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3.3 Gradient Vector and Jacobian Matrix

Overview: Differentiable functions have a local linear approximation. Near
a given point, local changes are determined by the linear approximation,
which has the structure of a dot product of the change in position with a
fixed vector. For vector-valued functions, the corresponding local change
is a product of a fixed matrix with the change in position. This vector or
matrix plays a central role in multivariable differential calculus. For scalar
functions, the vector of derivatives is called the gradient vector, while for
vector-valued functions it is called the Jacobian matrix. The correspond-
ing linear transformations are sometimes called the total derivative or the
derivative mapping. In this section, the gradient vector field is explored
both algebraically and graphically. Jacobian matrices are calculated and the
level sets of the corresponding transformations are plotted. The orthogo-
nality of the gradient to the level sets of the function extends from linear
functions to differentiable functions.

3.3.1 Linear functions yet again and dot product

In 2D, a homogenous linear scalar function takes the general form:

f(x, y) = Ax + B y, where A and B are constants

and, as discussed in Chapter 1, such functions have special properties. In particular,
their values are defined everywhere and the level sets are equally spaced parallel
lines. The vectorA i + B j is orthogonal to the level sets. As we move in any
particular direction, the function values will typically change by the dot product
with the fixed vector (it doesn’t change along the level sets!) and the largest change
will be in the directionA i+B j. A direct calculation withx = A andy = B shows
that the change inf in that case is exactlyA2 + B2 and clearly positive. Thus the
vectorA i + B j points in the direction of maximal change and the change per step
length in that direction is the ratio:

change in f

change in distance
=

A2 + B2

√
A2 + B2

=
√

A2 + B2

which is the magnitude of the vector. In 3D, a similar expression adds a term
C z, the level sets become parallel planes, and again the largest positive change in
the linear function occurs in the normal directionx = A,y = B,z = C and has
magnitudeA2 + B2 + C2 so the largest rate of change is

√
A2 + B2 + C2. Recall

also that in 3-D a linear function is unchanged in two directions within the level
set.

Vector notation makes things neater: we can writeAx + B y asv · r wherev =
A i + B j and as usualr = x i + y j. The 3D version uses similar notation but with
each vector having three components. The maximal rate of change is the magnitude
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of v and occurs in that direction. Observe that the components ofv are the partial
derivatives off whenf is linear! Also, for linear functions, changes in outputs are
the same no matter where we start and only depend on the changes in inputs, so to
find the change in function values we take the dot productv · u, which finds the
rate of change off in any fixed directionu.

This leads us to use the linear approximation and the above algebra to determine
how differentiable functions behave locally. Recall that the general principle is
continuity means locally constant as first approximation, while differentiability re-
fines that to add a linear approximation for the local change.

3.3.2 Gradient vector in 2D and 3D

Using our heuristic of “think locally”, we expect that differentiable functions in
general will have similar local behavior to their linear approximations. In particu-
lar, near a given pointr0, the linear approximation to the local change in a scalar
function will again have a dot product structure of a vector, now called thegradi-
ent vector, paired with the change in location. The instantaneous rate of change
in any fixed direction will be the dot product of the gradient vector with the direc-
tion of the change. The gradient vector is typically denoted∇f and sometimes as
grad(f). The downward pointing triangular vector symbol is called a “nabla”. The
gradient vector points in the direction of maximal change and the maximal rate of
change will be the magnitude of the gradient vector. But when we “act globally”
we expect that unlike the linear case, the gradient vector will vary as we vary the
locationr0.

In terms of its components, the gradient vector at(x0, y0) is given by the definition:

∇f(x0, y0) =
∂f

∂x
(x0, y0)i +

∂f

∂y
(x0, y0)j in 2D.

In 3D the gradient vector adds a third component to become

∇f(x0, y0, z0) =
∂f

∂x
(x0, y0, z0)i +

∂f

∂y
(x0, y0, z0)j +

∂f

∂z
(x0, y0, z0)k.

As in one-variable calculus, in the multivariable context differentiation creates a
derivative function. However this is now avector-valued function out of a scalar
function and amatrix-valued function out of a vector-valued function. We will
view the function∇f(x, y) or∇f(x, y, z) as a vector field when we want to visu-
alize its behavior in a domain. Visualizing matrix-valued functions is much harder
and might be done by looking at several vector fields simultaneously. Recalling
our earlier discussion of dot products in Chapter 1, the gradient vector is usually a
row vector when written as a matrix.

