Math 108, Solution of Midterm Exam 2

1 List all values of x for which the following function f(x) is not continuous. Explain the reason.

$$f(x) = \begin{cases} \frac{x^2 + 2x - 3}{x^2 - 4x + 3} & \text{if } x < 1\\ 2x - 4 & \text{if } 1 \le x < 3\\ x^2 - 2x - 3 & \text{if } x \ge 3 \end{cases}$$

Solution. Since $\frac{x^2 + 2x - 3}{x^2 - 4x + 3}$ is a rational function defined everywhere except at x = 1 and x = 3, and 2x - 4 and $x^2 - 2x - 3$ are polynomials defined everywhere, f(x) is continuous everywhere possibly except x = 1 and at x = 3. Since

$$\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{-}} \frac{x^2 + 2x - 3}{x^2 - 4x + 3} = \lim_{x \to 1^{-}} \frac{(x - 1)(x + 3)}{(x - 1)(x - 3)} = \lim_{x \to 1^{-}} \frac{x + 3}{x - 3} = \frac{1 + 3}{1 - 3} = \frac{4}{-2} = -2$$

and

$$\lim_{x \to 1^+} f(x) = \lim_{x \to 1^+} (2x - 4) = 2(1) - 4 = -2,$$

 $\lim_{x\to 1} f(x) = -2$. Since f(1) = 2(1) - 4 = -2, f(x) is continuous at x = 1. For x = 3,

$$\lim_{x \to 3^{-}} f(x) = \lim_{x \to 3^{-}} (2x - 4) = 2(3) - 4 = 2$$

and

$$\lim_{x \to 3^+} f(x) = \lim_{x \to 3^+} (x^2 - 2x - 3) = (3)^2 - 2(3) - 3 = 0$$

Thus $\lim_{x\to 3} f(x)$ does not exist, and so the function f(x) is not continuous at x = 3. Hence, f(x) is not continuous only at x = 3.

2 The position at time t of a ball moving along a line is given by $s(t) = 4t^2 - 12t + 8$.

(a) Find the velocity of the ball.

Solution. The velocity is

$$v(t) = \frac{ds}{dt} = \frac{d}{dt} \left[4t^2 - 12t + 8 \right]$$

= $4\frac{d}{dt} \left[t^2 \right] - 12\frac{d}{dt} \left[t \right] + \frac{d}{dt} \left[8 \right]$
= $4 \cdot 2t - 12$
= $8t - 12$

(b) Find the total distance traveled by the ball between t = 0 and t = 4.

Solution. Since v(t) = 8t - 12, the ball is either advancing or retreating, as described in the following table.

Interval	Sign of $v(t)$	From	То
$\boxed{0 < x < \frac{3}{2}}$	_	s(0) = 8	$s\left(\frac{3}{2}\right) = 4\left(\frac{3}{2}\right)^2 - 12\left(\frac{3}{2}\right) + 8 = -1$
$\frac{3}{2} < x < 4$	+	$s\left(\frac{3}{2}\right) = -1$	$s(4) = 4(4)^2 - 12(4) + 8 = 24$

Thus, the ball moves backward from s(0) = 8 to $s\left(\frac{3}{2}\right) = -1$, then moves forward to s(4) = 24. Therefore, the total distance traveled by the ball is

$$D = |-1 - 8| + |24 - (-1)| = 34.$$

3 Find the relative rate of change of the function $f(t) = (t^3 - t + 2)(t^2 - 3t + 1)$ with respect to t when t = 1.

Solution. By the product rule, the derivative of the given function with respect to t is

$$f'(t) = (t^3 - t + 2)\frac{d}{dt} \left[t^2 - 3t + 1\right] + (t^2 - 3t + 1)\frac{d}{dt} \left[t^3 - t + 2\right]$$
$$= (t^3 - t + 2)(2t - 3) + (t^2 - 3t + 1)(3t^2 - 1)$$

