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3.7 Constrained Optimization and Lagrange Multipliers

Overview: Constrained optimization problems can sometimes be solved
using the methods of the previous section, if the constraints can be used to
solve for variables. Often this is not possible. Lagrange devised a strategy to
turn constrained problems into the search for critical points by adding vari-
ables, known as Lagrange multipliers. This section describes that method
and uses it to solve some problems and derive some important inequalities.

Often minimization or maximization problems with several variables involve con-
straints, which are additional relationships among the variables. For example, in-
vestments might be constrained by total assets; engineering improvements on an
airplane might be constrained by costs or time to implement or weight or avail-
able workers; my maximum altitude on a hiking trail on a mountain is constrained
by the trail itself and may not be the altitude of the top of the mountain. Each
constraint equation reduces the dimension of the domain by one (in general). It is
often inconvenient and sometimes not feasible to express the extremal problem in
reduced coordinates. Lagrange found an alternative approach using what are now
calledLagrange multipliers. Assuming the constraints are given as equations, La-
grange’s idea is to solve an unconstrained problem in more variables! This section
introduces his key idea and applies it. A project at the end of the chapter considers
inequality constraints.

Let’s start in two dimensions, with one constraint. As a first example, consider
a geometric problem whose solution you probably know already: for a linel not
through the origin, find the point onl nearest to the origin and compute its distance
from the origin. We will solve this in three ways: first, geometrically; second,
eliminating one variable and solving a 1-D minimization problem; and third, with
Lagrange multipliers.

Geometrically, the closest pointp∗ = (x∗, y∗) is where a (second) line through
p∗ and the origin is perpendicular tol . The Pythagorean theorem shows thatp∗ is
closer to the origin than any other point onl . As an example, suppose thatl has
equation:2x + 3y = 6. The perpendicularity condition tells us that the closest
point p∗ has coordinates satisfyingx∗ = 2t, y∗ = 3t for some numbert 6= 0.
Requiringp∗ to lie onl becomes2(2t)+3(3t) = 6 sot = 6

13 . The distance is then

found to be
√

x2∗ + y2∗ =
√

36
13 = 6√

13
. Note that we didn’t use any calculus in this

solution!

Our second method parameterizes the line and then uses one variable calculus. Use
the constraint2x + 3y = 6 to solve fory in terms ofx, namelyy = 2 − (2/3)x
and then write the distance to the origin as

√
x2 + y2. It is easier to work with the

distance squared (no denominators in derivatives), so we definef(x, y) = x2 +y2.
Then we can reduce our constrained minimization off on the linel to minimizing
the functiong(x) = f(x, 2−(2/3)x) = x2+(2−(2/3)x)2. We find thatg′(x) = 0
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only wheng′(x) = 2x+2(2−(2/3)x)(−2/3) = 0. Some algebra finds the critical
pointx∗ = 12

13 and then substitution yieldsy∗ and the rest is as before.

A third approach, using Lagrange multipliers, solves three equations in three un-
knowns: to minimizef(x, y) = x2 + y2 with constraintg(x, y) = 2x + 3y = 6,
Lagrange adds a third variable, which we will denote by a Greek lambda,λ and
forms the functionL(x, y, λ) = f(x, y)− λ(g(x, y)− 6). The new problem seeks
a critical point ofL in the three(!) variables(x, y, λ). This leads to the following
three equations in this case:

∂L

∂x
= fx(x, y)− λgx(x, y) = 2x− λ2 = 0

∂L

∂y
= fy(x, y)− λgy(x, y) = 2y − λ3 = 0

∂L

∂λ
= g(x, y)− 6 = 2x + 3y − 6 = 0.

This is essentially the same system of equations (except for a factor of 2) as in our
first approach exceptt is replaced byλ/2. The statement is that the gradients of
f andg are multiples of each other, so they are aligned and therefore locally the
level sets off and the constraint setg(x, y) = 0 are lined up also, using the linear
approximations.

Why did we do the last approach? Because it generalizes to any continuously dif-
ferentiable functionf with any continuously differentiable constraintg(x, y) = c
for some constantc, which by changing the definition ofg if we wish, will become
0.

3.7.1 Lagrange’s method in general, 2-D:

Define L(x, y, λ) = f(x, y) − λ(g(x, y) − c). Then every critical point ofL
corresponds to a possible extremum off with constraintg(x, y) = c. This leads to
three equations in three unknowns!

∂L

∂x
= fx(x, y)−λgx(x, y) = 0,

∂L

∂y
= fy(x, y)−λgy(x, y) = 0,

∂L

∂λ
= g(x, y)−c = 0.

Note that critical points off are possible solutionsif they satisfy the constraints,
in which case the Lagrange multiplierλ is zero. But now there are new possibili-
ties, as in our geometry problem.

