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CHAPTER 5

Fundamental Theorems of Vector
Calculus

This chapter explores the fundamental theorems of vector calculus. These the-
orems are often referred to by names such as Green’s Theorem, Stokes’ Theorem,
and Gauss’s Theorem, with Ostragradskii appended to Gauss in some cases. They
are the generalizations of the one variable result, along with some new and interest-
ing twists. Integration of a derivative is again linked to the change in some quantity.
The multivariable setting forces a variety of the dimensions of the integration do-
mains and the different vector derivatives used.

The main approach to understanding these theorems is again“Think locally,
act globally” . In all situations we will use our “Linear eyes” to side-step algebraic
issues and focus on what ought to be true. This helps us to follow how circulation
leads to the integral of the curl while flux leads us to the integral of the divergence.
“Acting globally” will be again the second component of the analysis, where we
move from location to location and create integrals. Linear functions and vector
fields are our building blocks. Constant derivatives are the model for continuously
varying cases. In the final section, we look ahead at the unifying concept of differ-
ential forms.

Exciting picture goes here
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5.1 Preliminary: several generalizations of the Fundamental Theo-
rem are possible

Overview: This section discusses the generalizations of the fundamental
theorem of calculus to the multivariable setting. The fundamental theorem
in one variable is recalled in both of its forms. Dimension will matter, as
will the basic feature of integrals as sums of integrals over non-overlapping
subdomains. The three main versions of the fundamental theorem in 3-D
are described.

The Fundamental Theorem in one variable revisited: In one-variable calculus,
the fundamental theorem on a fixed interval, say[a, b], says that

∫ b
a f(x) dx =

F (b) − F (a) wheref is continuous andF ′(x) = f(x) for all x in the interval
[a, b].

The other part of the fundamental theorem looks at the integral off from a to a
variableendpointx and confirms that this defines a function

G(x) =
∫ x

a
f(t) dt

with G differentiable andG′(x) = f(x). This establishes that every continuous
function is the derivative of a continuously differentiable function. Many texts
start here and use the variable endpoint result to establish the fixed domain case.
This is not very convenient in our multivariable setting. To aid in following later
discussions, a review of the Fundamental Theorem on a fixed interval is useful.

An approach to the one-variable Fundamental Theorem based on “thinking locally”
divides the interval[a, b] into non-overlapping subintervals which cover the inter-
val. F (b) − F (a) is the total change inF asx runs froma to b. Partition the
interval asa = x0 < x1 < . . . < xn = b. Then

F (b)− F (a) = F (x1)− F (x0) + (F (x2)− F (x1)) + · · ·+ (F (xn)− F (xn−1))

=
n∑

k=1

(F (xk)− F (xk−1)) =
n∑

k=1

F ′(tk)(xk − xk−1).

The last equality came by thinking locally, i.e. assuming linear behavior ofF ,
replacingF (xk) − F (xk−1) by F ′(tk) · (xk − xk−1), wheretk is some point in
the subinterval (of course it could be any location if truly linear sinceF ′ would
be constant). This is exact for linear functions and modified to be exact for some
choice oftk by an appropriate mean value theorem for the general differentiable
functionF . This shows the total change to be always equal to a Riemann sum for
the integral ofF ′. The limit is therefore both the total change inF and the integral
of f , so they are equal.

The variable endpoint version involves a direct calculation of the derivative ofG
using the definition of the derivative as limit. Its main use (other than to establish
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the fixed endpoint case) is to show that every continuous function on a closed
interval is the derivative of a differentiable function on that interval. As we saw in
Chapter Three, that is not true in the multivariable setting for the gradient operation
nor for the curl. Among our vector derivatives, only the divergence has a similar
property: every continuous scalar function is the divergence of some differentiable
vector function. But variable endpoints can yield an alternate integral form for the
“anti-gradient” as will be seen in section 5.2.

There are several ways to generalize the fundamental theorem when we move to
several variables. Let’s explore what they might involve, at least in terms of inte-
grals and dimensions. Justifying the results usually is described in a similar fashion
to the way the Fundamental Theorem of Calculus was just discussed rather than the
variable endpoint approach. The rest of the chapter will explore these ideas more
fully, along with an optional section on complex functions and another on differ-
ential forms, which reveals the unifying idea in all these variations.

