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level sets of the corresponding transformations are plotted. The orthogo-
nality of the gradient to the level sets of the function extends from lipear
functions to differentiable functions.

3.3.1 Linear functions yet again and dot product

In 2D, a homogenous linear scalar function takes the general form:
f(xz,y) = Ax + By, where A and B are constants

and, as discussed in Chapter 1, such functions have special properties. In particular,
their values are defined everywhere and the level sets are equally spaced parallel
lines. The vectordi + Bj is orthogonal to the level sets. As we move in any
particular direction, the function values will typically change by the dot product
with the fixed vector (it doesn’t change along the level sets!) and the largest change
will be in the directiond i+ B j. A direct calculation withe = A andy = B shows

that the change itf in that case is exactiy> + B? and clearly positive. Thus the
vectorA i+ B j points in the direction of maximal change and the change per step
length in that direction is the ratio:

change in f A2 + B2
change in distance /A2 + B2 VAZ+ B2

which is the magnitude of the vector. In 3D, a similar expression adds a term
C z, the level sets become parallel planes, and again the largest positive change in
the linear function occurs in the normal direction= A,y = B,z = C and has
magnituded? + B2 + C? so the largest rate of changeisA2 + B2 + C2. Recall

also that in 3-D a linear function is unchanged in two directions within the level
set.

Vector notation makes things neater: we can wte + By asv - r wherev =
Ai+ Bjandasusual = xi+ yj. The 3D version uses similar notation but with
each vector having three components. The maximal rate of change is the magnitude
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of v and occurs in that direction. Observe that the componenisoé the partial
derivatives off whenf is linear! Also, for linear functions, changes in outputs are

the same no matter where we start and only depend on the changes in inputs, so to
find the change in function values we take the dot producti, which finds the

rate of change of in any fixed direction..

This leads us to use the linear approximation and the above algebra to determine
how differentiable functions behave locally. Recall that the general principle is
continuity means locally constant as first approximation, while differentiability re-
fines that to add a linear approximation for the local change.

3.3.2 Gradient vector in 2D and 3D

Using our heuristic of “think locally”, we expect that differentiable functions in
general will have similar local behavior to their linear approximations. In particu-
lar, near a given pointg, the linear approximation to the local change in a scalar
function will again have a dot product structure of a vector, now calledtadi-

ent vector, paired with the change in location. The instantaneous rate of change
in any fixed direction will be the dot product of the gradient vector with the direc-
tion of the change. The gradient vector is typically dendfgdand sometimes as
grad(f). The downward pointing triangular vector symbol is calledabld’. The
gradient vector points in the direction of maximal change and the maximal rate of
change will be the magnitude of the gradient vector. But when we “act globally”
we expect that unlike the linear case, the gradient vector will vary as we vary the
locationry.

In terms of its components, the gradient vectarat yo ) is given by the definition:

af . Of ..
) 97 2D.
V f(z0,y0) aw(l"o’yo)l*' By (x0,90)j in

In 3D the gradient vector adds a third component to become

0 .0 . 0
V f(zo0,Y0,20) = a*ﬁ(wo,ym 20)i + 55(33073/07 20)j + a*ﬁ(mo, Y0, 20 k.

As in one-variable calculus, in the multivariable context differentiation creates a
derivative function. However this is nowwector-valued function out of a scalar
function and amatrix-valued function out of a vector-valued function. We will
view the functionV f(z,y) or V f(z,y, z) as a vector field when we want to visu-
alize its behavior in a domain. Visualizing matrix-valued functions is much harder
and might be done by looking at several vector fields simultaneously. Recalling
our earlier discussion of dot products in Chapter 1, the gradient vector is usually a
row vector when written as a matrix.

