

∣∣∣∣∣
∣∣∣∣∣Ck −∑

p

qpHk+1FkQpH
T
k

∣∣∣∣∣
∣∣∣∣∣
F

.

To solve this we simply vectorize all the matrices involved. Let vec(Ck) denote the vector

made by concatenating the columns of Ck. We are looking for the least squares solution of

Akq =
∑
p

qpvec(Hk+1FkQpH
T
k ) ≈ vec(Ck)

where the pth column of Ak is vec(Hk+1FkQpH
T
k ). We can then find the least squares

solution q = A†kvec(Ck) and form the estimated matrix Qek.

In the applications section we will consider two particular parameterizations of Qek. The

first is simply a diagonal parameterization using n matrices (Qp) = Epp, where Eij is the

elementary matrix whose only nonzero entry is 1 in the ij position. The second parameteri-

zation is a block constant structure which will allow us to solve for Qek in the case of a sparse
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observation. For the block constant structure we choose a number b of blocks which divides

n and then we form b2 matrices {Q(p,r)}bp,r=1 where (Q(p,r)) =
∑n/b

l,m=1Epn/b+l,rn/b+m. Thus

each matrix Q(p,r) consists of a n/b × n/b submatrix which is all ones, and they sum to a

matrix whose entries are all ones.

Note that it is very important to choose matrices Qp which complement the observation.

For example, if the observations are sparse then the matrix Hk will have rows which are all

zero. The block constant parameterization naturally interpolates from nearby sites to fill

the unobserved entries.

5.4 Application to the Lorenz model

In this section we demonstrate the adaptive EnKF by applying it to the Lorenz96

model [74, 75], a nonlinear system which is known to have chaotic attractors and thus

provides a suitably challenging testbed. We will show that our method recovers the correct

covariance matrices for the observation and system noise. Next we will address the role of

the stationarity parameter τ = 1/δ and demonstrate how this parameter allows our adaptive

EnKF to track changing covariances. Finally, we demonstrate the ability of the adaptive

EnKF to compensate for model error by automatically tuning the system noise.

The Lorenz96 model is an N -dimensional ODE given by

dxi

dt
= −xi−2xi−1 + xi−1xi+1 − xi + F (5.6)

where x = [x1(t), . . . , xN (t)] is a vector in RN and the superscript on xi (considered modulo

N) refers to the i-th vector coordinate. The system is chaotic for parameters such as N = 40

and F = 8, the parameters used in the forthcoming examples. To realize the Lorenz96

model as a system of the form (5.1), we consider x = xk to be the state in RN at time step

k. We define f(xk) to be the result of integrating the system (5.6) with initial condition

xk for a single time step of length ∆t = 0.05. For simplicity we took the observation
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function h to be the identity function except in Example 5.4.3 below, where we examine

a lower dimensional observation. When simulating the system (5.1) to generate data for

our examples we generated the noise vector ωk+1 by multiplying a vector of N independent

standard normal random numbers by the symmetric positive definite square root of the

system noise covariance matrix Q. Similarly, we generated νk+1 using the square root of

the observation noise covariance matrix R.

In the following examples we will demonstrate how the proposed adaptive EnKF is able

to improve state estimation for the Lorenz96 model. In all of these examples we will use

the root mean squared error (RMSE) between the estimated state and the true state as

a measure of filter performance. The RMSE will always be caluculated over all N = 40

observation sites of the Lorenz96 system. In order to show how the error evolves as the filter

runs, we will often plot RMSE against filter steps by averaging over a window of 1000 filter

steps centered at the indicated filter step. Since we are using our algorithm to estimate the

matrices Q and R we will also be interested in how close our estimates Qfilt
k and Rfilt

k are.

Since we are interested in recovering the entire matrices Q and R we use RMSE to measure

the error Q − Qfilt
k and R − Rfilt

k . The RMSE in this case refers to the square root of the

average of the squared errors over all the entries in the matrices.

The EnKF uses an ensemble of state vectors to represent the current state information.

In examples 5.4.1 through 5.4.4 below we will use the unscented version of the EnKF [77,78].

For simplicity, we do not propagate the mean (κ = 0 in [55]) or use any scaling. When

implementing an EnKF, the ensemble can be integrated forward in time and observed using

the nonlinear equations (5.1) without any explicit linearization. Our augmented Kalman

update requires the local linearizations Fk and Hk+1. While these are assumed available in

the extended Kalman filter, for an EnKF these linear transformations must be found indi-

rectly from the ensembles. Let Eak be a matrix containing the ensemble perturbation vectors

(the centered ensemble vectors) which represents the prior state estimate and let Efk+1 be

the forecast perturbation ensemble which results from applying the nonlinear dynamics to

the prior ensemble. We define Fk to be the linear transformation that best approximates the
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transformation from the prior perturbation ensemble to the forecast perturbation ensemble.

