3.2. Concavity and Points of Inflection

Definition
If $f(x)$ is differentiable on the interval $a<x<b$, then the graph of f is

- concave upward on $a<x<b$ if f^{\prime} is increasing on the interval
- concave downward on $a<x<b$ if f^{\prime} is decreasing on the interval

Concavity

Second Derivative Procedure for Determining Intervals of Concavity
Step 1. Find all values of x for which $f^{\prime \prime}(x)=0$ or $f^{\prime \prime}(x)$ does not exist, and mark these numbers on a number line. This divides the line into a number of open intervals.
Step 2. Choose a test number c from each interval determined in step 1 and evaluate $f^{\prime \prime}$. Then

- If $f^{\prime \prime}(c)>0$, the graph of $f(x)$ is concave upward on $a<x<b$.
- If $f^{\prime \prime}(c)<0$, the graph of $f(x)$ is concave downward on $a<x<b$.

Concavity

Example

Determine intervals of concavity for the function

$$
f(x)=3 x^{5}-10 x^{4}+11 x-17
$$

Inflection Points

Definition
An inflection point is a point ($c, f(c)$) on the graph of f where the concavity changes.
At such a point, either $f^{\prime \prime}(c)=0$ or $f^{\prime \prime}(c)$ does not exist.
Procedure for finding the Inflection Points
Step 1. Compute $f^{\prime \prime}(x)$ and determine all points in the domain of f where either $f^{\prime \prime}(c)=0$ or $f^{\prime \prime}(c)$ does not exist.
Step 2. For each number c found in step 1, determine the sign of $f^{\prime \prime}$ to the left of $x=c$ and to the right of $x=c$. If $f^{\prime \prime}(x)>0$ on one side and $f^{\prime \prime}(x)<0$ on the other side, then ($c, f(c)$) is an inflection point for f.

Inflection Points

Example

Find all inflection point of the function

$$
f(x)=3 x^{5}-10 x^{4}+11 x-17
$$

Curve Sketching with the Second Derivative

Example

Determine where the function

$$
f(x)=x^{3}+3 x^{2}+1
$$

is increasing and decreasing, and where its graph is concave up and concave down. Find all relative extrema and points of inflection, and sketch the graph.

Curve Sketching with the Second Derivative

Example

Determine where the function

$$
f(x)=\frac{x^{2}}{x^{2}+3}
$$

is increasing and decreasing, and where its graph is concave up and concave down. Find all relative extrema and points of inflection, and sketch the graph.

Concavity and Inflection Points

Example

The first derivative of a certain function $f(x)$ is

$$
f^{\prime}(x)=x^{2}-2 x-8
$$

(a) Find intervals on which f is increasing and decreasing.
(b) Find intervals on which the graph of f is concave up and concave down.
(c) Find the x coordinate of the relative extrema and inflection points of f.

The Second Derivative Test

Suppose $f^{\prime \prime}(x)$ exists on an open interval containing $x=c$ and that $f^{\prime}(c)=0$.

- If $f^{\prime \prime}(c)>0$, then f has a relative minimum at $x=c$.
- If $f^{\prime \prime}(c)<0$, then f has a relative maximum at $x=c$. However, if $f^{\prime \prime}(c)=0$ or if $f^{\prime \prime}(c)$ does not exist, the test is inconclusive and f may have a relative maximum, a relative minimum, or no relative extremum at all at $x=c$.

The Second Derivative Test

Example

Find the critical points of

$$
f(x)=x^{3}+3 x^{2}+1
$$

and use the second derivative test to classify each critical point as a relative maximum or minimum.

