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5.8 Introduction to Differential Forms

Overview: The language of differential forms puts all the theorems of this
Chapter along with several earlier topics in a handy single framework. The
introduction here is brief. In differential forms, all the fundamental theo-
rems are known as Stokes’ theorem.

Differential forms are a useful way to summarize all the fundamental theorems
in this Chapter and the discussion in Chapter 3 about the range of the gradient and
curl operators, as well as the integration theory on manifolds of lower dimension.
They were formalized by E. Cartan, based on earlier work of Poincare and others
(see the article by V. Katz for some history). Clearly from the name, differential
forms are linked to differentials, so let’s recall our discussion from Chapter 3 on
differentials.

Whenf(x, y, z) is differentiable, we defined the differentialdf as the linear
combination∂f

∂x dx + ∂f
∂y dy + ∂f

∂z dz which means that the gradient vector∇f is
the vector whose dot product with the vector differentialdr givesdf . Objects in-
volving linear combinations of single differentialsdx, dy, dz are calleddifferential
1-forms if the coefficients multiplying the differentials are themselves differen-
tiable functions. More formally, the following defines a differentiable 1-form in
3-D, with coordinatesx, y, z:

Definition 5.17 A one-formω is an expressionω = a(x, y, z) dx+ b(x, y, z) dy +
c(x, y, z) dz. We will usually assume the coefficientsa, b, c are themselves differ-
entiable functions.

The transformation from a differentiable functionf to its differentialdf maps
functions to 1-forms and is linear. This suggests that we consider “d” as a linear
operator from scalar functions to 1-forms. A slightly strange convention will regard
differentiable functions as “zero forms”.

Since 1-forms can be integrated as line integrals over curves to obtain numbers,
we can now reinterpret all the line integral computations earlier in this chapter as
the integration of 1-forms along oriented curves.

Notation: The integral of a 1-formω along an oriented curveγ is written
∫
γ ω.

The “product” of differentials that was used in two dimensional integrals in-
volved objects likedx dy anddy dz will now be viewed asdifferential 2-forms.
In double and triple integrals expressions, the order was reversible, but in the lan-
guage of differential forms these products become skew-symmetric, like the vector
cross product, so reversing order creates a minus sign.

For the usual coordinatesx, y, z in three dimensions, the two formsdx dy,
dy dz anddz dx are viewed as having positive orientation, the reversed orders are
viewed as negative orientation, and the pairing of identical differentials, such as
dx dx, which never arose in integrations, will be declared to be0. Most users of
differential forms record this by using a “wedge product” notation to convey the
orientation: they writedx∧dy and so on, with the property thatdy∧dx = −dx∧dy.
Some books leave out the wedge symbol. This should be viewed as representing
our favorite oriented infinitesimal parallelogram.
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More formally, the following defines a differentiable 2-form in 3-D, with coor-
dinatesx, y, z:

Definition 5.18 A two-form is an expressiona(x, y, z) dx ∧ dy + b(x, y, z) dy ∧
dz+c(x, y, z) dz∧dx. We will usually assume the coefficientsa, b, c are themselves
differentiable functions.

Wedge product of one-forms:Algebraic rules then tell us how to form theexte-
rior or wedge product of any pair of 1-forms:

(Adx + B dy + C dz) ∧ (P dx + Qdy + R dz)

using linearity and the above rules, along with the factsdx ∧ dx = dy ∧ dy =
dz ∧ dz = 0. This yields the product to be 2-form:

(AQ−BP ) dx ∧ dy + (BR− CQ) dy ∧ dz + (CP −AR) dz ∧ dx.

The slightly skewed convention that arranges the three terms in our 2-form in the
order of the missing third differential, so the order isdy ∧ dz, dz ∧ dx, dx ∧ dy,
lets the coefficients of the wedge product be the cross product of the vectors<
A,B, C > and< P,Q, R >! Our bookkeeping device is already handy, but there
is more to come.
d for 1-forms: We define the (extended) exterior derivatived as mapping 1-forms
to 2-forms as follows:

d(dx) = d(dy) = d(dz) = 0,

and in general,

d(P dx + Qdy + R dz) = dP ∧ dx + dQ ∧ dy + dR ∧ dz.