Similarly, to define Hk+1 we use the inflated forecast perturbation ensemble Exk+1 and the

ensemble Eyk+1 which results from applying the nonlinear observation to forecast ensemble.

To summarize, in the context of an ensemble Kalman filter, we define Fk and Hk+1 by

Fk = Efk+1(Eak)†

Hk+1 = Eyk+1(Exk+1)† (5.7)

where † indicates the pseudo-inverse. There are many methods of inflating the forecast

perturbation ensemble from Efk+1. In the examples below we always use the additive in-

flation factor Qfilt
k by finding the covariance matrix P fk+1 of the forecast ensemble, forming

P xk+1 = P fk+1 + Qfilt
k , and then taking the positive definite square root of P xk+1 to form the

inflated perturbation ensemble Exk+1.

Example 5.4.1 (Finding the noise covariances). In the first example, both the Q and R

matrices were generated randomly (constrained to be symmetric and positive definite) and

the discrete-time Lorenz96 model was simulated for twenty thousand time steps. We then

initialized diagonal matrices Qfilt
k and Rfilt

k as shown in Figure 5.2, and applied the standard

EnKF to the simulated data. The windowed RMS error is shown in the red curve of Figure

5.2(d). Note that the error initially decreases but then quickly stabilizes as the forecast

covariance given by the EnKF converges to its limiting behavior.

Next we applied the adaptive EnKF on the same simulated data using Qfilt
k and Rfilt

k

as our initial guess for the covariance matrices. In Figure 5.2(a)-(c) we compare the true

Q matrix to the initial diagonal Qfilt
k and the final Qfilt

k estimate produced by the adaptive

EnKF. Here, the adaptive EnKF recovers the complex covariance structure of the system

noise in a 40-dimensional system. Moreover, the resulting RMS error, shown by the blue

curve in Figure 5.2(d), shows a considerable improvement. This example shows that for



112

(a)

100 101 102 103 104 1050

2

4

6

8

x 10−3

Filter Step k

R
M

SE
 o

f Q
−Q

k

(b)

100 101 102 103 104 1050

0.02

0.04

0.06

0.08

0.1

Filter Step  k

R
M

SE
 o

f R
−R

k

(c)

102 103 104 1050

0.2

0.4

0.6

0.8

Filter Steps

R
M

SE

(d)

Figure 5.2: We show the long term performance of the adaptive EnKF by simulating Lorenz96
for 300000 steps and running the adaptive EnKF with stationarity τ = 20000. (a) First row, left

to right: true Q matrix used in the Lorenz96 simulation, the initial guess for Qfilt
k provided to the

adaptive filter, the final Qfilt
k estimated by the adaptive filter, and the final matrix difference Q−Qfilt

k .

The second row shows the corresponding matrices for R; (b) RMSE of Q−Qfilt
k as Qfilt

k is estimated

by the filter; (c) RMSE of R − Rfilt
k as Rfilt

k is estimated by the filter; (d) comparison of windowed

RMSE vs. number of filter steps for the conventional EnKF run with the true Q and R (black, lower
trace), and the conventional EnKF run with the initial guess matrices (red, upper trace), and our
adaptive EnKF initialized with the guess matrices (blue, middle trace).

Gaussian white noise model and observation errors, our adaptive scheme can be used with

an EnKF to recover a randomly generated covariance structure even for a strongly nonlinear

model.

Figure 5.2 shows that the improvement in state estimation builds gradually as the adap-

tive EnKF converges to the true values of the covariance matrices Q and R. The speed of

this convergence is determined by the parameter τ , which also determines the accuracy of

the final estimates of the covariance matrices. The role of the stationarity constant τ will

be explored in the next example.

Example 5.4.2 ( Tracking changing noise levels). To demonstrate the role of τ = 1/δ and

to illustrate the automatic nature of the adaptive EnKF, we consider a Lorenz96 system

where both Q and R are multiples of the identity matrix, with R constant and Q varying
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Figure 5.3: A Lorenz96 data set with slowly varying Q is produced by defining the system noise
covariance matrix Qk as a multiple of the identity matrix, with the multiple changing in time. (a)

Trace of Qk (black) and Qfilt
k for the EnKF (red) compared to the trace of Qfilt

k (normalized by

N = 40) for the Adaptive EnKF at stationarity levels τ = 500 (green) and τ = 2000 (blue). (b)

Comparison of the RMSE in state estimation for the EnKF with fixed Qfilt
k (red) and the Adaptive

EnKF with stationarity τ = 500 (green) and τ = 2000 (blue). The black curve represents an oracle
EnKF which is given the correct covariance matrix Q at each point in time.

in time. The trace of Q (normalized by the state dimension N = 40) is shown as the black

curve in Figure 5.3(a) where it is compared to the initial Q (shown in red) and the estimates

of Q produced by the adaptive EnKF with τ = 500 (shown in green) and τ = 2000 (shown

in blue). Note that when τ is smaller the adaptive filter can move more quickly to track

the changes of the system, however, when the system stabilizes the larger value of τ is more

stable and gives a better approximation of the stable value of Q.

