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1.2 Dot Product of Two Vectors (aka Scalar Product)

Overview: The dot product of two vectors is an algebraic operation that
is important to understand both geometrically and algebraically. It forms
the basic tool for orthogonal projection, which describes how we view 3-D
objects on 2-D screens. Projection onto 1-D objects is also important since
it describes how much one vector points in a second vector direction.

A more complicated vector operation arises from the following question: how
much does the wind push me along the direction of a straight path? This requires
the calculation of the component of one of the vectors (the wind) in the direction
of a second vector (the direction of my path). This problem is already familiar to
us when we think about triangle trigonometry. The component of one vector in the
direction of the second vector is given by the magnitude of the first multiplied by
the cosine of the angle between the two vectors. This description is independent
of a choice of coordinates but is it not particularly easy to calculate if our coordi-
nate choice is already made. Therefore we will derive that expression in terms of
coordinates.

To make the algebra easier (by being more symmetrical in the vectors), the object
we will consider is the product of the length ofeach vectormultiplied by the
cosine of the angle between them. This object will turn out to be a special kind of
product with the property that it is additive in each factor. To see this it is easier
to use the coordinate description! This illustrates the power of having multiple
representations for the same object.

1.2.1 Dot product defined geometrically

Definition 1.17 Thedot product of the vectorsa andb is defined to be thescalar

|a| |b| cos θ, where θ is the angle between the vectors

and it usually denoteda · b, which explains the name of dot product.

Consequences of the geometric formula:

• The dot product is symmetric in the vectors:a · b = b · a.

• If either vector is scaled, the dot product scales in the same way. So ifa ·b =
2, it follows that(3a) · b = 6.

• The dot product of the zero vector with any other vector is zero:a · 0 = 0.

• The dot product of any vector with itself is the length squared:a · a = |a|2.
• The dot products of two distinct standard unit coordinate vectors is zero,

thereforei · j = 0 in 2-D and in 3-Di · j = j · k = k · i = 0.
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• The dot product of any two vectorsa andb satisfies the double inequality:
−|a||b| ≤ a · b ≤ |a||b|

• In rotated coordinates, the dot product is unchanged. Also if we rotate both
vectors simultaneously in time, the dot product is constant no matter how the
rotation happens in time.

Important remark: Unlike multiplication of numbers, it is possible for the dot
product to be zero without either ‘factor’ being the zero vector. This occurs when
the cosine factor is zero rather than the magnitudes and therefore happens when
the vectors make a right angle with each other.

Definition 1.18 Two vectors are said to beorthogonal when the angle between
them is a right angle, or equivalently when their dot product is zero.

Shortcomings of the geometric formula:Finding the dot product of vectors es-
pecially with given coordinates may be somewhat lengthy. As well, if we wish to
understand how the dot product relates to vector addition, the geometric version is
not particularly easy.

1.2.2 Algebraic version in coordinates

Coordinate version in a special case:To create the coordinate version in general,
first consider the special choice of coordinates where the first vector is lined up
with thex coordinate vector and both vectors live in a 2-D plane. We record this
result in a lemma:

Lemma 1.19 The dot product of the vectorsa andb with components< a1, 0 >
and< b1, b2 > equalsa1 b1.

The lemma follows directly by writing|a| = a1, |b| cos θ = b1 (from basic
trigonometry) and then calculatinga1 b1.

Law of cosines recalled and general coordinates in 3-D:The lemma is very
useful since it allows us to recall the law of cosines from trigonometry (and its
proof!), namely that if the vectorsa andb with lengthsa andb and angle between
themθ form the sides of a triangle lying in the usual coordinate plane, then the
third side (b − a) has its length (c) given by the following generalization of the
Pythagorean theorem:

c2 = a2 + b2 − 2ab cos θ

which is shown by calculating the square of the distance between the points with
coordinates(a, 0) and(b cos θ, b sin θ):

c2 = (b cos θ − a)2 + (b sin θ − 0)2
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and using our favorite trig identity. The calculation is left as an exercise.

