1.2. The Graph of a Function

Definition

The graph of a function *f* consists of all points (x, y) where *x* is in the domain of *f* and y = f(x); that is, all points of the form (x, f(x)).

Example

Graph the function $f(x) = x^2$.

x and y intercepts

Definition

The points (if any) where a graph crosses the x axis are called x intercepts, and a y intercept is a point where the graph crosses the y axis.

Example

Graph the function $f(x) = x^2 - 2x - 8$. Include all x and y intercept.

x and y intercepts

Example Graph the function

$$f(x) = \begin{cases} 2x - 1 & \text{if } x < 2\\ x + 1 & \text{if } x \ge 2 \end{cases}$$

Include all x and y intercept.

Graphing parabolas

The graph of $y = Ax^2 + Bx + C$ is a parabola if $A \neq 0$.

- All parabolas have a U shape.
- The parabola y = Ax² + Bx + C opens up if A > 0 and down if A < 0.</p>
- ► The "peak" or "valley" of the parabola is called its vertex, and it occurs where $x = \frac{-B}{2A}$.

To get a reasonable sketch of the parabola, you need to determine

- The location of the vertex
- Whether the parabola opens up or down
- Any intercepts

Graphing parabolas

Example Graph the function $f(x) = x^2 - 2x - 8$.

Manufacturing cost

Example

A bookstore can obtain an atlas from the publisher at a cost of 10 per copy and estimates that if it sells the atlas for *x* dollars per copy, approximately 20(22-x) copies will be sold each month. Express the bookstore's monthly profit from the sale of the atlas as a function of price, graph this function, and use the graph to estimate the optimal selling price.

Intersection of Graphs

Example

Find the points of intersection of the graphs of $y = x^2 - 1$ and y = 3x + 3.

Types of functions

Definition A power function is a function of the form $f(x) = x^n$.

Example $x^2, x^{-3}, x^{1/2}, \frac{1}{x^2}, \sqrt[3]{x}$

Definition A polynomial is a function of the form $p(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0.$

Example $p(x) = 3x^2 + 4x + 2, q(x) = x^5 + 2$

Definition

A quotient $\frac{p(x)}{q(x)}$ of two polynomials p(x) and q(x) is called a rational function.

Types of functions

Example

Classify the following functions.

a.
$$f(x) = -2 + 4x^2 + 3x^4$$

b.
$$f(x) = \sqrt{x} + 5x$$

c.
$$f(x) = \frac{(x-3)(x+7)}{-x^3 - 2x^2 + 3}$$

d.
$$f(x) = \left(\frac{2x+7}{x^3-3}\right)^3$$