The gradient field plot is the higher dimensional analog of the graph of the deriva-
tive function in one variable so developing your visual and symbolic understanding
of the gradient field is an essential task. Note that we usually drop the word “vec-
tor” off the gradient vector field.
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Example 3.20 The basic functionf(x, y) = r =
√

x2 + y2 is the distance from
the origin to the point(x, y) so it increases as we move away from the origin. Its
gradient vector in components is(x/r, y/r), which is the unit radial fielder. Thus
r has gradient vectorer. It increases at maximal rate in the radial directioner

and the maximal rate of change is of size 1.

The level sets off(x, y) = r are equally spaced circles and the gradient field, being
radial is clearly orthogonal to the circles. The equal spacing tells us the gradient
field has constant magnitude.

Example 3.21 g(x, y) = r2 = x2 + y2 has gradient in components(2x, 2y) so
∇g = 2r = 2rer. Note that the circlesx2 + y2 = r2 are level sets of bothf and
g, but with different spacing, which reflects the different magnitudes of the gradient
vectors. Note also the factor2r, which is the derivative ofr2 in the variabler.

In the exercises you will be asked to extend this observation to a general radial
functiong(r) and relate the gradient to the derivativeg′(r).

Here we show the plots of the functionsr and r2, showing level sets and then
gradient fields and finally both level sets and gradients fields together.
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Figure 10:The plots are the level sets of the functions r and r2 respectively. Notice
that the spacing is quite different.

Example 3.22 If v(x, y) = x3 + x2y + xy2 + y3 thengrad(v) = (3x2 + 2xy +
y2, x2 + 2xy + 3y2).

Here are plots of the contours and gradient field together for this example, the
second in a smaller scale, where the linear approximation starts to be visible (which
would be gradient constant, level sets parallel and evenly spaced). In the exercises,
you are asked to look on a smaller scale if you have plotting software.
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Figure 11:The graphs are of the gradient vector fields for the functions r and r2

respectively. The vectors are all of length 1 for r (not defined at origin), but scale
linearly in size for r2.
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Figure 12:The plots are both the level sets and gradients of the functions r and r2

respectively. Note how the spacing of level sets is tied to the size of the gradient.
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Figure 13:The graphs are of the gradient vector fields and level sets for the poly-
nomial example. The second picture is a smaller scale picture.
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3.3.3 Directional derivatives and the gradient

Based on our discussion of linear functions, when we “think locally” we expect to
use the gradient vector to find the derivative in any fixed direction. The so-calleddi-
rectional derivative measures the instantaneous rate of change for the one-variable
function we obtain by only allowing changes in a fixed direction. Graphically we
are again slicing the graph, but now with vertical planes not necessarily aligned
with thex or y axis for a function of two variables (functions of three variables are
harder to picture, as the graph is in 4D). The result we guess is that for direction
vectorsu the directional derivative off in the directionu should be given by the
dot product of∇f with u.

A precise definition of directional derivative requires that we express such deriva-
tives as limits, as we did for the special case of partial derivatives in section 3.1. To
confirm our conjecture, we mimic the proof in 3.2 about differentiability.

Definition 3.23 The directional derivative of a scalar functionf in the direction
u at locationr is denoted byDuf(r) and is defined to be the following limit:

Duf(r) = lim
h→0

f(r + hu)− f(r)
h

.

To show thatDuf(r) = ∇f · u, we do a calculation similar to the proof above in
section 3.2 of differentiability assuming continuity of partial derivatives.

Theorem 3.24 Assumingf has continuous partial derivatives in a neighborhood
of a locationr, the directional derivative off in the directionu at locationr is
equal to∇f(r) · u.

Proof: Look at the limit, first in 2D. It has numeratorf(r + hu)− f(r). As in the
proof in section 3.2, pick as intermediate point the point with coordinates given by
r + hu1 i whereu1 is the first component ofu, and rewrite the numerator as

f(r + hu)− f(r) = f(r + hu)− f(r + hu1i) + f(r + hu1i)− f(r).