Next we examine the effect of τ on the RMS error of the state estimates. Figure 5.3(b)

shows that leaving the value of Qfilt
k equal to the initial value of Q leads to a large increase in

RMSE for the state estimate, while the adaptive EnKF can track the changes in Q. We can

naturally compare our adaptive EnKF to an “oracle” EnKF which is given the exact value

of Q at each point in time; this is the best case scenario represented by the black curves in

Figure 5.3. Again we see that a small τ results in a smaller peak deviation from the oracle,

but the higher stationarity constant τ tracks the oracle better when the underlying Q is

not changing quickly. Thus the parameter τ trades adaptivity (lower τ) for accuracy in the

estimate (higher τ).

Example 5.4.3 (Sparse observation). In this example we examine the effect of a low-

dimensional observation on the adaptive EnKF. As explained in Section 5.3, Mehra uses
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the stationarity of the Kalman filter for linear problems to build a special adaptive filter

for problems with rank deficient observations. However, our current version of the adaptive

EnKF cannot find the full Q matrix when the observation has lower dimensionality than

the state vector (possible solutions to this open problem are considered in Section 5.5). In

Section 5.3 we presented a special algorithm that parameterized the Q matrix as a linear

combination of fixed matrices reducing the required dimension of the observation..

To demonstrate this form of the adaptive EnKF, we use a sparse observation. We first

observe 20 sites equally spaced among the 40 total sites (below we will consider observing

only 10 sites). In this example the observation yk is 20-dimensional while the state vector xk

is 40-dimensional, giving a rank-deficient observation. We note that because the observation

is sparse the linearization, H, of the observation will have rows which are all zeros. Solving

for Qek requires inverting H so we cannot use the diagonal parameterization of Qfilt
k , and

instead we use the block constant parameterization which allows the Qfilt
k values to be

interpolated from nearby sites. In order to check that the adaptive EnKF can still find the

correct covariance matrices we simulated 100000 steps of the discretized Lorenz96 system

observing only 20 evenly spaced sites. We take the true Q to have a block constant structure,

and we take the true R to be a randomly generated symmetric positive definite matrix as

shown in Figure 5.4. Since our algorithm will impose a block constant structure on Qfilt
k , we

chose a block constant matrix for Q so that we could confirm that the correct entry values

were recovered.

To test the block constant parameterization of the adaptive EnKF we chose initial

matrices Qfilt
k and Rfilt

k which were diagonal with entries 0.02 and 0.05 respectively. We used

a large stationarity of τ = 15000 which requires longer to converge but gives a better final

approximation of Q and R, this is why the Lorenz96 system was run for 100000 steps. Such

a large stationarity and long simulation was chosen to illustrate the long term behavior of

the adaptive EnKF. The estimates of Qfilt
k were parameterized with a 10×10 block constant

structure (b = 10 using the method of Section 5.3). In Figure 5.4 we compare the true Q
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Figure 5.4: We apply the adaptive EnKF with a sparse observation by only observing every other

site (20 total observed sites) of a Lorenz96 simulation with 100000 steps. The Qfilt
k matrix is assumed

to be constant on 4x4 sub-matrices and the true Q used in the simulation is given the same block
structure. (a) First row, left to right: true Q matrix used in the Lorenz96 simulation, the initial

guess for Qfilt
k provided to the adaptive filter, the final Qfilt

k estimated by the adaptive filter, and

the final matrix difference Q − Qfilt
k . The second row shows the corresponding matrices for R; (b)

RMSE of Q−Qfilt
k as Qfilt

k is estimated by the filter; (c) RMSE of R−Rfilt
k as Rfilt

k is estimated by

the filter; (d) comparison of windowed RMSE vs. number of filter steps for the conventional EnKF
run with the true Q and R (black, lower trace), and the conventional EnKF run with the initial
guess matrices (red, upper trace), and our adaptive EnKF initialized with the guess matrices (blue,
middle trace).

and R matrices to the initial guesses and the final estimates of our adaptive EnKF. This

example shows that, even in the case of a rank deficient observation, the adaptive EnKF

can recover an arbitrary observation noise covariance matrix and a parameterized system

noise covariance matrix.

