Solution of Quiz 3

1 Find the rate of change $\frac{dy}{dx}$ for the function $y = \frac{x^3 + 1}{x^2 + 1}$ when x = 1.

Solution. By the quotient rule, the derivative of $y = \frac{x^3 + 1}{x^2 + 1}$ with respect to x is given by

$$\frac{dy}{dx} = \frac{d}{dx} \left[\frac{x^3 + 1}{x^2 + 1} \right]$$
$$= \frac{(x^2 + 1)\frac{d}{dx}[x^3 + 1] - (x^3 + 1)\frac{d}{dx}[x^2 + 1]}{(x^2 + 1)^2}$$
$$= \frac{(x^2 + 1)(3x^2) - (x^3 + 1)(2x)}{(x^2 + 1)^2}$$

Thus $\frac{dy}{dx}$ when x = 1 is

$$\left. \frac{dy}{dx} \right|_{x=1} = \frac{(1^2+1)(3(1)^2) - (1^3+1)(2(1))}{(1^2+1)^2} = \frac{2}{4} = \frac{1}{2}$$

2 Find the second derivative of the function $f(x) = x^6 - 2x^5 - 6x + 5$.

Solution. The first derivative is

$$f'(x) = \frac{d}{dx} \left[x^6 - 2x^5 - 6x \right]$$

= $6x^5 - 2(5x^4) - 6$
= $6x^5 - 10x^4 - 6$

and then the second derivative is

$$f''(x) = \frac{d}{dx} [f'(x)]$$

= $\frac{d}{dx} [6x^5 - 10x^4 - 6]$
= $6(5x^4) - 10(4x^3)$
= $30x^4 - 40x^3$