1.1. Functions

Loosely speaking, a function consists of two sets and a rule that associates elements in one set with elements in the other.

Definition

- A function is a rule that assigns to each objects in a set A exactly one object in a set B.
- The set *A* is called the domain of the function.
- The set of assigned abjects in *B* is called the range.
- ► The value that the function *f* assigns to the number *x* in the domain is denoted by *f*(*x*), which is often given by a formula, such as *f*(*x*) = *x*² + 3.
- If a function is given by an equation y = f(x), then x is the independent variable and y is the dependent variable.

Example Find f(2) if $f(x) = x^2 + 3$.

Example If $g(u) = (u + 1)^{3/2}$, find g(0), g(-1), and g(8).

Piecewise-defined function

Example Find h(2), h(1), h(-2) if

$$h(x) = \begin{cases} -2x+4 & \text{if } x \le 1\\ x^2+1 & \text{if } x > 1 \end{cases}$$

Domain Convention

If a formula (or several formulas) is used to define a function f, then we assume that the domain of f to be the set of all numbers for which f(x) is defined.

Example

Find the domain of the given functions.

a.
$$f(t) = \frac{t+3}{t^2-t-2}$$

b.
$$h(x) = \sqrt{x^2 - 4}$$

Functions used in Economics

- A demand function p = D(x) is a function that relates the unit price p for a particular commodity to the number of units x demanded by consumers at that price.
- The total revenue is

R(x) =(number of items sold)(price per item) = xp = xD(x)

If C(x) is the total cost of producing the x units, then the profit derived from their sale is

$$P(x) = R(x) - C(x) = xD(x) - C(x).$$

Functions used in Economics

Example

Consumers will buy *x* thousand units of a particular kind of coffee maker when the unit price is

$$p = -0.27x + 51$$

dollars. The cost of producing the x thousand units is

$$C(x) = 2.23x^2 + 3.5x + 85$$

thousand dollars.

a. What are D(x), R(x), and P(x)?

b. For what values of *x* is the production of the coffee maker profitable?

Functions used in Economics

Example

Suppose the total cost in dollars of manufacturing q units of a certain commodity is

$$C(q) = q^2 + 40q + 500.$$

a. Compute the cost of manufacturing 10 units.

b. Compute the cost of manufacturing the 10th unit.

Composition of functions

Definition

Given functions f(u) and g(x), the composition f(g(x)) is the function of x formed by substituting u = g(x) for u in the formula for f(u).

Example

Find the composite function f(g(x)), where $f(u) = u^2 + 3$ and g(x) = x - 1.

Composition of functions

Example

Find the composite functions f(g(x)) and g(f(x)), where $f(x) = x^2 + 3x + 1$ and g(x) = 1 + x, and find all (if any) values of x such that f(g(x)) = g(f(x)).

Composition of functions

Example

At a certain factory, the total cost of manufacturing q units during the daily production run is $C(q) = q^2 + q + 900$ dollars. On a typical workday, q(t) = 25t units are manufactured during the first t hours of a production run.

a. Express the total manufacturing cost as a function of t.

b. How much will have been spent on production by the end of the third hour?

c. When will the total manufacturing cost reach \$11,000?

Difference quotient

Definition A difference quotient is an expression of the general form

$$\frac{f(x+h)-f(x)}{h}$$

where f is a function of x and h is a number.

Example

Find the difference quotient for $f(x) = 2x - x^2$.