Why is Lagrange correct? Thinking locally Recall how we thought about local
maxima in the last section. The idea was to see that away from critical points, the
gradient vector describes a direction for increasing the function (and its opposite
direction decreases the function). Therefore points where the gradient was not zero
couldn’t be local extrema. A similar but more elaborate argument now shows that
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when Lagrange’s equations do not hold at some point, that point is not a constrained
local extremum.

More precisely, we show that if the gradient off is not zero and not a multiple
of the gradient ofg at some location, then that location cannot be a constrained
extrema. The idea is that in the tangent direction to the constraint (admissible
variations) the directional derivative off is non-zero, so without violating the con-
straint, there is an uphill and downhill direction within the level set ofg. I find the
picture of the level sets more revealing, so imagine a location which is not a critical
point for f and where the constraintg(x, y) = 0 is not lined up with a level set of
f . Then the allowed set crosses various levels off and therefore we are not at a
constrained maximum or minimum. In my hiking example, the trail has an uphill
direction and a downhill direction in the opposite way, so I have not finished my
climbing or descending at that location. but now thedirectional derivativein the
directions allowed by the constraint is the relevant non-zero quantity. Notice that
this is what the non-zero derivative in the second method above would be saying,
where we were able to solve fory. The local level set plot forf is a family of
parallel lines and the local level set plot forg is a single line, so the picture where
Lagrange’s equations do not hold is like the following picture, where the setg = 0
is the thicker line (red). Therefore any constrained local maximum or minimum
would need to satisfy the Lagrange condition with some multiplierλ.

Figure 20:The level sets and constraint when Lagrange’s condition does not hold:
f (blue level sets) can change without changing g (red).

To confirm the usefulness of the local analysis, what do you think happens
when we replace the line in our geometry problem by a general curve in the plane?
Let’s see what Lagrange’s equations say in that case and if you are correct.

Example 3.43 Distance from origin to curve g(x, y) = 0 The distance squared
is againx2 + y2 and if we requireg(x, y) = 0, then Lagrange’s equations are:

2x = λgx(x, y), 2y = λgy(x, y), g(x, y) = 0
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which are three equations forx, y, λ. The geometric statement is that at the mini-
mizer, the gradient ofg will point directly towards or away from the origin at the
minimizer (i.e. radially). Several examples of this are in the exercises for particular
curves.

What does the numberλ mean?λ refers to the relative magnitude of the two
gradients at the critical point. In economics and related problems, an alternative
description ofλ as the partial derivative in the variable (now viewed in yet another
extension)c of the (extended) functionL. When the constraint is cost, this mea-
sures how much the critical value ofL moves per unit cost, and this is in turn the
change inf when the (varying!) constraint holds.

Some alternate language:In older books using differentials, the tangent vector
to the constraint set is calledan allowed (or admissible) variationand Lagrange’s
main condition says that the directional derivative off in all allowed variations is
zero. In physics and engineering, equilibrium configurations are often described as
minimizers of energy. Thinking about the change near some location and deducing
conditions for such a minimum is often called the principle of virtual work.

Lagrange’s method extends to three or more dimensions, with one or more con-
straints.

3.7.2 3D case with one or two constraints

If we wish to extend our geometric example to 3D, there are two possible versions:
the nearest point in a line in 3D and the nearest point in a plane in 3D. The restricted
set is one dimensional for the line, two dimensional for the plane, so they are
defined by two linear equations and one linear equation respectively.

The plane is the easier case, as it has one constraint: minimize the distance (or its
square) from a point (chosen to be the origin) to a plane. The plane is assumed
to satisfyax + by + cz = D so we are minimizingx2 + y2 + z2 with constraint
that points lie in the plane. Applying the idea of Lagrange multipliers, we find four
equations in four unknowns:

2x− aλ = 0, 2y − bλ = 0, 2z − cλ = 0, ax + by + cz = D

and the minimum occurs when the vector< x, y, z > is aligned with the normal
vector to the plane< a, b, c > with scalar factorλ2 . The minimum value ofx2 +
y2 +z2 is thereforeλ2(a2 +b2 +c2)/4, which must equal D2

a2+b2+c2
so the minimal

distance is |D|√
a2+b2+c2

and it occurs at the perpendicular to the plane.

The distance to the line is similar, but with the added notion that the line is the
intersection of two planes. This gives us two linear constraints. The interpretation
is now that we should look at level sets of the functionf to be minimized near a
possible extreme point. Then the level sets are again nearly planes and if the con-
straint sets cross each other transversely, then the level set off near a minimizer
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shouldincludethe line representing both constraints simultaneously, for if the line
crossed the level set off then the point would not be an extreme point. In other
words, the tangent vector to the curve comprising the constraint set should be or-
thogonal to the gradient off , so that the level set off is tangent to the constraint
set. This says that the gradients of the two functions, sayg1 andg2, which give the
constraints are such that every vector orthogonal to both of them is also orthogonal
to the gradient off . This says thatf is a blend of the two gradients — in equation
form there are numbersλ1 andλ2 so that

∇f = λ1∇g1 + λ2∇g2

Your geometric intuition should connect the example to what you know. The clos-
est point to the origin on a line in 3D is the point where the gradient field of the
distance function, which as we know is the unit radial field, points orthogonally to
the line.