Observations in real applications can be very sparse, so we now consider the case when

only 10 evenly spaced sites are observed. Such a low dimensional observation makes state

estimation very difficult as shown by the increased RMSE in Figure 5.5 compared to Figure

5.4. Even more interesting is that we now observe filter divergence, where the state estimate

trajectory completely loses track of the true trajectory. Intuitively this is much more likely

when fewer sites are observed, and the effect is shown in Figure 5.5(c) by sporadic periods
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of very high RMSE. Filter divergence occurs when the variance of Qfilt
k is small, implying

overconfidence in the state estimate and the resulting forecast. In Figure 5.5 this is clearly

shown since filter divergence occurs only when the true matrix Q is used in the filter,

whereas both the initial guess and the final estimate produced by the adaptive EnKF are

inflated. The fact that the filter diverges when provided with the true Q and R matrices

illustrates how this example pushes the boundaries of the EnKF. However, our adaptive

EnKF produces an inflated version of the true Q matrix as shown in Figure 5.5 which

not only avoids filter divergence, but also significantly reduces RMSE relative to the initial

diagonal guess matrices. This example illustrates that the breakdown of the assumptions of

the EnKF (local linearizations, Gaussian distributions) can lead to assimilation error even

when the nonlinear dynamics are known. In the presence of this error, our adaptive EnKF

must be interpreted as an inflation scheme and we judge it by its performance in terms of

RMSE rather than recovery of the underlying Q.

Example 5.4.4 (Compensating for model error). The goal of this example is to show that

the covariance of the system noise is a type of additive inflation and thus is a natural place

to compensate for model error. Intuitively, increasing Qfilt
k increases the gain, effectively

placing more confidence in the observation and less on our forecast estimate. Thus, when

we are less confident in our model, we would naturally want to increase Qfilt
k . Following this

line of thought, it seems natural that if Qfilt
k is sub-optimally small, the model errors would

manifest themselves in poor state estimates and hence large innovations. In this example,

the adaptive EnKF automatically inflates Qfilt
k based on the observed innovations, leading

to significantly improved filter performance.

To illustrate this effect, we fixed the model used by the adaptive EnKF to be the

Lorenz96 model from (5.6) with N = 40 and F = 8, and changed the system generating

the data. The sample trajectory of the Lorenz96 system was created with 20000 time steps.

For the first 10000 steps we set F = 8. We then chose N = 40 fixed random values of F i,

chosen from a distribution with mean 8 and standard deviation 4. These new values were
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Figure 5.5: We illustrate the effect of extremely sparse observations by only observing every forth

site (10 total observed sites) of the Lorenz96 simulation, the Qfilt
k matrix is assumed to be constant

on 4x4 sub-matrices and the true Q used in the simulation is given the same block structure. (a)

First row, left to right: true Q matrix used in the Lorenz96 simulation, the initial guess for Qfilt
k

provided to the adaptive filter, the final Qfilt
k estimated by the adaptive filter, and the final matrix

difference Q−Qfilt
k . The second row shows the corresponding matrices for R; (b) RMSE of Q−Qfilt

k

as the adaptive EnKF is run; (c) comparison of windowed RMSE vs. number of filter steps for the
conventional EnKF run with the true Q and R (black, lower trace), and the conventional EnKF run
with the initial guess matrices (red, upper trace), and our adaptive EnKF initialized with the guess
matrices (blue, middle trace); (d) Enlarged view showing filter divergence, taken from (c). Note
that the conventional EnKF occasionally diverges even when provided the true Q and R matrices.

The Qfilt
k found by the adaptive filter is automatically inflated relative to the true Q which improves

filter stability as shown in (c) and (d).

used for the last 10000 steps of the simulation. Thus, when running our filter we would

have the correct model for the first 10000 steps but a significantly incorrect model for the

last 10000 steps.

