4.2. Logarithmic Functions

If x is a positive number, then the logarithm of x to the base $b(b > 0, b \ne 1)$, denoted $\log_b x$, is the number y such that $b^y = x$; that is,

$$y = \log_b x$$
 if and only if $b^y = x$ for $x > 0$

Example Evaluate $log_{10} 1,000$.

Example

Solve the equation $\log_4 x = \frac{1}{2}$.

Properties of Logarithms

Let $b(b > 0, b \neq 1)$ be any logarithmic base. Then,

$$\log_b 1 = 0$$
 and $\log_b b = 1$

and if *u* and *v* are any positive numbers, then

- ► The equality rule: $\log_b u = \log_b v$ if and only if u = v
- ► The product rule: $\log_b(uv) = \log_b u + \log_b v$
- ► The power rule: $\log_b u^r = r \log_b u$ for any real number r
- ► The quotient rule: $\log_b \left(\frac{u}{v}\right) = \log_b u \log_b v$
- ► The inversion rule: $\log_b b^u = u$

Properties of Logarithms

Example

Use logarithm rules to rewrite each of the following expressions in terms of $log_3 2$ and $log_3 5$.

a. log₃ 270

b.
$$\log_3\left(\frac{64}{125}\right)$$

Properties of Logarithms

Example

Use logarithm rules to simplify each of the following expression.

a.
$$\log_3(x^3y^{-4})$$

b.
$$\log_7(x^3\sqrt{1-y^2})$$

The Natural Logarithm

The logarithm $\log_e x$ is called the natural logarithm of x and is denoted by $\ln x$; that is,

$$y = \ln x$$
 if and only if $e^y = x$

Properties of the Natural Logarithm

For positive numbers u and v,

- ▶ The equality rule: $\ln u = \ln v$ if and only if u = v
- ► The product rule: ln(uv) = ln u + ln v
- ► The power rule: $\ln u^r = r \ln u$ for any real number r
- ► The quotient rule: $\ln\left(\frac{u}{v}\right) = \ln u \ln v$
- Special values: In 1 = 0 and In e = 1

The Natural Logarithm

The Inverse Relationship between e^x and $\ln x$ $e^{\ln x} = x$ for x > 0 and $\ln e^x = x$ for all x

Example

Solve the following equations.

a.
$$-2 \ln x = 3$$

b.
$$\ln x = 2(\ln 3 - \ln 5)$$

c.
$$\frac{5}{1+2e^{-x}}=3$$

Conversion Formula for Logarithms

If a and b are positive numbers with $b \neq 1$, then

$$\log_b a = \frac{\ln a}{\ln b}$$

Example Find log₅ 3.