Then the first term involves only a change in the second coordinate, while the
second difference involves only a change in first coordinate. Using the mean value
theorem, there are pointsr1 andr2 so that

f(r + hu)− f(r + hu1i) = fy(r1)hu2, f(r + hu1i)− f(r) = fx(r2)hu1

and ash → 0, the pointsr1 andr2 tend to the locationr. After dividing byh and
taking the limit, the desired result holds.

Notice that this result implies that the directional derivative is positive ifu makes
an acute angle with∇f , negative if the angle is obtuse and zero ifu makes a
right angle with∇f . Recall that linear functions in two or more dimensions have
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directions where the function is constant (level sets are in these directions). This
extends to general differentiable functions, as we shall see shortly.

Moreover, the above result establishes thatthe gradient field of a function is al-
ways orthogonal to its level sets. This follows since in any direction orthogonal
to the gradient, we find the directional derivative is zero. Such a directional deriva-
tive is related to the derivative of the function along any path, so tangent vectors to
paths in the level set will lead to zero directional derivatives. An alternate view of
this will be given in the next section using the chain rule.

Differentials notation: In terms of differentials, the change in some direction
when infinitesimal will be written as the vector change:dr and then the change in
a function in such a direction becomes:

df = ∇f · dr.

This notation is extremely handy. The differential part appeared in line integrals in
Chapter 2 and the Fundamental Theorem for Line Integrals in Chapter 5 will use
both the gradient and the differential part.

3.3.4 Important cases: polar and spherical coordinate directions

From the notion of directional derivative, we can specialize to three very important
situations: polar coordinates in 2D and spherical and cylindrical coordinates in 3D.

In 2D, the direction of the unit radial vectorer is the vectorcos θi + sin θj. There-
fore we find the directional derivative in the radial direction to be

∇f · er =
∂f

∂x
cos θ +

∂f

∂y
sin θ.

Similarly the direction of the unit angular vectoreθ is the vector− sin θi + cos θj
and the directional derivative becomes:

∇f · eθ = −∂f

∂x
sin θ +

∂f

∂y
cos θ.

Since these unit direction vectors are everywhere orthogonal, this can be thought
of as describing the polar coordinates of the gradient vector field! You might guess
that there is another view of the polar coordinate version of the gradient field in-
volving the derivatives in the polar coordinatesr andθ. This is the chain rule,
described in the next section.

A similar calculation in cylindrical coordinate in 3D expresses the derivatives in
the three orthogonal directions found by adding az dependence. This becomes the
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following three relations:

∇f · er =
∂f

∂x
cos θ +

∂f

∂y
sin θ

∇f · eθ = −∂f

∂x
sin θ +

∂f

∂y
cos θ

∇f · ez =
∂f

∂z
.

In spherical coordinates(ρ, θ, φ), the corresponding formulas relate the gradient in
rectangular coordinates(x, y, z) to the spherical ones:

∇f · eρ =
∂f

∂x
cos θ sinφ +

∂f

∂y
sin θ sinφ +

∂f

∂z
cosφ

∇f · eθ = −∂f

∂x
sin θ +

∂f

∂y
cos θ

∇f · eφ =
∂f

∂x
cos θ cosφ +

∂f

∂y
sin θ cosφ− ∂f

∂z
sinφ

Once we have the chain rule in the next section, we will relate these to derivatives
in the cylindrical and spherical variables.

3.3.5 Vector-valued functions and the Jacobian matrix

For a vector valued functionv, written as a column vector withn rows, we get
v(x, y)− v(x0, y0) ≈ ∂v

∂x (x0, y0) · (x− x0) + ∂v
∂y (x0, y0) · (y − y0) as the linear

approximation and this creates amatrix with gradient vectors as the rows. Let-
ting the components ofv be calledvj the linear approximation for eachj is distinct
and only involvesvj , leading to a matrix form for the linear approximation:

v(x, y)− v(x0, y0) ≈




∇v1

∇v2
...

∇vn




(
x− x0

y − y0

)

and as usual a third entry for thez parts in 3D.

Alert readers recognize that this is the same matrix that appeared in the previous
section when discussing systems of linear approximation or equivalently systems
of differentials.