The gradient field plot is the higher dimensional analog of the graph of the deriva-
tive function in one variable so developing your visual and symbolic understanding
of the gradient field is an essential task. Note that we usually drop the word “vec-
tor” off the gradient vector field.
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Example 3.20 The basic functioryf (z,y) = r = /a2 + y? is the distance from
the origin to the poin{z, y) so it increases as we move away from the origin. Its
gradient vector in components(s/r, y/r), which is the unit radial fielé,. Thus

r has gradient vectoe,. It increases at maximal rate in the radial directien
and the maximal rate of change is of size 1.

The level sets of (z,y) = r are equally spaced circles and the gradient field, being
radial is clearly orthogonal to the circles. The equal spacing tells us the gradient
field has constant magnitude.

Example 3.21 g(z,y) = r?> = 2? + %2 has gradient in component{&z, 2y) so

Vg = 2r = 2re,. Note that the circles? + 32 = r? are level sets of botlf and

g, but with different spacing, which reflects the different magnitudes of the gradient
vectors. Note also the fact@r, which is the derivative af? in the variabler.

In the exercises you will be asked to extend this observation to a general radial
functiong(r) and relate the gradient to the derivatiyér).

Here we show the plots of the functionsand 2, showing level sets and then
gradient fields and finally both level sets and gradients fields together.

levelsets of r level sets of r"2

=
@
N /

Figure 10:The plots are the level sets of the functions » and 2 respectively. Notice
that the spacing is quite different.
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Example 3.22If v(z,y) = 2% + 2%y + xy® + 3 thengrad(v) = (322 + 2zy +
y®, 2% + 2xy + 3y°).

Here are plots of the contours and gradient field together for this example, the
second in a smaller scale, where the linear approximation starts to be visible (which
would be gradient constant, level sets parallel and evenly spaced). In the exercises,
you are asked to look on a smaller scale if you have plotting software.
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Figure 11:The graphs are of the gradient vector fields for the functions r and r2
respectively. The vectors are all of length 1 for » (not defined at origin), but scale
linearly in size for r2.

Gradient field and contours for r gradientfield and contours for r2

Figure 12:The plots are both the level sets and gradients of the functions » and 2
respectively. Note how the spacing of level sets is tied to the size of the gradient.
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Figure 13:The graphs are of the gradient vector fields and level sets for the poly-
nomial example. The second picture is a smaller scale picture.
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3.3.3 Directional derivatives and the gradient

Based on our discussion of linear functions, when we “think locally” we expect to
use the gradient vector to find the derivative in any fixed direction. The so-ciled
rectional derivative measures the instantaneous rate of change for the one-variable
function we obtain by only allowing changes in a fixed direction. Graphically we
are again slicing the graph, but now with vertical planes not necessarily aligned
with thez or y axis for a function of two variables (functions of three variables are
harder to picture, as the graph is in 4D). The result we guess is that for direction
vectorsu the directional derivative of in the directionu should be given by the

dot product ofV f with u.

A precise definition of directional derivative requires that we express such deriva-
tives as limits, as we did for the special case of partial derivatives in section 3.1. To
confirm our conjecture, we mimic the proof in 3.2 about differentiability.

Definition 3.23 The directional derivative of a scalar functighin the direction
u at locationr is denoted byD,, f(r) and is defined to be the following limit:

Dufte) = pim 1410 = S10)

To show thatD,, f(r) = V f - u, we do a calculation similar to the proof above in
section 3.2 of differentiability assuming continuity of partial derivatives.

Theorem 3.24 Assumingf has continuous partial derivatives in a neighborhood
of a locationr, the directional derivative of in the directionu at locationr is
equal toV f(r) - u.

Proof: Look at the limit, firstin 2D. It has numeratffr + hu) — f(r). Asin the
proof in section 3.2, pick as intermediate point the point with coordinates given by
r + huy i whereu; is the first component af, and rewrite the numerator as

f(r+hu) = f(r) = f(r+hu) — f(r+hwi)+ f(r+huii) — f(r).