We first ran a conventional EnKF on this data and found that the RMSE for the last

10000 steps was approximately 180% greater than an oracle EnKF which was given the new

parameters F i. Next we ran our adaptive EnKF and found that it automatically increased

the variance of Qfilt
k in proportion to the amount of model error. In Figure 5.6 we show

how the variance of Qfilt
k was increased by the adaptive filter; note that the increase in
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Figure 5.6: For the first 10000 filter steps the model is correct and then the underlying parameters
are randomly perturbed at each site. The conventional EnKF is run with the initial true covariances

Qfilt
k = Q and Rfilt

k = R; the adaptive EnKF starts with the same values but it automatically

increases the system noise level (Qfilt
k ) to compensate for the model error resulting in improved

RMSE. (a) First row, left to right: true Q matrix used in the Lorenz96 simulation, the initial guess

for Qfilt
k provided to the adaptive filter, the final Qfilt

k estimated by the adaptive filter, and the final

matrix difference Q−Qfilt
k . The second row shows the corresponding matrices for R; (b) Model error

(black, dotted curve) measured as the percent change in the parameter F i at each site compared

to the relative change in the corresponding diagonal entries of Qfilt
k found with the adaptive EnKF

(blue, solid curve), diagonal (green, solid curve). (c) Results of the adaptive EnKF (blue) compared
to conventional EnKF (red) on a Lorenz96 data set in the presence of model error. The green curve

is an adaptive EnKF where Qfilt
k is forced to be diagonal and the black curve shows the RMSE of

an oracle EnKF which is provided with the true underlying parameters F i for both halves of the
simulation.

variance is highly correlated with the model error measured as the percentage change in the

parameter F i at the corresponding site. Intuitively, a larger error in the F i parameter would

lead to larger innovations thus inflating the corresponding variance in Qfilt
k . However, note

that when Qfilt
k was restricted to be diagonal the adaptive filter required greater increase

(shown in Figure 5.6(b)) and gave significantly worse state estimates (as shown in Figure

5.6(c)). Thus, when Qfilt
k was not restricted to be diagonal, the adaptive filter was able

to find complex new covariance structure introduced by the model error. This shows that

the adaptive filter is not simply turning up the noise arbitrarily but is precisely tuning the

covariance of the stochastic process to compensate for the model error. This automatic

tuning meant that the final RMSE of our adaptive filter increased less than 15% as a result
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of the model error.

Example 5.4.5 (Adaptive version of the LETKF). The goal of this example is to show that

our algorithm can naturally integrate into a localization scheme. The unscented version of

the EnKF used in the previous examples requires large ensemble sizes, which are impractical

for many applications. Localization is a general technique, implemented in various forms,

that assumes the state vector has a spatial structure, allowing the Kalman update to be

applied locally rather than globally. Some localization schemes have been shown to allow

reduced ensemble size.

The local ensemble transform Kalman filter (LETKF) of [79–81] is a localization tech-

nique that is particularly simple to describe. The local update avoids inverting large co-

variance matrices, and also implies that we only need enough ensemble members to track

the local dynamics for each local region. For simplicity we used the algorithm including the

ensemble transform given in equation 41 of [79]. We performed the local Kalman update

at each site using a local region with 11 sites (l=5) and we used a global ensemble with 22

members, compared to 80 ensemble members used in the unscented EnKF.

Building an adaptive version of the LETKF is fairly straightforward. A conventional

Kalman update is used to form the local analysis state and covariance estimates. We design

an adaptive LETKF by simply applying our iteration, given by equation (5.5), after the

local Kalman update performed in each local region. We will estimate 40 separate pairs

of 11 × 11 matrices Qi,filt
k and Ri,filt

k . This implies that some entries in the full Qfilt
k (those

far from the diagonal) have no representatives in these local Qi,filt
k . Moreover, the other

entries in the full Qfilt
k are represented by entries in several Qi,filt

k matrices. In Figure 5.7

we combine the final estimates of Qi,filt
k into a single 40 × 40 Qfilt

k matrix by averaging all

the representatives of each entry. It would also be possible to form this global Qfilt
k matrix

at each step, however, the LETKF often allows many choices for forming the global results

from the local, and our objective here is only to show that our adaptive iteration can be

integrated into a localized data assimilation method.
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Figure 5.7: We compare the conventional and adaptive LETKF on a simulation of 300000 steps
of Lorenz96 (a) First row, left to right: benchmark Q + .1I40 matrix where Q is was the matrix

used in the Lorenz96 simulation, the initial guess for Qfilt
k provided to the adaptive filter, the final

Qfilt
k estimated by the adaptive filter, and the final matrix difference Q − Qfilt

k . The second row

shows the corresponding matrices for R (leftmost is the true R); (b) the variances from the diagonal
entries of the true Q matrix (black, rescaled to range from zero to one) and the those from the

final global estimate Qfilt
k produced by the adaptive LETKF (blue, rescaled to range from zero

to one) (c) Results of the adaptive LETKF (blue) compared to conventional LETKF with the
diagonal covariance matrices (red) and the conventional LETKF with the benchmark covariances

Qfilt
k = Q+ .1I40 and Rfilt

k = R (black).