The geometry of the law of cosines is unchanged when using general locations
in 3-D, so the law of cosines must be true in the general case. Note how special
coordinate choices were exploited to deduce a general fact.

If the law of cosines is manipulated, an expression for the dot product is created
that can be evaluated in general rectangular coordinates in 3-D.

Theorem 1.20 For vectors in standard component form:a =< a1, a2, a3 >,
b =< b1, b2, b3 > the following result always holds:

a · b =
1
2
(|a|2 + |b|2 − |b− a|2) = a1 b1 + a2 b2 + a3 b3.

This is the easiest way to calculate a dot product when the components of the
vectors are known. Moreover it leads to some other important properties that are
more difficult to establish using the geometric (coordinate free) definition.

Consequences of the coordinate formula:The following facts are easier to show
in coordinates:

• For any vectorsa,b, andc: a · (b + c) = a · b + a · c.
• For any vectora, each of the vectors with components given below are or-

thogonal toa: < 0, a3,−a2 >,< −a3, 0, a1 >,< a2,−a1, 0 > and there-
fore so is their sum:< a2 − a3, a3 − a1, a1 − a2 >. Note how these relate
when applying the cyclic rotation.

• The equationAx+By +Cz = 0 for unknown< x, y, z > components of a
vector for given values ofA,B, C represents the set of all vectors orthogonal
to the given vector< A, B, C > . This defines a plane orthogonal to the
given vector.

Some examples:

Example 1.21

Remark: If the dot products of the standard coordinate vectors with each other are
used and linearity is assumed, then

a · b = a = (a1i + a2j + a3k) · (b1i + b2j + b3k) = a1 b1 + a2 b2 + a3 b3.

Direction cosines: For a givenunit vector u, the dot products with the usual
coordinate unit vectors are called thedirection cosinesof the vector. From the dot
product definition, the anglesα, β, γ that the vector makes with thex, y andz axes
satisfy the relation:

cos2 α + cos2 β + cos2 γ = 1
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Picture goes here

1.2.3 Projections

The dot product can be used to project orthogonally. This follows from the ap-
pearance of the cosine in the geometric formula. While in 2-D there is only one
scenario, which is projection onto a 1-D space, in 3-D we could in principle project
onto 1-D and 2-D spaces like thez axis or thex− y plane. Those examples can be
written down in coordinates, but the general case is best described in vector algebra
form.

Example 1.22 The projection of the vectorr =< x, y, z > to the corresponding
vector in thex − y plane is< x, y, 0 > and to the vector along thez axis is
< 0, 0, z >. Thus< 1, 2, 3 > projects to< 1, 2, 0 > in thex− y plane.

Note from this example, which was likely very comfortable for you, that the two
parts add up to the original vector. So for a general situation in 3-D, the 1-D part
generated in the direction of a given fixed vector and the 2-D part orthogonal to it
will add up to the original vector. Finding one piece will automatically create the
other by subtraction.

For a given fixed non-zero vectora, every vectorv can be decomposed into a piece
in the direction ofa and a piece orthogonal toa, each projected orthogonally. For
the part in the direction ofa, the answer should have size given by|v| cos θ =
(a · v)/|a so we have using the dot product and some notation which should be
clear:

Proja(v) =
a · v
|a|

a
|a| =

a · v
|a|2 a

Lengths and areas under projection: The length of a vector when projected
is shortened by the factorcos θ as noted above. In 3-D, there can also be 2-D
objects that are projected onto a plane, in which case the area is also decreased
by multiplying by the cosine of the angle between the planes. This can be seen
by considering the axes in the direction of the common line of intersection of two
planes and in an orthogonal direction in the target plane. One direction is not
rescaled at all while the other is shortened by a cosine factor.

Using the direction cosines by considering either the projection onto coordinate
axes or the projection onto coordinate planes, there are then two versions of Pythagorean
theorems, one for lengths and one for planar areas, each of which involves the sum
of squares.