Example 3.25 Consider the two functionsu(x, y) = x2 − y2 andv(x, y) = 2xy
simultaneously, say as a vector with components(u, v). The corresponding Jaco-
bian matrix has rows∇u and∇v, which becomes the matrix:

(
2x −2y
2y 2x

)
.
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This says for approximating changes inu andv simultaneously, use matrix multi-
plication by this matrix, multiplying changes inx andy.

Note that in this example, the gradients of the two functions are always orthogonal
and neither is zero except at the origin in(x, y), so we expect the level sets to be
orthogonal even though the functions are clearly non-linear. The level sets form
a network of orthogonal hyperbolas, as may be seen in the level set plots below.
The second plot is a zoomed-in view nearx = 1, y = 1

2 and shows the local linear
behavior.
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Figure 14:The graphs are of the level sets of u = x2−y2 (red) and v = 2xy (blue).
The second picture is a smaller scale picture near (1, 1

2 ).

Below the level set plots is an attempt to plot the gradient fields simultaneously. It
has some defects in terms of our ability to read the pictures.
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Figure 15:The graphs are of the gradient fields of u = x2 − y2 (red) and v = 2xy
(blue). The second picture is a smaller scale picture near (1, 1

2 ).
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Notation for the Jacobian: There are a number of ways to denote the Jacobian
matrix. Some variations are due to using vectors or naming the components, while
others are more substantial and relate also to the distinction between a matrix and
the linear mapping it represents in some coordinates, as described briefly in Chapter
1.

The most common notation is the variation of Leibniz notation for a single partial
derivative: we write∂(u,v)

∂(x,y) for the example above, whereu andv are the compo-
nents in the range andx, y are coordinates in the domain. If the vectorU has the
components(u, v) the vector version of the notation would read:∂U

∂r . This is less
common. Other notations would beDU, J(u, v; x, y) andd(x,y)U.

Warning: Some authors use some of the above for the determinant of the matrix
rather than the matrix.

Using the Jacobian:The local behavior of the vector-valued function or a system
of several scalar functions considered simultaneously is captured by a Jacobian
matrix. Since the rows are the individual gradients, one finds that two rows being
proportional at some input value means the level sets near that point are tangential
to each other (same linear approximation to level sets). Be aware that the function
values may be wildly different (my income, Bill Gates’ income) yet have the same
linear approximation or related linear approximations proportional in all directions
(since I own fewer Microsoft shares than Bill), so we are not saying the graphs are
mutually tangent! Changes in the variables are in proportion.

Geometrically, when level sets are not tangent to one another, they form a local
grid which locally is formed of parallel pieces. In 2-D, two functions with non-
tangent level sets form a grid of parallelograms while in 3-D, two functions form
families of planes and it takes three different families to create a coordinate grid
(parallelepipeds). This relates to our differentials discussion and our earlier dis-
cussion in Chapter 1 about systems of equations: the determinant of the Jacobian
describes the signed area or volume of the local level sets!

3.3.6 Some more gradient field plots in 2D and 3D

Gradient fields have a special structure, to be described fully in Chapter 5. For
now we content ourselves with practicing computations and viewing plots of gra-
dient fields and level sets. These will be similar to viewing plots of the function
and derivative in one variable calculus. Unlike one-variable calculus, we will not
typically be plotting the second derivative, since for a scalar function in 3D the
second derivative function will be a3× 3 matrix-valued function! Instead, we will
be deeply concerned with what information the second derivative conveys, but re-
late it back to the original function by quadratic approximation, the next level of
refinement beyond the linear approximation.

Example 3.26 Consider the functionu(x, y) = x
x2+y2 . Find the gradient field and

plot it in two scales near(1, 1).



40 Chapter 3 Draft October 23, 2009

Solution: ∇u(x, y) = y2−x2

(x2+y2)2
i+ −2xy

(x2+y2)2
j. The gradient fields are plotted below.

Note that as we zoom in, the vector field becomes more like a constant vector field,
namely∇u(1, 1) = −1

2 j.
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Figure 16:The graphs are of the gradient fields of u near (1, 1), with the second
plot in a smaller scale.

