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Outline

*Picture on title page by George Miloshevich, Physics graduate student at UT.
The image won third place in UT’s annual “Visualizing Science" competition,
2016.

Here are some concepts I’d like to introduce today:
• 1 - Nonlinearity and deterministic chaos
• 2 - Fixed points and stable/unstable equilibrium
• 3 - Sensitivity to initial conditions
• 4 - The utility of computers in understanding mathematics
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To motivate our study of the logistic map, let’s observe a real world example of
a dynamical system transitioning from orderly, predictable behavior to chaotic

behavior.
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Fluid Transition to Turbulence

The following video shows the behavior of fluid flow in a pipe as it transitions
from an orderly, predictable flow (called laminar flow) to a chaotic, seemingly
random turbulent flow.

Fluid transition to turbulence
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https://www.youtube.com/watch?v=BBiR6FWmyv4


Simple Dynamical Systems

Sean Carney (University of Texas at Austin) Introduction to Nonlinear Dynamics and Chaos September 22, 2017 5 / 48



Exponential Population Growth

Imagine a bug species with the property that the population nt+1 in year t + 1 is
uniquely determined by the population nt in the preceding year t.

nt+1 = f (nt)

Let’s call this model a growth equation.
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Exponential Population Growth
A simple population model is the exponential model.

Let r be some fixed number, and let

nt+1 = r nt.

Problem 1: Let the population in year zero equal ten, so that n0 = 10, and let
r = 2.0. What will the population in year five be?

n5 =?

Problem 2: Let the population in year zero equal forty-eight, so that n0 = 48,
and let r = 0.5. What will the population in year four be?

n4 =?
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Exponential Population Model
Answer to P1: 320
Answer to P2: 3

nt+1 = r nt

Problem 3: Let n0 be the initial population of the bug species. Can you find the
pattern and say what the population is at t = 100?*

n1 = r n0 (1)
n2 = ? (2)
. . . (3)

n100 = ? (4)

(*if you have previously seen mathematical induction, you can prove this)
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Exponential Population Model

Answer to P3:

n100 = r nt (5)

= r100 n0 (6)

In general,
nt+1 = rt+1n0

Problem 4: Find conditions on r such that, when t→∞, (i) the population
grows and takes over the world, (ii) becomes extinct, (iii) remains constant.
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Logistic Map

• The exponential population model with r > 1 can be realistic for the initial
growth of many populations, but of course no real population can grow
forever. Eventually the growth must slow (due to, e.g., overcrowding or
shortage of food).

• A simple modification is to add an extra term to the model. Fix N > 0, and
consider

nt+1 = r nt(1− nt/N)

We call this the logistic map.
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Logistic Map

nt+1 = r nt(1− nt/N)

Features of the logistic map:
• Mimics dynamics of exponential model when

nt/N � 1 ⇐⇒ nt � N ⇐⇒ nt/N ≈ 0

• Ensures population never grows larger than N. If nt = N, then

nt+1 = r nt

=0︷ ︸︸ ︷
(1− nt/N) = 0

• It is nonlinear :
nt+1 = r nt − (r/N) n2

t︸︷︷︸
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The Logistic Map Example

Let n0 = 4, r = 2, and N = 1000. Compare the dynamics of the exponential
model and the logistic model :
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Equilibrium
In the previous figure, the population of the logistic model seemed to level out,
and become constant after a few years.

We say the population has approached an equilibrium.

An interesting question we might ask is: when is a population equilibrium
stable? When is it unstable?
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Relative Population
To study the stability of the population models, we focus on the relative
population:

x = n/N.

Relative population intuitively measures the percentage of population that is
alive:

population that is alive
maximum possible population

Let’s divide both sides of the original equation by N.

Original equation for total population:

nt+1 = r nt (1− nt/N)

New, rescaled equation for relative population:

xt+1 = f (xt) = r xt(1− xt)
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Relative Population

xt+1 = f (xt) = r xt(1− xt)

Recall: in the logistic model, the total population could NOT grow larger than N:

0 ≤ nt ≤ N

Since xt = nt/N, this implies:
0 ≤ xt ≤ 1.

Sean Carney (University of Texas at Austin) Introduction to Nonlinear Dynamics and Chaos September 22, 2017 15 / 48



Relative Population Examples
In the first example, r = 0.8, and for both initial conditions the population dies
out. In the second example, r = 1.5, and an equilibrium of ≈ 0.33 is reached.
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Logistic Map

To study the behavior of the logistic map, we will think now of the continuous
version:

f (x) = r x(1− x).