Example 1.23 Consider the triangle with vertices(1, 0, 0), (0, 1, 0) and (0, 0, 1)
and show that the projected areas onto the coordinate planes, when squared, add
up to the square of the triangle’s area.
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Solution: The projected triangles are all congruent since the vertices are at sym-
metric points. The projected triangles are right triangles with side lengths of1, so
each has area12 . The sum of the squares is then3

4 . The original triangular region is

an equilateral triangle of side lengths
√

2 so it has area
√

3
2 which squares to34 as

claimed.

Dot products will be employed many times in the remainder of this course. The
exercises below will develop your conceptual and computational understanding of
this important topic. You have likely already seen this idea in your precalculus
experience. As well, it is often used to describe how we multiply matrices.
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1.2.4 EXERCISES

Writing: Explaining, Reacting, Questioning

1. What does the relationa · b = b · a say about the relation of projecting the
vectora in the direction ofb compared to the projection ofb in the direction
of a?

2. Many textbooks define the dot product directly in coordinates. List the main
advantages and disadvantages of doing things that way. Find a book that
defines the dot product in coordinates and read how the author(s) show that
it has the geometric property used as the definition above. Did you find that
easy or hard to follow? Why?

3. In the geometric definition of the dot product, it follows that rotating the
coordinate system about the origin doesn’t change the dot product. How
would you show that fact for the coordinate formula in 2-D? In 3-D?

4. Using polar coordinates in 2-D and the coordinate formula for the dot prod-
uct, show that the dot product in two variables depends only on the angle
between the two vectors and is in fact the geometric version used as the def-
inition.

5. Using spherical coordinates(φ, θ) for two points on the unit sphere, with
coordinates(φ1, θ1) and (φ2, θ2) respectively, find the cosine of the angle
between them expressed in terms of the spherical coordinates. Discuss the
special cases whenθ1 = θ2 orφ1 = φ2. Explain why the results are different.
Also note that the angle between the two vectors is the length of the arc
between them on the sphere, so you have found a formula for the distance
along the surface of the sphere for spherical coordinates.

6. Showing that the dot product of vectors in 3-D is unchanged when we rotate
the coordinate system is not easy if we try a direct assault. Anita Solushun
notices that once you show it for the 2-D case, you could do any number of
rotations in the three coordinate planes (which freeze one coordinate for both
vectors while changing the other two). Assuming Euler’s result that three
such rotations will take any coordinate frame into another in 3-D, describe
how that could show that the coordinate formula is the same in the rotated
coordinates.

7. In physics, the force is tied to the acceleration via Newton’s famous law.
When a body moves down an inclined plane under gravity, can gravity be
the only force present? As the plane becomes more inclined, what changes?
What happens in the limit of a vertical incline? Galileo used the limit of
inclined planes to conclude that the classic falling body under the influence
of a constant force of gravity will fall a distance proportional tot2 wheret is
the elapsed time. He did this by listening to the rhythm of a ball rolling down
inclined planes over bumps spaced liket2 as he varied the incline angle.
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8. Does the dot product have all the features you would expect when using the
word “product”? If not, what features are different? If so, what features did
you check? (You missed some.) Do you think it should be called a product
or should it have another name?

9. Given three vectors in 3-D, how could you use the dot product to check
whether the third vector lies in the plane generated by the first two (or the
line if they are proportional)?

10. Given two vectors in 2-D, how could you use the dot product to modify the
second vector by subtracting a scalar times the first vector to create a vector
orthogonal to the first one? When will this new vector be non-zero?

11. (Extension of previous problem) Answer the same question when the two
vectors are in 3-D. Then consider a third vector as well and describe how to
subtract multiples of the first two (or the first two after modification) to make
a new third one orthogonal to the first two.

Calculational Exercises
For problems 1 to 12, find the indicated dot products:

1. (Pythagorean theorem for projected areas)

2. (coordinate axes and cyclic rotation revisited) Consider the usual coordinate
unit vectorsi, j, k, and project them on the plane given by the normal vector
i + j + k by subtracting from each the component in the direction of the
normal. Show that these projected vectors form angles of±2π/3 with each
other using the dot product.