Example 3.27 Consider the functionsw(x, y, z) = x2 + y2 + z2 andρ(x, y, z) =√
x2 + y2 + z2, and find their gradient fields. Plot the fields and discuss what you

see.
Solution: ∇w = 2xi+2yj+2zk = 2r, while∇ρ = r/ρ = eρ, a unit vector. This
is the 3-D version of our earlier discussion. The gradient fields are harder to read
in 3-D, but appear below.
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Figure 17:The graphs are of the gradient fields of w and ρ. Note that the magni-
tude decreases near the origin for w.
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3.3.7 EXERCISES

Writing: Explaining, Reacting, Questioning

1. Consider two functionsf(x, y) andg(x, y). If some level set off intersects
a level set ofg at a point(x0, y0), how could you define the angle of inter-
section using tangent vectors to the level sets? How could you use normal
vectors instead? Which one works better for the intersection off(x, y, z)
andg(x, y, z) level sets in 3-D?

2. If we are considering the restriction off(x, y) to a level set ofg(x, y) and
the point(x0, y0) is a local maximum for this restricted function, what can
you say about the gradient off at this point, assuming it exists? In particular,
must the gradient be the zero vector there? Recall problem ?? from section
1 which looked along coordinate axes, which is a simple form ofg.

3. Looking at the components of the 2-D gradient field in the directionser and
eθ, one would expect to reconstruct the gradient vector using these compo-
nents. Show that this leads back to the same vector by substitution for the
unit vectorser andeθ in terms of the usual vectorsi andj.

4. Consider the functionx2− y2. For the level setx2− y2 = 1, which consists
of two branches of a hyperbola, find the gradient vector, then by solving for
y in terms ofx and viewing the level set as a graph, confirm that the gradient
vector is orthogonal to the level set at every point.

5. For the level setx2 − y2 = 0 something different happens at(0, 0). Draw a
picture of the level set and describe why the picture would suggest that the
gradient is either zero at the origin or does not exist (which is clearly not
happening in this example). Formulate your answer as a general principle
and then check it for the level sets ofH(x, y) = 1

2y2 + 1− cosx, for values
H = 0 andH = 2. Level sets ofH are important sets in the dynamics of a
simple non-linear oscillator (frictionless pendulum).

6. Consider a differential equation in the formr′(t) = v(r(t)), what condi-
tion(s) guarantee that for some scalar functionH(r), the composite function
h(t) = H(r(t)) is constant as a function oft? Increasing? Decreasing?

7. Given a differential equation in the formr′(t) = v(r(t)), what condition(s)
guarantee that for some scalar functionH(r), the composite functionh(t) =
H(r(t)) is constant as a function oft? Increasing? Decreasing?

Calculational Exercises
For problems 1-8 find the gradient vector at the indicated point in the domain:

1. f(x, y) = x2 − y2 at (2, 4).

2. f(x, y) = y + e2x cos 3 y at (0, π).
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3. f(x, y) = sin(2x + 3y) + 2 cos(2x + 3y) at (π/8, π/4).

4. f(x, y) = 1
x + 1

y at (1, 3).

5. g(x, y, z) = 1
2 ln(x2 + y2 + z2) at (3, 6, 6).

6. u(x, y) = sin 2x e−4y at (π/4, 1).

7. w(x, y) = 1√
16−x2−y2

at (−1, 2).

8. q(x, y) = e−x2−4xy−8y2
at (−2,−1).

For problems 9-16 find the gradient vector field at all points in the domain:

9. f(x, y) = x4 − 6x2y2 + y4

10. g(x, y) = cosx sin y

11. u(x, y) = e−x2
cos y

12.

13.

14.

15. θ(x, y) = tan−1(y/x)

16. φ(x, y, z) = tan−1(
√

(x2+y2)

z )

17. Show that the functionsu(x, y) = x4 − 6x2y2 + y4 andv(x, y) = 4x3 y −
4x y3 have orthogonal gradient vectors at all points in the plane.

For problems 25-32, Computer Problems: plot the functions in both domains
and describe what happens to the graphs as we zoom in. Do your results
suggest the function is differentiable? Why or why not? Remember to watch
out for automatic rescaling in the plots.

18.

19.

20.

21.

22.

23.

24.

25. For problems 33-42 Computer Problems:

26. For problems 25-30, match the listing of gradient plots with the listing of
level set plots.