Then the first term involves only a change in the second coordinate, while the
second difference involves only a change in first coordinate. Using the mean value
theorem, there are points andrs so that

f(r+hu) — f(r+ hwi) = fy(r1)hue, f(r+hwi)— f(r) = fz(r2)hu

and ash — 0, the pointsr; andrs tend to the locatiom. After dividing by h and
taking the limit, the desired result holds.

Notice that this result implies that the directional derivative is positivenfiakes
an acute angle with/ f, negative if the angle is obtuse and zeraiifmakes a
right angle withV f. Recall that linear functions in two or more dimensions have
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directions where the function is constant (level sets are in these directions). This
extends to general differentiable functions, as we shall see shortly.

Moreover, the above result establishes thatgradient field of a function is al-

ways orthogonal to its level setsThis follows since in any direction orthogonal

to the gradient, we find the directional derivative is zero. Such a directional deriva-
tive is related to the derivative of the function along any path, so tangent vectors to
paths in the level set will lead to zero directional derivatives. An alternate view of

this will be given in the next section using the chain rule.

Differentials notation: In terms of differentials, the change in some direction
when infinitesimal will be written as the vector change:and then the change in
a function in such a direction becomes:

df =V f-dr.

This notation is extremely handy. The differential part appeared in line integrals in
Chapter 2 and the Fundamental Theorem for Line Integrals in Chapter 5 will use
both the gradient and the differential part.

3.3.4 Important cases: polar and spherical coordinate directions

From the notion of directional derivative, we can specialize to three very important
situations: polar coordinates in 2D and spherical and cylindrical coordinates in 3D.

In 2D, the direction of the unit radial vecter. is the vectokos #i + sin 8j. There-
fore we find the directional derivative in the radial direction to be
of of .

Vf-e = a—xcosﬁ—i—a—ysmﬁ.

Similarly the direction of the unit angular vectey is the vector— sin 6i + cos 6]
and the directional derivative becomes:
of of

Vf- e = —%Sin9+@COS9.

Since these unit direction vectors are everywhere orthogonal, this can be thought
of as describing the polar coordinates of the gradient vector field! You might guess
that there is another view of the polar coordinate version of the gradient field in-
volving the derivatives in the polar coordinategind¢. This is the chain rule,
described in the next section.

A similar calculation in cylindrical coordinate in 3D expresses the derivatives in
the three orthogonal directions found by addingdependence. This becomes the
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following three relations:

of of .

Vf-e = a£cos€+aysm9
o of ., 0f

Vf-e = a/Esme—kaycose
_ 9f

Vice: = 5

In spherical coordinate®, 6, ¢), the corresponding formulas relate the gradient in
rectangular coordinatés, y, z) to the spherical ones:

_ of . of ., . of
Vf-e = O:UCOSG Slngb—}—ay sin 0 Slnd)—{—az cos ¢

Vf-e = gﬂ{sinﬁJrg‘l};cosH

Vf-e = gicose cos¢+g‘£sin9 cosgb—gif sin ¢

Once we have the chain rule in the next section, we will relate these to derivatives
in the cylindrical and spherical variables.

3.3.5 Vector-valued functions and the Jacobian matrix

For a vector valued functiosr, written as a column vector with rows, we get
v(z,y) — v(zo,yo) =~ %(ZIIo,yo) (z—xo) + %(ZL‘Q,yo) - (y — yo) as the linear
approximation and this createsratrix with gradient vectors as the rows Let-

ting the components of be calledv; the linear approximation for eaghis distinct

and only involves;, leading to a matrix form for the linear approximation:

Vo
VUQ _
Vg,

and as usual a third entry for theparts in 3D.

Alert readers recognize that this is the same matrix that appeared in the previous
section when discussing systems of linear approximation or equivalently systems
of differentials.

Example 3.25 Consider the two functions(z,y) = 22 — y? andv(z, y) = 2zy
simultaneously, say as a vector with componént®). The corresponding Jaco-
bian matrix has rowd/« and Vv, which becomes the matrix:

2x —2y
2y 2z )
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This says for approximating changesurandv simultaneously, use matrix multi-
plication by this matrix, multiplying changes inandy.