In order to ensure 0 ≤ x ≤ 1, we need to consider only

0 ≤ r ≤ 4

(if r > 4, then we can easily get x > 1).
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Fixed Points

For the previous example of r = 1.5,

the population approaches an equilibrium of x ≈ 0.33.
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Fixed Points

If a population is in equilibrium, then
• it does not change from year to year
• xt+1 = xt = xt−1 = xt−2 . . .

• xt+1 = f (xt).
We define any point x∗ such that

x∗ = f (x∗)

to be a fixed point.

Once a population hits a fixed point, it stays there for all time.
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Fixed Points of the Logistic Map

For the logistic map, a fixed point x∗ must satisfy

x∗ = f (x∗) ⇐⇒ x∗ = r x∗(1− x∗).

Problem 5: Find all of the fixed points x∗ of the logistic map.
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Fixed Points of the Logistic Map

Answer to P5: the two fixed points are

x∗ = 0 and x∗ =
r − 1

r
.

Note that when r < 1, this means x∗ < 0, which is nonsensical (population
cannot be negative). So, for r < 1, there is only one fixed point.
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Stability of Fixed Points
By definition, if hit a fixed point, we will remain there for all time:

x∗ = f (x∗).

What if, however, we find ourselves very close to a fixed point?

xt = x∗ + εt

What happens at xt+1 = f (x∗ + εt)? If a fixed point is stable, then we will quickly
return to the fixed point

xt+1 → x∗ ⇐⇒ εt+1 → 0.

If the fixed point is unstable, then xt+1 will move away from the fixed point x∗

xt+1 6→ x∗ ⇐⇒ εt+1 6→ 0.
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Stability of Fixed Points

εt = xt − x∗

We can predict exactly when this will happen*:

xt+1 = f (xt) = f (x∗ + εt) (7)
≈ f (x∗) + λ εt = x∗ + λ εt (8)

Now subtract x∗ from both sides:

xt+1 − x∗ ≈ λ εt

=⇒ εt+1 ≈ λ εt

(*warning: calculus required to fully follow the argument)
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Stability of Fixed Points

εt+1 = λ εt

This looks like the exponential population model from earlier!

From Problem 4, we know that if |λ| < 1, then εt → 0 and the fixed point is
stable.

If |λ| > 1, however, then εt →∞ and our fixed point is unstable.
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Stability of Fixed Points

For the logistic map,
λ = r (1− 2x∗).

Recall the two fixed points we found were x∗ = 0 and x∗ = (r − 1)/r.

Problem 6: When x∗ = 0, determine the values of r that give us |λ| < 1 and
|λ| > 1.

Problem 7: When x∗ = (r − 1)/r, determine the values of r that give us |λ| < 1
and |λ| > 1.

Remember: we only consider 0 ≤ r ≤ 4.
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Stability of Fixed Points

Answer to P6: When r < 1, the fixed point x∗ = 0 is stable. When r > 1, the
fixed point is unstable.

Answer to P7: When 1 < r < 3, the fixed point x∗ = (r − 1)/r is stable. When
r > 3 it is unstable.
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Fixed Point Diagram

There is a convenient way to visually summarize this analysis. Recall that

x∗ = 0 and x∗ =
r − 1

r
.

Problem 8: Make a plot of x∗ versus r. When x∗ is stable, use a solid line.
When x∗ is unstable, use a dashed line.
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Fixed Diagram
Answer to P8:

Sean Carney (University of Texas at Austin) Introduction to Nonlinear Dynamics and Chaos September 22, 2017 28 / 48



What Happens when r > 3?

The previous diagram tells the whole story of fixed points of the logistic map. It
does not tell, however, what happens when r > 3. We know then that the fixed
point is unstable, but how can we expect the logistic map to behave in this
case?