Interestingly, the conventional LETKF requires significant inflation to prevent filter

divergence. For example, the noise variances in Figure 5.7 are comparable to Example

5.4.1, however the LETKF often diverges when the diagonal entries of Qfilt
k are less than

0.05. So for this example we use Qfilt
k = Q + (0.1)I40 and Rfilt

k = R as the benchmark

for all comparisons, since this represents a filter which was reasonably well-tuned when

the true Q and R were both known. To represent that case when the true Q and R are

unknown we choose diagonal matrices with the same average covariance as Q+(0.1)I40 and

R respectively. For the conventional LETKF, we form the local Qi,filt
k and Ri,filt

k by simply

taking the 11 × 11 sub-matrices of Qfilt
k and Rfilt

k which are given by the local indices. In

Figure 5.7 we show that the adaptive LETKF significantly inflates both Qfilt
k and Rfilt

k , and

it recovers much of the structure of both Q and R, and improves the RMSE, compared to

the conventional LETKF using the diagonal Qfilt
k and Rfilt

k .
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While this example shows that our iteration can be used to make an adaptive LETKF,

we found that the adaptive version required a much higher stationarity (τ = 50000 in

Figure 5.7). We speculate that this is because local regions can experience specific types of

dynamics for extended periods which bias the short term estimates and by setting a large

stationarity we remove these biases by averaging over a larger portion of state space. We

also found that the LETKF could have large deviations from the true state estimate similar

to filter divergence but on shorter time scales. These deviations would cause large changes

in the local estimates Qi,filt
k which required us to impose a limit of on the amount an entry

of Qi,filt
k could change in a single time step of 0.05. It is possible that a better tuned LETKF

or an example with lower noise covariances would not require these ad hoc adjustments.

Since large inflations are necessary simply to prevent divergence, this adaptive version is a

first step towards the important goal of optimizing the inflation.

5.5 Discussion and outlook

A central feature of the Kalman filter is that the innovations derived from observations

are only used to update the mean state estimate, and the covariance update does not

incorporate the innovation. This is a remnant of the Kalman filter’s linear heritage, in

which observation, forecast and analysis are all assumed Gaussian. In any such scenario,

when a Gaussian observation is assimilated into a Gaussian prior, the posterior is Gaussian

and independent of observation. Equation (5.2) explicitly shows that the Kalman update

of the covariance matrix is independent of the innovation.

Any scheme for adapting the Kalman filter to nonlinear dynamics must consider the

possibility of non-Gaussian estimates, which in turn demands a reexamination of this in-

dependence. But the stochastic nature of the innovation implies that any attempt to use

this information directly will be extremely sensitive to particular noise realizations. In

this chapter, we have introduced an augmented Kalman update in which the innovation

is allowed to affect the covariance estimate indirectly, through the filter’s estimate Qfilt of
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the system noise. We envision this augmented version to be applicable to any nonlinear

generalization of the Kalman filter, such as the EKF and EnKF. Application to the EKF

is straightforward, and we have shown in equation (5.7) how to implement the augmented

equations into an ensemble Kalman update.

The resulting adaptive EnKF is an augmentation of the conventional EnKF, to allow

the system and observation noise covariance matrices to be automatically estimated. This

removes an important practical constraint on filtering for nonlinear problems, since often the

true noise covariance matrices are not known a priori. Using incorrect covariance matrices

will lead to sub-optimal filter performance, as shown in Section 5.2, and in extreme cases can

even lead to filter divergence. The adaptive EnKF uses the innovation sequence produced

by the conventional equations, augmented by our additional equations developed in Section

5.3, to estimate the noise covariances sequentially. Thus, it is easy to adopt for existing

implementations, and as shown in Section 5.4 it has a significant performance advantage

over the conventional version. Moreover, we have shown in Section 5.4 that the adaptive

EnKF can adjust to non-stationary noise covariances and even compensate for significant

modeling errors.

The adaptive EnKF introduced here raises several practical and theoretical questions.

A practical limitation of our current implementation is the requirement that the rank of

the linearized observation Hk is at least the dimension of the state vector xk. In Section

5.3 we provide a partial solution which constrains the Q estimation to have a reduced form

which must be specified in advance. However, in the context of the theory of embedology,

developed in [32], it may be possible to modify our algorithm to recover the full Q matrix

from a low-rank observation. Embedology shows that for a generic observation, it is possible

to reconstruct the state space using a time-delay embedding. Motivated by this theoretical

result, we propose a way to integrate a time-delay reconstruction into the context of a

Kalman filter and discuss the remaining challenges of such an approach.

