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Motivating Example: High Dimensional Dynamics

Spatiotemporal dynamics of
liquid crystals:

I Each image ≈ 1, 000, 000
dimensional

I Order of ≈ 100, 000
images

I Latent dimension between
10 and 100

I Find latent variables

I Find slow variables

(Loading Video...)
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Video provided by Rob Cressman and Zrinka Gregurić Ferenček, Physics Dept., GMU
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Low Dimensional Dynamics
High Dimensional Observations

Starting point:

I Each image ≈ 10, 000
dimensional

I Order of ≈ 10, 000 images

I Latent dimension between
1 and 10

I Find latent variables

I Find slow variables

(Loading Video...)
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Video provided by Rob Cressman and Zrinka Gregurić Ferenček, Physics Dept., GMU
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Model Free Techniques

I Use nothing but these video data sets; ultimate goal:

I Identify a ‘small’ set of state variables

I Sort state variables by importance

I Represent the vector field describing the dynamics

I Decompose, predict, and control the dynamics

I Assume that parametric modeling has been exhausted

I Use nonparametric modeling

I Notion of importance is fundamental
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Example of Time Scale Separation with DMDC

(Loading Video...)
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Experiment by Rob Cressman and Zrinka Gregurić Ferenček, Physics Dept., GMU.


fig14vid.mov
Media File (video/quicktime)



Motivating Example: Liquid Crystal Dynamics
The Intrinsic Geometry of Dynamical Systems

Time-Scale Separation
The Geometry of Data

Diffusion Mapped Delay Coordinates (DMDC)

Embedology: A Topological Nonparametric Model

I Implicit model: There exists a smooth dynamical system
x ′(t) = f (x(t)) evolving on an m-dimensional manifold M

I Data: A time series of generic observations yi = h(x(ti ))

I Reconstruction (Takens): For M sufficiently large,
H(yi ) = (yi , yi−1, ..., yi−M) is an embedding of M→ RM+1

I Reduction: Standard approach is to use linear projections, for
example Broomhead/King suggest principal components
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Diffusion Mapped Delay Coordinates (DMDC)

I DMDC is the geometric extension of Embedology

I Improves on Embedology by preserving geometry instead of
chasing variance

I Identifies variables important to the evolution

I Reconstruction (Berry/Sauer): Build an embedding of the
data which respects the intrinsic geometry of the dynamics

I Reduction (Coifman/Lafon): Find a low-dimensional set of
variables which preserves the reconstructed geometry
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See also: Giannakis, D. and Majda, A. J. Nonlinear Laplacian spectral analysis for time series with intermittency

and low-frequency variability. PNAS vol. 109 num. 7 (2012) pp. 2222-2227.
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DMDC: Example of Time Scale Separation

(Loading Video...)

(Loading Video...)

Variance Slow Mode
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Diffusion Mapped Delay Coordinates (DMDC)

DMDC: Reconstruction

I For time series {yi = h(xti )} define the κ-weighted delay
coordinates

Yi = Hκ(yi ) = [yi , e
−κyi−1, e

−2κyi−2, . . . , e
−sκyi−s ]T

I For 0 < κ < −σ1, the embedding Hκ projects onto the most
stable Lyapunov component of the dynamics

I For a special choice of κ, the embedding approximates the
Lyapunov metric on the most stable component

I The Lyapunov metric represents the natural geometry for a
dynamical system
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The Biased Geometry of Delays

The point of this weighting is to kill off all but the most stable
Lyapunov components:

Yi = Hκ(yi ) = [yi , e
−κyi−1, e

−2κyi−2, . . . , e
−sκyi−s ]T

Theorem: Let M be a compact manifold, u, v ∈ TxM and let
û = DH(u) and v̂ = DH(v) be the images under the time-delay
embedding H given above. Let ui = πi (u) be the projection onto
the ith Oseledets space, and assume u1 and v1 are nonzero. Let
0 < κ < −σ1. Then for a prevalent choice of h and for all i 6= 1,

lim
s→∞

〈ûi , v̂i 〉
||û|| ||v̂ ||

= 0 and lim
s→∞

〈û, v̂〉 − 〈û1, v̂1〉
||û|| ||v̂ ||

= 0.
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DMDC: Embedding Geometry of the Cat Map

I Visualize the geometry
via eigenfunction of
Laplacian on the state
space of the Cat Map

I As κ decreases below
−σ1 ≈ .962, geometry
becomes localized on
stable manifold

(Loading Video...)
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DMDC: Reduction

I Reconstruction requires embedding into a high dimensional
ambient space

I Reduction is needed to achieve a manageable embedding

I The reduction must map to a low dimensional Euclidean
space while preserving the reconstructed geometry

I A diffusion map is a nonlinear reduction that:

I preserves the induced geometry
I can match the invariant measure
I minimizes the distortion of the geometry
I has a natural time-series interpretation
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DMDC: Application to Meandering Spiral Waves

I Barkley’s model
generates meandering
spiral waves

I DMDC captures the
slow precession of the
meandering spiral

(Loading Video...)

SVD:

DMDC:
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DMDC: Application to Liquid Crystals

(Loading Video...)
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Time Scale Separation on the Stable Component

We assume the evolution on the stable component is a small
perturbation of L so that

∂ϕ

∂t
= −L(ϕ) + F(x , t)

The l-th diffusion map eigenfunction satisfies

ψ̂l (t) = ae−γl t + b

∫ t

0
e−γl (t−s)F̂(s)ds

The eigenvalue γl determines the amount of history of F̂
integrated into the mode ψ̂l For F̂ sufficiently regular the time
scale of ψ̂l will be determined by γl
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Example of Time Scale Separation

I Spiral (blue) is an attractor, noise is perturbation along the
unstable manifold

I Projection onto stable manifold removes noise

I Diffusion Maps finds the correct geometry

I Coarse geometry gives projection onto slow manifold (green)
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How does DMDC separate time-scales?

I Time-delay embeddings bias the geometry; weights can
influence this bias

I Bias can be leveraged to project onto stable dynamics

I Evolution on stable component more likely to allow time-scale
separation

I Current approach requires evolution to be small perturbation
of heat equation
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The Big Picture: The Geometry of Data

I Nonparametric analysis of smoothly varying data is sensitive
to geometry

I It is important to find the intrinsic geometry specific to your
goals, meaning one which is invariant to unwanted or
incidental features of the data

I We can now give two examples of the intrinsic/extrinsic
dichotomy
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The Intrinsic Geometry for Generic Data (Diffusion Maps)

I Generic data has no a priori structure except the geometric
prior

I The embedding geometry is a desired feature of data
(intrinsic)

I The sampling density is an unwanted influence (extrinsic)

I The key feature of diffusion maps is ability to control the
sampling bias from the geometry
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The Intrinsic Geometry for Dynamical Systems

I Observation may arbitrarily distort the state space geometry

I Dynamically equivalent (diffeomorphic) copies of an attractor
can have different geometries

I The observation geometry and Takens’ embedding geometry
are both entirely extrinsic

I Lyapunov geometry is intrinsic since it

I is independent of observation (generically)
I makes the Oseledets spaces orthogonal
I gives uniform bounds on expansion/contraction rates
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Program for the Future

I Identify the intrinsic geometry for common data types
I spatiotemporal
I networks
I multiscale
I hybrid systems

I Develop methods to extract the intrinsic geometry

I Can every geometry be represented with a kernel?

I How do we extract information from the geometry that is
relevant to the data?

I cohomology classes
I differential forms
I curvature
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