In general, we can justify the Lagrange multiplier principle for two or more con-
straints by “thinking locally” and arguing thatif the condition fails, we cannot be
at a constrained local max or min. In 3D we say this two ways, depending on how
we view the two constraints, which lead (typically) to a one dimensional restricted
domain: first, in terms of the tangent vector to the restricted domain, namely we
are decidedly not at a constrained extremum if the directional derivative off in
the direction of the tangent is non-zero. The second way uses the normals to the
constraint domains, and says that if the level sets off , which are locally like par-
allel planes, cross the constraints transversely then the constraints do not prohibit
moving in directions that increase and decreasef , so we are not at a constrained
extremal. The two views are linked since the tangent vector is orthogonal to both
gradients of the constraints, this non-extremal condition is that the gradient off
has some component which is in the direction orthogonal to both constraint gradi-
ents. If the gradient off has a part that is not a linear combination of the gradients
of the constraints, then the level sets off near the point in question will cross
the constraint sets transversely and therefore there are values off both higher and
lower in any neighborhood of our point. This negative linear result says that the
Lagrange multiplier condition must hold at any potential extreme point.

3.7.3 Some classic inequalities in 3D

Here are some classic mathematical inequalities that can be derived using Lagrange
multipliers.
algebraic-geometric mean: For any three non-negative real numbersx, y, z, the
geometric mean is less than or equal to the algebraic mean, which says:

3
√

x y z ≤ x + y + z

3

To prove this we first note that if any of the three numbers is0 then the root is0
also and the inequality is true. Second, note that as all the numbers are multiplied
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by a constant, both sides are also multiplied by the same constant. So if we prove
it whenx + y + z = 1, it is true for all values.

Now we can create a constrained maximization problem: find the largest value
of x y z whenx + y + z = 1. If this value isC, we then conclude by scaling that
3
√

x y z ≤ 3
√

C(x + y + z). Note that we dropped the cube root in our constrained
problem — this just makes the algebra a little cleaner. Note also that this is a
classic word problem, as in problem By Lagrange multipliers, the four equations
for x, y, z, λ are:

yz − λ = 0, xz − λ = 0, xy − λ = 0, x + y + z = 1

Either by symmetry or by multiplication of the first three equations byx, y, z re-
spectively, it follow that the maximum value occurs whenx = y = z = 1

3 . Then
the extreme value of the productxyz is 1

27 and the desired result holds.
The generalization to a sum ofn numbersx1, x2, . . . xn states correctly that

n
√

x1 x2 · · ·xn ≤ x1+x2+···+xn
n and its proof is an exercise.

Cauchy-Schwarz inequality: If we look at a linear functionax + by + cz for
constantsa, b, c, the Cauchy-Schwarz inequality states that

|ax + by + cz| ≤
√

a2 + b2 + c2
√

x2 + y2 + z2

with equality only when the vectors< a, b, c > and< x, y, z > are proportional.
For a = b = c = 0, the result is clear, so we assume that the vector< a, b, c >
is non-zero. By scaling the vector< x, y, z > by its length, which also scales the
linear function, it is enough to show that forx2 + y2 + z2 = 1, the corresponding
inequality holds. This puts it in a form where constrained optimization applies.

If we consider the Lagrange functionax + by + cz − λ (x2 + y2 + z2 − 1), its
gradient being zero leads to the equations:

a− 2λx = 0, b− 2λy = 0, c− 2λz = 0

which says the vectors< a, b, c > and< x, y, z > are proportional at the critical
points, with proportionality factor2λ. Since the variable location< x, y, z > is on
the unit sphere, we find that< x, y, z >= ± <a,b,c>√

a2+b2+c2
and2λ = ±√a2 + b2 + c2,

so the value of the functionax + by + cz at its maximum is
√

a2 + b2 + c2, as ad-
vertised.

The Cauchy-Schwarz inequality was used earlier in Chapter 1 when discussing
the dot product of two vectors!Note that this proof did not use any trig (as did our
earlier discussion) nor any algebra of quadratic function in all six variables. It also
generalizes to the result known as Hölder’s inequality, which we now discuss in a
special case.