In order to recover the full system noise covariance matrix in the case of rank defi-

cient observation we propose an augmented observation formed by concatenating several
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iterations of the dynamics,

ŷfk = ĥ(xfk) = (h(xfk), h ◦ f(xfk), ..., h ◦ fM (xfk))

which will be compared to time-delayed observation vector ŷk = (yk, yk+1, ..., yk+M ). For a

generic observation h, when the system is near an attractor of box counting dimension N ,

our augmented observation h̃ is generically invertible for M > 2N [32]. We believe that

this augmented observation will not only solve the rank deficient observation problem, but

may also improve the stability of the Kalman filter by including more observed information

in each Kalman update. However, a challenging consequence of this technique is that the

augmented observation is influenced by both the dynamical noise and the observation noise

realizations. Thus extracting the noise covariances from the resulting innovations may be

non-trivial.

An important remaining theoretical question is to develop proofs that our estimated Q

and R converge to the correct values. For R this is a straightforward claim, however the

interpretation of Q for nonlinear dynamics is more complex. This is because the Kalman

update equations assume that at each step the forecast error distribution is Gaussian. Even

if the initial prior is assumed to be Gaussian, the nonlinear dynamics will generally change

the distribution, making this assumption false. Until recently it was not even proved that

the EnKF tracked the true trajectory of the system. It is likely that the choice of Qfilt
k for

an EnKF will need to account for both the true system noise Q as well as the discrepancy

between the true distribution and the Gaussian assumption. This will most likely require

an additional increase in Qfilt
k above the system noise covariance Q.

We believe that the eventual solution of this difficult problem will involve computa-

tional approximation of the Lyapunov exponents of the model as the filter proceeds. Such

techniques may require Qfilt
k to enter non-additively or even to vary over the state space.

Improving filter performance for nonlinear problems may require reinterpretation of the

classical meanings of Q and R in order to find the choice that leads to the most efficient
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shadowing. In combination with the results of [73], this would realize the long-sought

nonlinear analogue of the optimal Kalman filter.
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Appendix A: The DMDC algorithm

When the spatial extent of the dynamics is restricted, the intrinsic dimensionality will

be small and thus a diffusion map may be applied directly to the full images simply by

taking the L2 distance between delay embedded images in Rr(s+1) constructed in section

3.5. However, there are several computational considerations that can dramatically effect

this analysis. By careful application of sparse data structures and extensive parallelization

of the algorithm we have found that the diffusion map can be effectively applied to video

data using consumer grade hardware.

As in section 3.5, for each image we form a high-dimensional state vector by concate-

nating as many of the previous images as possible in analogy to the classical time-delay

embedding. Since this creates an extremely high dimensional vector, we need a preliminary

reduction of the dimension to make the k-nearest neighbor algorithm feasible. However,

we need to preserve the geometry of the embedding, so the initial reduction will be to an

intermediate dimension on the order of 103, much larger than the latent dimension (order

of 10) but much smaller than the delay embedding dimension (order of 106). The prelimi-

nary dimensionality reduction is simply a linear projection from the delay embedding space

to the intermediate space. This projection is chosen by generating a matrix of Gaussian

random entries which is then made orthonormal using a QR-decomposition (the R matrix

is discarded). At this point we are ready to apply the diffusion map to the data represented

in the intermediate space.

The full diffusion map algorithm is impractical because it requires the full matrix of

Euclidean distances between all pairs of state vectors and this requires too much memory.

However, in [5] it was shown that for sufficiently high k, the sparse matrix containing the

k-nearest neighbors of each state vector is sufficient. This is still a computationally intensive

algorithm since the state vectors are too high-dimensional to apply kd-tree or ball-tree data

structures. However, the k-nearest neighbors algorithm is highly parallelizable, and it was

recently shown in [82] that inexpensive Graphics Processing Units (GPUs) could achieve
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a significant acceleration of the k-nearest neighbor algorithm. In our test we saw up to

200-times speedup using the GPU over single processor CPU applications. The remainder

of the diffusion map algorithm is straightforward and is detailed in the DMDC algorithm

summary below.

The parameter ε is the diameter of the neighborhood that is used to approximate the

tangent plane to the manifold. The results of Section 3.3 involve the limit as ε→ 0, however

for the discrete approximations to converge we require the amount of data to go to infinity.

In [2], the number of sample points is required to grow faster than εn/4−1/2, where n is the

dimension of the underlying manifold. However, in most cases we have a fixed data set that

we wish to analyze, so a limiting requirement on ε is not very useful.