Now one might guess that this would be linked to the curl of the vector fieldv,
which would have componentsP, Q,R. The rule aboutd(dx) = 0 and similarly
in y andz leads to “non-diagonal” terms. To confirm that claim, look at the term
with P and then use a usual permutation argument:

dP ∧ dx = (
∂P

∂x
dx +

∂P

∂y
dy +

∂P

∂z
dz) ∧ dx

leading to terms∂P
∂z dz ∧ dx − ∂P

∂y dx ∧ dy. After the cycling, arranging terms in
the usual order of the three basic two-forms leads to

d(P dx+Qdy+R dz) = (
∂R

∂y
−∂Q

∂z
) dy∧dz+(

∂P

∂z
−∂R

∂x
) dz∧dx+(

∂Q

∂x
−∂P

∂y
) dx∧dy

where the “rules” take care of the various minus signs.
Two forms can be integrated over surfaces. As in regular surface integrals, it

is best to view these as parameterized surfaces and then convert everything over to
the parameter plane. This means writing differentials naturally and performing the
wedge products back in the parameter plane. Mathematicians call this the “pull-
back” of the differential form. We will not belabor this but illustrate one such
substitution now and describe the general procedure once we consider 3-forms.
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Example 5.19 Use the usual parameters for the unit sphere in 3-D to express the
two-formdx ∧ dy in terms ofφ andθ:

Sincex = sinφ cos θ, y = sinφ sin θ, the algebra of differentials leads to a
direct calculation:

dx ∧ dy = (cosφ cos θ dφ− sinφ sin θ dθ) ∧ (cos φ sin θ dφ + sin φ cos θ dθ)
= cos φ sinφ(cos2 θ + sin2 θ) dφ ∧ dθ = cosφ sinφdφ ∧ dθ

Another stage of extension definesd for 2-forms, with the result a 3-form. In
3-D, there is only one basic 3-form:dx∧ dy ∧ dz, and all 3-forms are of the form:
g(x, y, z)dx ∧ dy ∧ dz for some functiong. The minus sign convention for single
swaps forces cyclic versions likedy ∧ dz ∧ dx to be the same. There is also an
extension of the wedge product for say a 1-form with a 2-form to create a 3-form or
the wedge product of three 1-forms, which is done by using the basic differentials
and their wedge multiplication along with linearity and ordinary multiplication of
functions.

The exterior derivative of a two-form is defined similarly to the derivative of a
1-form, namely:

d(P dy∧dz+Q dz∧dx+R dx∧dy) = dP∧ dy∧dz+dQ∧ dz∧dx+dR∧ dx∧dy).

But now this simplifies to a single 3-form (can you guess which?):

d(P dy ∧ dz + Qdz ∧ dx + R dx ∧ dy) = (
∂P

∂x
+

∂Q

∂y
+

∂R

∂z
) dx ∧ dy ∧ dz

so this captures the divergence!

Example 5.20 Find the wedge product of a general 1-formAdx + B dy + C dz
with a general 2-formP dy ∧ dz + Qdz ∧ dx + R dx ∧ dy.

(A dx+B dy+C dz)∧(P dy∧dz+Qdz∧dx+R dx∧dy) = (AP+BQ+CR)dx∧dy∧dz

after noting that the six other terms have repeated differentials and are therefore
each0 and that these three generate the same basic 3-form after cycling the terms.

The above example captures the dot product back!
More fun comes from noting that our resultd(dx) = 0 and similarly iny andz

will extend to the result that for any functionf (a 0-form), we haved(df) = 0 and
for any 1-formω, we also haved(dω) = 0, which are nifty encoding of two vector
derivative identities:

∇×(∇f) = 0, ∇·(∇×v) = 0.

This fact is true even in higher dimensions, namely in any number of variables
and for any order formω, d(d(ω)) = 0.
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Looking forward: In higher mathematics, formsω with the property that
dω = 0 are calledclosed forms, which those which satisfyω = dα are called
exact forms, at which point math geeks would say: all exact forms are closed.
They might then ask: are all closed forms exact? This leads into the topology topic
known as (deRham) cohomology, which answers that “it depends”, based on the
domain in question.

We now illustrate these calculations further with a few examples:

Example 5.21 Find d(x dx + y dy) in 2-D:

d(x dx + y dy) = dx ∧ dx + dy ∧ dy = 0.