It’s best to consider specific examples computationally (i.e. using a computer).
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Logistic Map Example–Period Doubling
Consider r = 3.2 and x0 = 0.01. Notice that
• r > 3
• initial point x0 = 0.01 is near fixed point x∗ = 0
• xt quickly moves away from x∗ = 0
• after some initial behavior (called transients), the behavior of xt is periodic

with period 2.
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Period Doubling

• For r < 3, the system evolved towards a single fixed point x∗

• For r = 3.2, the system eventually oscillates between two points xa and xb,
where

f (xa) = xb and f (xb) = xa
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Period Doubling

• xa and xb are not fixed points of f
• Instead they are fixed points of the double map
• Let g(x) = f (f (x)):
• Claim: xa and xb are fixed points of the double map
• Proof:

g(xa) = f (f (xa)) = f (xb) = xa

• Similar proof holds for xb
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Bifurcation Diagram
Recall the fixed point diagram from earlier. We can make the same diagram for
the double map g(x) = f (f (x)):

• Notice the two separate fixed points at r = 3.2
• They correspond to the two cycle of the logistic map f
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Bifurcation Diagram

• For the double map, as one fixed point becomes unstable, two more stable
ones appear

• We say that the map bifurcates
• If we look more closely, we can find a lot more bifurcations . . .
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More Logistic Map Examples
For r = 3.84 and r = 3.5 we get periodic behavior again, with period 3 and 4,
respectively.
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More Logistic Map Examples
For r = 3.7, however, we do not get periodic behavior. Instead, we get chaos:

The map never repeats itself in a periodic manner.
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Bifurcations

• It turns out chaotic behavior is more common than periodic, orderly
behavior

• With a great bit of help from a computer, we can visualize this nicely . . .
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Bifurcation Diagram

• We plot xt versus the parameter r
• For each r, we start the map at x0 = 0.1
• We let the map run for t = 200 time steps
• Then, we start plotting xt versus r for 1400 more time steps
• (note: there will be a lot of points plotted for each r)
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Bifurcation Diagram
We get a remarkable picture!

What happens if we zoom in one particular section?
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Bifurcation Diagram
We get a remarkable picture!

What happens if we zoom in one particular section?
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Bifurcation Diagram

The plot exhibits self-similarity.
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Chaos – Sensitivity to Initial Conditions
Another defining characteristic of chaotic behavior is sensitivity to initial
conditions. Consider two different plots of the logistic map, again with r = 3.7,
with slightly different initial conditions x0 = 0.34 and y0 = 0.35:
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More Examples of Chaos
• There are many, many more examples of chaotic dynamical systems
• One example from everyday life is the phenomenon of fluid turbulence.
• The behavior of fluids exhibits some of the same features as the logistic

map:
• sensitivity to initial conditions
• unstable equilibrium
• seemingly random behavior from deterministic rules
• beautiful pictures
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Fluid Turbulence
Fluids behave according to a complicated set of partial differential equations
(PDEs) called the Navier-Stokes equations.

∂u
∂t

+∇ · (u u) +∇p−
(

1
Re

)
∆u = 0 (9)

∇ · u = 0 (10)

• u is a velocity field–it meaures how fast and in what direction a fluid is
moving at point in time and space

• p measures pressure at a point in time and space
• important: the equation is nonlinear (notice the u u term)
• Re is a constant, and measures how turbulent a fluid is
• Similar to the parameter r in the logistic map, for different values of Re a

fluid can behave quite differently
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Transition to Turbulence–Unstable Equilibrium

Recall the video from earlier showing the flow of fluid in a pipe as Re increases.
We’ll see orderly, predictable flow (called laminar flow) transition to chaotic,
seemingly random turbulent flow.

Fluid transition to turbulence

This is similar to the logistic map behaving predictably for r < 3 and chaotically
for r > 3. Unfortunately, for the more complicated Navier-Stokes system, it is
much more difficult to predict in general the value of Re for which this transition
occurs.
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Fluid Turbulence

Here is a simulation of fluid convection (called Rayleigh-Benard
convection)–warm fluid at the bottom rises and mixes with cold fluid at the top
and creates a beautiful, turbulent mess.

Rayleigh-Benard Convection
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Turbulence–$1 Million Problem

• Despite its ubiquity, turbulence is an unsolved problem in mathematics
• The Clay Institute offers a $1 million dollar prize to anyone who can prove

whether the Navier-Stokes equations possess unique, smooth solutions for
all time

• Clay Institute Millennium Problem

∂u
∂t

+∇ · (u u) +∇p−
(

1
Re

)
∆u = 0 (11)

∇ · u = 0 (12)

Maybe you can solve the problem and claim the prize.
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Thanks for listening!

Questions?
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