5.1.1 Change in a functionF from one point to another

The first direct generalization of the fundamental theorem considers a functionF
and its total change as we move from pointA to pointB in two or more dimen-
sions. Here the new twist is that in moving between two locations many paths are
possible. Therefore the integral in one variable was on an interval but now we need
an integral along a particular path. This is theline integral, which we introduced
in Chapter Four(??). Interestingly, the total change fromA to B for a nice function
does not depend on the path, while we learned in Chapter Four that line integrals
typically do depend on the path taken. So unlike the 1-D version, the integrands
must be restricted to a special set of possible vector fields!

Breaking up the path fromA to B into a finite number of pieces leads us to an
educated guess of one fundamental theorem:

F (B)− F (A) =
∫

C
∇F · dr

whereC is a curve that runs fromA to B. To make this guess, look at a small
piece of the curve and assume the curve piece is straight and the functionF is
linear. Then the change inF is given by the dot product of the gradient vector
with the change in position (recall directional derivative and gradient in Chapter
3). This gives us the form of the integrand, namely the gradient ofF .

An interesting consequence of this result is that line integrals of the form given
above are in fact independent of the given path, since the total changeF (B) −
F (A) is the same for all paths that start atA and end atB. A fuller discussion is
in the next section.

The two other main generalizations in 3-D will involve the other two derivatives
and will occur in higher dimensional integrals. They are described here and devel-
oped over several sections of the chapter.
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5.1.2 Second generalization: circulation integrals around closed loops linked
to integrals of derivatives inside

From the first result above, when we integrate the gradient along curves, the change
in the function results. Closed curves (loops) return to their starting point, so a line
integral of the gradient around a loop must yield0, since the function has no net
change. Yet we know that some line integrals around loops are not zero. The
second version of a fundamental theorem results when we look more closely at
such loops.

If we have a loop in 3-D, it can be the boundary of some surface in 3-D (in fact
many different ones), while in 2-D, loops will enclose a planar domain. Let’s start
in 2-D. For an oriented loopL enclosing a rectangular regionR, consider for a
given vector fieldv the integral

∫
L v · dr, which represents thecirculation of v

around the loopL. By splitting this up into subrectangles as in double integration
theory, the circulations add to give the total circulation. [need picture here] Note
that on the common edges the line integrals cancel (higher dimensional version of
subinterval endpoints for usual FTC). This allows us to “think locally” and assume
small rectangles with linear vector fields. On such a rectangle we find that the
opposite edges almost cancel but the variation inv will contribute. A calculation,
done in detail in a later section, shows that the two horizontal edges contribute
based on the vertical variation of the first component ofv while the vertical edges
contribute based on the horizontal variation of the second component ofv, which
suggestscurl of v is the integrand. This is consistent with the situation whenv is
a gradient since then the curl is zero and the circulation is also zero.

This result is known as Green’s theorem in 2-D and says:
∫

L
v · dr =

∫

L
P (x, y) dx + Q(x, y) dy =

∫

R

∫ (∂Q

∂x
− ∂P

∂y

)
dx dy

wherev = P i + Qj andL is the oriented loop that encloses the regionR.

Moving into 3-D is more difficult, but guided by the linear approximation locally
we will find the following to be true for the circulation around a loop which bounds
a surfaceS with outer unit normaln and surface area elementd2σ:

∫

L
v · dr =

∫

S

∫
(∇×v) · n d2σ.

This is known as Stokes’ theorem.

This implies that surface integrals of the form given above are in fact independent
of the surface used as long as the boundary loop is fixed.

For a general vector integrand, not necessarily the curl of some vector field, the
surface integral as in Stokes’ theorem measures theflux through the surface. Our
third and final generalization will look at surfaces that enclose volumes and relate
the flux through the surface to an integral of a derivative over the inside volume.
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5.1.3 Third generalization: flux and volume integration

For a closed surfaceS with outer unit normal vectorn and surface elementd2σ in
3-D which is the boundary of a volumeV , given any differentiable vector fieldw
on an open set containingS andV , the follow identity (known as Gauss’ theorem
or the divergence theorem) holds:

∫

S

∫
(w · n) d2σ =

∫ ∫

V

∫
(∇·w) dx dy dz.

Again, the way to see this should be correct is to observe that the flux is the sum of
the fluxes on subsurfaces. There is cancellation of the common surfaces on neigh-
boring pieces because the normal vectors are opposite while the vector function is
the same. Then thinking locally, we can look at a linear vector field on a small
box. Pairing the six faces of a box shows that thex- variation of thex- component
of w is the only contribution to the flux across the faces normal to thex-axis, and
similarly in y andz, which leads to the divergence ofw as the integrand in the
volume integral. Details are in section 5.6 below.

5.1.4 Exercises