A special case of Ḧolder’s inequality: If for some reason we don’t want to treat
the two pieces from the Cauchy-Schwarz equally, we can generalize to get Hölder’s
inequality, which in 3D says:

|ax + by + cz| ≤ (|a|p + |b|p + |c|p) 1
p (|x|q + |y|q + |z|q) 1

q
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provided1 < p < ∞ and 1
p + 1

q = 1.
To avoid dealing with absolute values, we will do the special case whereq = 4

and we assumea, b, c are all non-negative. Thus we want to show:

|ax + by + cz| ≤ (a
4
3 + b

4
3 + c

4
3 )

3
4 (x4 + y4 + z4)

1
4 .

Again, by scaling with(x4+y4+z4)
1
4 , we need only establish the inequality when

this sum is equal to one:x4 + y4 + z4 = 1 will be the constraint. The Lagrange
function is nowax + by + cz − λ (x4 + y4 + z4 − 1) and the gradient equations
are:

a− 4λx3 = 0, b− 4λy3 = 0, c− 4λz3 = 0

which are a bit nastier than our previous case. But we find that the vector<

x, y, z > is proportional to the vector of cube roots< a
1
3 , b

1
3 , c

1
3 > and using

the constraint we find that the critical values for< x, y, z > are at the locations

± <a
1
3 ,b

1
3 ,c

1
3 >

(a
4
3 +b

4
3 +c

4
3 )

1
4

, and the maximal value of the linear function is(a
4
3 + b

4
3 + c

4
3 )

3
4

as advertised.

3.7.4 Quadratic functions on unit sphere

If we look at a quadratic function in three variables, it takes the formrT Hr where

as usualH is a symmetric3 × 3 matrix andr is the position vectorr =




x
y
z


 .

Such a function is continuously differentiable and typically grows unboundedly as
|r| grows. But if we restrict to the unit sphere by requiring|r| = 1, then such
a function will achieve its maximal and minimal values somewhere on the sphere.
Lagrange multipliers end up relating such locations to theeigenvectorsof the sym-
metric matrixH as follows:

To find constrained extrema for the quadratic functionQ(x, y, z) = rT Hr with
constraintrT r = x2 +y2 +z2 = 1, we introduce a Lagrange multiplierλ and seek
the points where∇(Q− λ∇(x2 + y2 + z2 − 1)) = 0, which becomes

2Hr− 2λ r = 0.

Up to a factor of 2 which clearly drops out, this says the constrained extrema must
beeigenvectorswith λ being the value of theeigenvalue.

Looking forward: Theorems in advanced calculus guarantee the existence
of the constrained maximum and minimum in any finite dimension and some ex-
tra work ends up showing that thespectral theorem for symmetric matrices
holds. This theorem states that every symmetric matrix has a full set of eigenvalue-
eigenvector pairs and that the eigenvectors may be chosen to be orthogonal (choice
only happens when eigenvalues are repeated).

Looking forward: Constrained optimization is a large subject which is flour-
ishing. Many modern technologies rely on the solution of large optimization prob-
lems and many business decisions factor in some major mathematical analysis of
the situation. Applications include image processing, statistics, internet searching
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and routing, manufacturing engineering, economics, and data compression. Some
constraints come as inequalities and many problems involve large scale computing
to find approximate solutions.

3.7.5 EXERCISES

Writing: Explaining, Reacting, Questioning

1. Anita Solushun reasons as follows for the example of minimizing the dis-
tance from the origin to the line2x + 3y = 6: Consider the parallel line
through the origin:2x + 3y = 0, then the distance between the lines is
tied to the change of size6 in the function values compared to the change
in (x, y) in the maximal direction. This is the magnitude of the gradient, so
the minimal distance is6/

√
22 + 32. Is she lucky or is this correct? If not

correct, explain what is wrong. If correct, find the general case answer for a
point at(x1, y1) and a lineax + by = c by similar reasoning.

2. Consider two non-intersecting curves in the plane. The minimization of the
distance between the curves requires some algebra ingredients to set it up.
Before doing that, think through a local picture of what the condition should
be geometrically. What do you think the condition will be and why? Now
set up the problem, assuming the points on the first curve are called(x1, y1),
those on the second curve are called(x1, y1), and the curves are given by
relationsg1(x1, y1) = 0 andg1(x1, y1) = 0. Minimize the square of the
distance between the points. Deduce from the equations that your geometric
intuition was correct (if it wasn’t, fix it!).

3. Another view of the distance from the origin to a curve: View the con-
straintg(x, y) = 0 in polar coordinates, since thenr represents the distance
from the origin. If the constraint is viewed as definingr(θ) implicitly, then at
a minimal distance,r(θ) achieves a local minimum, sor′(θ) = 0 there. But
by implicit differentiation, this says that in polar form,gθ = 0, which says
the gradient at the constrained point is radial! Write out a complete version
of this for the functiong(x, y) =.