Thus the relative rate of change of f(t) when t = 1 is

$$\frac{f'(1)}{f(1)} = \frac{[(1)^3 - 1 + 2][2(1) - 3] + [(1)^2 - 3(1) + 1][3(1)^2 - 1]}{[(1)^3 - 1 + 2][(1)^2 - 3(1) + 1]}$$
$$= \frac{[2][-1] + [-1][2]}{[2][-1]}$$
$$= 2$$

4 Find all points on the graph of $\frac{x^2 - x + 1}{x^2 + 1}$ where the tangent line is horizontal.

Solution. By the quotient rule, the derivative of f(x) is

$$\begin{aligned} \frac{dy}{dx} &= \frac{d}{dx} \left[\frac{x^2 - x + 1}{x^2 + 1} \right] \\ &= \frac{(x^2 + 1)\frac{d}{dx} \left[x^2 - x + 1 \right] - (x^2 - x + 1)\frac{d}{dx} \left[x^2 + 1 \right]}{(x^2 + 1)^2} \\ &= \frac{(x^2 + 1)(2x - 1) - (x^2 - x + 1)(2x)}{(x^2 + 1)^2} \\ &= \frac{2x^3 - x^2 + 2x - 1 - 2x^3 + 2x^2 - 2x}{(x^2 + 1)^2} \\ &= \frac{x^2 - 1}{(x^2 + 1)^2}. \end{aligned}$$

Since the tangent line is horizontal exactly when its slope is 0,

$$f'(x) = \frac{x^2 - 1}{(x^2 + 1)^2} = 0$$
$$\frac{(x - 1)(x + 1)}{(x^2 + 1)^2} = 0$$

implies that the tangent line is horizontal at $(-1, f(-1)) = \left(-1, \frac{3}{2}\right)$ and $(1, f(1)) = \left(1, \frac{1}{2}\right)$.

5 Find the second derivative of the function $f(x) = 4\sqrt{x} + \frac{x^3 - 2}{x}$. **Solution.** The first derivative is

$$f'(x) = \frac{d}{dx} \left[4x^{1/2} + x^2 - 2x^{-1} \right]$$

= $4\frac{d}{dx} \left[x^{1/2} \right] + \frac{d}{dx} \left[x^2 \right] - 2\frac{d}{dx} \left[x^{-1} \right]$
= $4 \cdot \frac{1}{2}x^{-1/2} + 2x^1 - 2(-1)x^{-2}$
= $2x^{-1/2} + 2x + 2x^{-2}$

and the second derivative is

$$f''(x) = \frac{d}{dx} \left[2x^{-1/2} + 2x + 2x^{-2} \right]$$

= $2\frac{d}{dx} \left[x^{-1/2} \right] + 2\frac{d}{dx} \left[x \right] + 2\frac{d}{dx} \left[x^{-2} \right]$
= $2\left(-\frac{1}{2} \right) x^{-3/2} + 2(1) + 2(-2)x^{-3}$
= $-\frac{1}{x\sqrt{x}} + 2 - \frac{4}{x^3}$

6 Find the equation of the tangent line to the curve $y = (x^2 + x + 1)^4$ at the point where x = -1.

Solution. When x = -1, the corresponding y coordinate on the given curve is

$$[(-1)^2 + (-1) + 1]^4 = 1^4 = 1,$$

so the point of tangency is (-1, 1).

Apply the general power rule to get

$$\frac{dy}{dx} = \frac{d}{dx} \left[(x^2 + x + 1)^4 \right]$$
$$= 4(x^2 + x + 1)^3 \frac{d}{dx} \left(x^2 + x + 1 \right)$$
$$= 4(x^2 + x + 1)^3 (2x + 1).$$

Thus the slope of the tangent line to the given curve at the point (-1, 1) is given by

$$\left. \frac{dy}{dx} \right|_{x=-1} = 4[(-1)^2 + (-1) + 1]^3[2(-1) + 1] = 4(1)^3(-1) = -4$$

Therefore the equation of the tangent line is

$$y - 1 = -4(x - (-1))$$

 $y = -4x - 3$