Definition of b^n for rational values of n (and b > 0)

► Integer Powers: If n is a positive integer,

$$b^n = \underbrace{b \cdot b \cdots b}_{n \text{ factors}}$$

Fractional Powers: If n and m are positive integers,

$$b^{n/m} = (\sqrt[m]{b})^n = \sqrt[m]{b^n}$$

- ► Negative Powers: $b^{-n} = \frac{1}{b^n}$
- ► Zero Power: b⁰ = 1

Definition

If b is a positive number other than 1 ($b > 0, b \ne 1$), there is a unique function called the exponential function with base b that is defined by

$$f(x) = b^x$$
 for all real number x

Example

Sketch the graphs of
$$y = 2^x$$
 and $y = \left(\frac{1}{2}\right)^x$.

Basic Properties of Exponential Functions

For bases a, b and any real numbers x, y, we have

- ► The equality rule: $b^x = b^y$ if and only if x = y
- ▶ The product rule: $b^x b^y = b^{x+y}$
- ► The quotient rule: $\frac{b^x}{b^y} = b^{x-y}$
- ▶ The power rule: $(b^x)^y = b^{xy}$
- ▶ The multiplication rule: $(ab)^x = a^x b^x$
- ► The division rule: $\left(\frac{a}{b}\right)^x = \frac{a^x}{b^x}$

Example

Evaluate the given expression.

a. $8^{2/3}$

b.
$$(4^{2/3})(2^{2/3})$$

c.
$$\frac{(3^{1.3})(3^{2.5})}{3^{3.2}}$$

d.
$$(x^{3/2})^{-4/3}$$

Example

Find all real numbers *x* that satisfy the given equation.

a.
$$3^{x}2^{2x} = 144$$

b.
$$2^{3-x} = 4^x$$

The natural exponential base

The natural exponential base is the number e defined by

$$e = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n$$
$$\approx 2.71828...$$