Example 5.22 Find α = d(1/r) in 3-D and show thatdα = 0, wherer is as usual√
x2 + y2 + z2:

α = d(1/r) = − x

r3
dx− y

r3
dy − z

r3
dz = − 1

r3
(x dx + y dy + z dz)

In the calculation ofdα, the 3-D version of our previous example appears and
therefore gives0 for the exterior derivative of the second factor. This means we
can organize our calculation and exploit these cancellations as we use the product
rule:

dα = −d(
1
r3

) ∧ (x dx + y dy + z dz)− 1
r3

d(x dx + y dy + z dz).

Each of these two terms will be zero, the second part from the calculation alluded
to and the first one since we obtain

−d(
1
r3

)∧(x dx+y dy+z dz) =
3
r5

(x dx+y dy+z dz)∧(x dx+y dy+z dz) = 0

since the wedge product of the 1-form(x dx + y dy + z dz) with itself is0.

Remark: You are free to calculate the above example out in full and generate
many terms that cancel in the end.

Pull-backs described: For changes of variables since forms are objects to in-
tegrate, the behavior is like integrals under substitution. The algebra of forms
encodes the various algebraic manipulations beautifully.

Lemma 5.23 For any differential form in variablesx, y, z, a change of variables
giving a new form in variablesu, v, w creates a new form of the same order by
substitution for differentials.
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5.8.1 Stokes’ theorem

The unifying feature of this formalism occurs when we look at integration linked
with the exterior derivatived. For any1− form which is in the range ofd, we get
path independence and therefore we can write:

∫

γ
df = f(b)− f(a)

whereγ is any path froma to b which admits a good integration theory (for example
piecewise smooth). For any2 − form in the range ofd in 3-D, sayω = dφ
integrated over a surface, we find by the traditional Stokes’ theorem that the integral
reduces to the integration of the 1-formφ over the oriented boundary of the surface.
A similar result holds for3−forms integrated over volumes when the3−form is
in the image ofd, namely the integration over the volume becomes the integration
of the corresponding2 − form over the bounding surface. Thus the unifying
feature of the language introduced in this section is the following, which subsumes
Green’s theorem, the fundamental theorem for line integrals, Stokes’ theorem, and
the divergence theorem, along with others in higher dimensions which we have
never considered:

Theorem 5.24 Stokes’ theorem, general statement:On any piecewise smooth,
closed, orientedk + 1 dimensional subdomainB with oriented boundary denoted
∂B, for every smoothk − form ω, it follows that

∫

B
dω =

∫

∂B
ω.

For further reading on this, see the references at the end of the chapter.

5.8.2 EXERCISES

For problems 1 - 5, finddω for each of the following differential forms:

1. ω = 2 dx + 3 dy.

2. ω = 2 y dx + 3 x dy.

3. ω = y dx ∧ dz

4. ω = x2 y z dx + x y2 z dy + x y z2 dz

5. Check thatd(dω) = 0 for the previous examples.

6. If the symbolism of the “del operator” is transferred to differential forms,
it becomes the “operator form” related to the exterior derivatived by the
formal expressiond = ∂

∂x dx + ∂
∂y dy + ∂

∂z dz. With this convention, show
formally whyd ∧ d = 0 reduces to the equality of mixed partial derivatives.
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7. Consider the wedge product of three 1-forms to create a 3-form. Relate this
to the algebra of the vector triple product of three vectors (which was the
determinant of a matrix).

8. Physicists use space-time, with four coordinatesx, y, z, t. What are the di-
mensions of the basic 1-forms, 2-forms, 3-forms, and 4-forms in this four-
dimensional setting?

9. Cal Clueless believes thatdx dy is the surface area on the sphere, and that it
equalsdφ dθ anyway. Clear up his confusion by redoing Example 5.19 with
the proper expressions inx, y and thenφ, θ.

10. Ivana Calculator doesn’t like slick calculations, so she grinds out the exam-
pled(d(1/r)) done in this section. Do this and show her how to manage the
resulting mess effectively.

11. Professor Boris Tudeth dislikes a purely formal calculation. How would he
state the result of our “pull-back” calculation on the surface of the unit sphere
in more formal language? He will give extra credit if you state it in a general
situation.


