4.3. Differentiation of Logarithmic and Exponential Functions

Derivative of ln x

$$\frac{d}{dx}(\ln x) = \frac{1}{x} \quad \text{for} \quad x > 0$$

Example

Differentiate the function $f(x) = x \ln \sqrt{x}$.

Differentiation of Logarithmic Functions

The Chain Rule for Logarithmic Functions If u(x) is a differentiable function of x, then

$$\frac{d}{dx}[\ln u(x)] = \frac{u'(x)}{u(x)}$$

Example

Differentiate the function $f(x) = \ln(x^2 + 1)$.

Differentiation of Logarithmic Functions

Example Differentiate the function $f(x) = \ln(x^3 - 5x + 4)$.

Differentiation of Logarithmic Functions

Example

Find an equation for the tangent line to $y = x + \ln x$ at the point where x = e.

Differentiation of Exponential Functions

The Derivative of the Exponential Function

$$\frac{d}{dx}(e^x) = e^x$$
 for every real number x

Example

Differentiate the function $f(x) = \frac{e^x}{x}$.

Differentiation of Exponential Functions

The Chain Rule for Exponential Functions If u(x) is a differentiable function of x, then

$$\frac{d}{dx}e^{u(x)}=e^{u(x)}u'(x)$$

Example

Differentiate the function $f(x) = xe^{2x}$.

Differentiation of Exponential Functions

Example

Find the largest and smallest values of the function $F(x) = e^{x^2 - 2x}$ over the closed interval $0 \le x \le 2$.

Logarithmic Differentiation

Differentiating a function that involves products, quotients, or powers can often be simplified by first taking the logarithm of the function.

- Step 1. Take logarithms of both sides of the expression for f(x) and simplify the resulting equation.
- Step 2. Use the chain rule to differentiate both sides.
- Step 3. Multiply both sides with f(x) to get f'(x).

Logarithmic Differentiation

Example

Use logarithmic differentiation to find the derivative of

$$f(x)=\sqrt[4]{\frac{2x+1}{1-3x}}.$$

Logarithmic Differentiation

Example

Use logarithmic differentiation to find the derivative of $f(x) = \frac{e^{3x}(x^2 + 5)}{(1 - x)^5}.$