Note that in this example, the gradients of the two functions are always orthogonal
and neither is zero except at the origin(in y), so we expect the level sets to be
orthogonal even though the functions are clearly non-linear. The level sets form
a network of orthogonal hyperbolas, as may be seen in the level set plots below.
The second plot is a zoomed-in view neate 1,y = % and shows the local linear
behavior.

Figure 14:The graphs are of the level sets of u = z? — y? (red) and v = 2zy (blue).
The second picture is a smaller scale picture near (1, %).

Below the level set plots is an attempt to plot the gradient fields simultaneously. It
has some defects in terms of our ability to read the pictures.
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Figure 15:The graphs are of the gradient fields of u = 2% — y? (red) and v = 2zy
(blue). The second picture is a smaller scale picture near (1, %).
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Notation for the Jacobian: There are a number of ways to denote the Jacobian
matrix. Some variations are due to using vectors or naming the components, while
others are more substantial and relate also to the distinction between a matrix and
the linear mapping it represents in some coordinates, as described briefly in Chapter
1.

The most common notation is the variation of Leibniz notation for a single partial
derivative: we write% for the example above, wheteandv are the compo-
nents in the range and y are coordinates in the domain. If the vectérhas the
componentgu, v) the vector version of the notation would re%r%. This is less
common. Other notations would BeU, J(u, v; z,y) andd, ,U.

Warning: Some authors use some of the above for the determinant of the matrix
rather than the matrix.

Using the Jacobian: The local behavior of the vector-valued function or a system

of several scalar functions considered simultaneously is captured by a Jacobian
matrix. Since the rows are the individual gradients, one finds that two rows being
proportional at some input value means the level sets near that point are tangential
to each other (same linear approximation to level sets). Be aware that the function
values may be wildly different (my income, Bill Gates’ income) yet have the same
linear approximation or related linear approximations proportional in all directions
(since | own fewer Microsoft shares than Bill), so we are not saying the graphs are
mutually tangent! Changes in the variables are in proportion.

Geometrically, when level sets are not tangent to one another, they form a local
grid which locally is formed of parallel pieces. In 2-D, two functions with non-
tangent level sets form a grid of parallelograms while in 3-D, two functions form
families of planes and it takes three different families to create a coordinate grid
(parallelepipeds). This relates to our differentials discussion and our earlier dis-
cussion in Chapter 1 about systems of equations: the determinant of the Jacobian
describes the signed area or volume of the local level sets!

3.3.6 Some more gradient field plots in 2D and 3D

Gradient fields have a special structure, to be described fully in Chapter 5. For
now we content ourselves with practicing computations and viewing plots of gra-
dient fields and level sets. These will be similar to viewing plots of the function
and derivative in one variable calculus. Unlike one-variable calculus, we will not
typically be plotting the second derivative, since for a scalar function in 3D the
second derivative function will beZax 3 matrix-valued function! Instead, we will

be deeply concerned with what information the second derivative conveys, but re-
late it back to the original function by quadratic approximation, the next level of
refinement beyond the linear approximation.

Example 3.26 Consider the function(x,y) =
plot it in two scales neafl, 1).

. Find the gradient field and

- _
x2+y2
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Solution: Vu(z,y) = (ji[;; Si+ (I;ffé’ »j. The gradient fields are plotted below.
Note that as we zoom in, the vector field becomes more like a constant vector field,
namelyVu(1,1) = —3j.
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Figure 16:The graphs are of the gradient fields of « near (1, 1), with the second
plot in a smaller scale.

Example 3.27 Consider the functions (z,y, z) = 2% 4+ y> + 22 andp(z, y, 2) =

V22 + y? + 22, and find their gradient fields. Plot the fields and discuss what you
see.