There are many practical ways of choosing ε. The theoretical approach in [15] may

become useful if this algorithm can be adapted into an iterative form which continually

updates as new data becomes available. Currently we assume that the data set is fixed and

therefore we take a pragmatic approach to choosing ε. Since we are assuming that the local

structure can be well represented by the k-nearest neighbors, this implies that a transition

probability to any state beyond the k-nearest neighbors should be near zero. On the other

hand, if the transition probabilities decay too quickly the states will quickly become isolated

and the matrix will not have numerically stable eigenvalues. To balance these effects we

have had very good results with ε = meani{d(i, I(i, kmin))} where I(i, kmin) is the index

of the kmin-th nearest neighbor to the i-th vector and d(·, ·) is the distance between the

referenced data points. In general kmin will be small, and we took kmin = 6 in this paper.

The choice of kmin too small will lead to ε being too small and the eigenvector problem will

be ill posed. Choosing kmin too large leads to ε being too large and the approximation of

the heat kernel will be poor.

As described in section 3.3, the parameter α chooses the influence of the sampling density

on the heat kernel constructed by diffusion maps. Intuitively α is a bias parameter, and

for α = 1 the heat kernel is unbiased by the sampling density. If the video represents a

dynamical system that has an invariant measure, and if the sampling density can be assumed
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to be the same as the invariant measure, then setting α = 1/2 will adapt the analysis to the

invariant measure. In this case, the first DMDC mode, with eigenvalue λ0 = 1 (and hence

time scale ∞), will be an approximation of the invariant measure. In this paper we used

α = 1/2 for all the examples.

We now summarize all the steps of DMDC. Note that the algorithm works unchanged

when xi ∈ Rr is a time series in any data format where the index i represents time. In

this summary we assume that the xi are images in a video because many elements of

DMDC have a natural interpretation in this case. Steps 1-3 build the weighted delay

embedding explored in section 3.2. Steps 4-6 are an optional precompression for extremely

high dimensional data (such as videos), without the precompression the k-nearest neighbor

algorithm may be infeasible depending on the embedding dimension r(s+1). Steps 7-19 are

a computationally efficient version of the diffusion maps algorithm which was introduced

in [2]. Finally, in steps 20-24 we use the Diffusion Mapped Delay Coordinates to separate

time scales in the time series.
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Diffusion Mapped Delay Coordinates (DMDC) Algorithm

1. Let xi ∈ Rr be the i-th frame of a video with N frames of r pixels each.

2. Choose bias parameter α ∈ {1/2, 1}, weight κ > 0 and number of delays s.

3. For i = s+ 1, ..., N form the state vector,

yi = [xi, e
−κxi−1, ..., e

−sκxi−s]
T ∈ Rr(s+1).

4. Generate an m×r(s+1) dimensional matrix π of Gaussian random numbers.

5. Use a QR-decomposition to orthonormalize the rows of π to form π̂.
6. Form the compressed states ŷi = π̂yi.
7. For each i find the k-nearest neighbors of ŷi in Rm, let their indices be

I(i, j) for j = 1, ..., k ordered by increasing distance.

8. Form a sparse (N −s)× (N −s) matrix with (N −s)k nonzero entries given
by

d(i, I(i, j)) = ||ŷi − ŷI(i,j)||

9. Pick kmin as described above and set ε = meani{d(i, I(i, kmin))2}.
10. Form the sparse matrix d̂(i, I(i, j)) = exp{−d(i, I(i, j))2/ε}.
11. Form the symmetric matrix J = (d̂+ d̂T )/2.

12. Form the diagonal normalization matrix Pii =
∑
j Jij .

13. Normalize to form Kernel matrix K = P−αJP−α.
14. Form the diagonal normalization matrix Qii =

∑
j Kij .

15. Form the symmetric matrix T̂ = Q−1/2KQ−1/2.

16. Find the L+ 1 largest eigenvalues al and associated eigenvectors ξl of T̂ .

17. Compute the eigenvalues of T̂ 1/ε by λ2
l = a

1/ε
l .

18. Compute the eigenvectors of the matrix T = Q−1K by ψl = Q−1/2ξl.
19. Compute the diffusion map variables at time scale t by

Ψα,t(xi) = [λt1ψ1(xi), ..., λ
t
LψL(xi)]

T

20. The l-th DMDC mode (ψl)i = ψl(xi+s) is a time series at time scale −1
log(λl)

.

21. Form the l-th DMDC projection by ql = Qψl.

22. Form the l-th DMDC component by Xl =
∑N
i=s+1 xi(ql)i−s, this is an image

which shows which parts of the video are relevant to the l-th DMDC mode.
23. Choose any collection L0 of indices of interesting DMDC components.

24. Construct a video by taking the i-th frame to be x̂i =
∑
l∈L0

λl(ψl)i−sXl

for i = s+ 1, ..., N . This projects the original video onto the modes of L0.
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