Solution: Vw = 2zi+2yj+ 22k = 2r, whileVp = r/p = e,, a unit vector. This

is the 3-D version of our earlier discussion. The gradient fields are harder to read
in 3-D, but appear below.

Figure 17:The graphs are of the gradient fields of w and p. Note that the magni-
tude decreases near the origin for w.
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3.3.7 EXERCISES

Writing: Explaining, Reacting, Questioning

1.

Consider two functiong (z, y) andg(z, y). If some level set of intersects

a level set ofy at a point(zg, y0), how could you define the angle of inter-
section using tangent vectors to the level sets? How could you use normal
vectors instead? Which one works better for the intersectiofi ofy, z)
andg(z,y, z) level sets in 3-D?

. If we are considering the restriction ¢fx, y) to a level set ofy(x,y) and

the point(xo, yo) is a local maximum for this restricted function, what can
you say about the gradient gfat this point, assuming it exists? In particular,
must the gradient be the zero vector there? Recall problem ?? from section
1 which looked along coordinate axes, which is a simple form of

Looking at the components of the 2-D gradient field in the directersnd

ey, one would expect to reconstruct the gradient vector using these compo-
nents. Show that this leads back to the same vector by substitution for the
unit vectorse, andey in terms of the usual vectoisandj.

. Consider the function? — y2. For the level set? — y? = 1, which consists

of two branches of a hyperbola, find the gradient vector, then by solving for
y in terms ofz and viewing the level set as a graph, confirm that the gradient
vector is orthogonal to the level set at every point.

For the level set? — y? = 0 something different happens @ 0). Draw a
picture of the level set and describe why the picture would suggest that the
gradient is either zero at the origin or does not exist (which is clearly not
happening in this example). Formulate your answer as a general principle
and then check it for the level sets B(z, y) = y* + 1 — cos z, for values

H =0andH = 2. Level sets of are important sets in the dynamics of a
simple non-linear oscillator (frictionless pendulum).

Consider a differential equation in the forrh(¢) = v(r(¢)), what condi-
tion(s) guarantee that for some scalar functibfr), the composite function
h(t) = H(r(t)) is constant as a function ¢? Increasing? Decreasing?

. Given a differential equation in the forni(t) = v(r(¢)), what condition(s)

guarantee that for some scalar functid(r), the composite functioh(t) =
H(r(t)) is constant as a function ¢? Increasing? Decreasing?

Calculational Exercises
For problems 1-8 find the gradient vector at the indicated point in the domain:

1.

2.

f(:r,y) =a2? — ?]2 at(274)'

f(z,y) =y +e**cos3yat(0, ).
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f(z,y) = sin(2x + 3y) + 2 cos(2x + 3y) at(7/8,7/4).
(x,y) = % + i at(1,3).

z,y,2) = 3 In(z? + y? + 2?) at(3,6,6).

I

(
(z,y) = sin2z e~ at (r/4,1).
! at(—1,2).

- w(z,y) = Vi6-a? g2

gz, y) = e A8y gt (—2, —1).

For problems 9-16 find the gradient vector field at all points in the domain:

- fly) = 2t — 62%y? + o
10.
11.

g(z,y) = cosz siny

z2

u(x,y) =e " cosy

12.
13.
14.

15.

16.
17.

0(x,y) = tan"! (y/x)
6,9, ) = tan~1 (L)

Show that the functions(z, y) = 2* — 622y + y* andv(z,y) = 423y —
4z y3 have orthogonal gradient vectors at all points in the plane.

For problems 25-32, Computer Problems: plot the functions in both domains
and describe what happens to the graphs as we zoom in. Do your results
suggest the function is differentiable? Why or why not? Remember to watch
out for automatic rescaling in the plots.

18.
19.
20.
21.
22.
23.
24,

25
26

. For problems 33-42 Computer Problems:

. For problems 25-30, match the listing of gradient plots with the listing of
level set plots.





