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3.8 Finding Antiderivatives; Divergence and Curl of a Vector Field

Overview: The antiderivative in one variable calculus is an important concept.
For partial derivatives, a similar idea allows us to solve for a function whose partial
derivative in one of the variables is given, as seen earlier. However, when several
partial derivatives of an unknown function are given simultaneously, there may
not be any function with those values! In particular, the gradient field for smooth
functions must respect Clairaut’s theorem, so not every vector field is the gradient
of some scalar function! This section explores these questions and in answering
them, introduces two very important additional vector derivatives, the Curl and
Divergence.

3.8.1 Solving∇f = v for f givenv

Looking back: Recall how antiderivatives were introduced in one variable calcu-
lus: to findF with a given derivativef , you learned:

1. Forf given by a simple formula, guess and check led to an antiderivativeF .

2. Any other anti derivativeG had the propertyG = F + C.

3. When all else fails, any continuousf has anti-derivativeF (x) =
∫ x
a f(t) dt

for any fixeda.

Earlier in this chapter the corresponding result for a single partial derivative
was found to be similar, except that instead of adding constants to get new solutions
from old ones, functions independent of the single variable could be added.

The gradient vector has partial derivatives in components, so we might expect that
this result would allow us to solve the system of equations∇G = v. This consists
of n simultaneous equations in dimensionn. This is partially correct, but a new
twist emerges: not every vector fieldv is a gradient field!

The following simple example illustrates the difficulty:

Example 3.44 An example in 2D: solve forG so that∂G
∂x = x+ y, ∂G

∂y = 2x+3y.
Our strategy would be to solve one of these for a general form, then impose the

other condition. This is like solving two equations in 2 unknowns by elimination.
So, starting with partial differential equation in x, we find a partial solutionG =
G1:

G1(x, y) =
1
2
x2 + xy + c(y)

and then taking the y partial derivative ofG1 we must satisfy

∂G1

∂y
(x, y) = x + c′(y) = 2x + 3y.

This can’t be solved forc(y) sincec′(y) = x + 3y requires somex dependence.
Alternatively, (please check it) solving they partial differential equation first, we
getG2(x, y) = 2xy + 3/2y2 + c2(x) and then the partial differential equation in
x cannot be satisfied also!
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What went wrong?

Mixed partial derivatives must be equal, so ifG solves both equations, then∂
2G

∂y∂x =
∂2G
∂x∂y means ∂

∂y (∂G
∂x ) = ∂

∂y (x + y) = 1 must equal∂∂x(∂G
∂y ) = ∂

∂x(2x + 3y) = 2
which is not true! Therefore no G exists!

In general, the equality of mixed partial derivatives in 2D means that if∇G =
(v1,v2) is continuously differentiable, it implies∂v2

∂x − ∂v1
∂y = 0 at every point.

For the general linear homogeneous vector fieldthis becomes the following
condition, interpreted as describing the range of the gradient operator on purely
quadratic functions: Supposingv1 = Ax+By, v2 = Cx+Dy we find ∂v2

∂x − ∂v1
∂y =

C − B so∇G = v becomes the condition that the2× 2 matrixM =
(

A B
C D

)

is symmetric! Sound familiar? We already know for purely quadratic functions the
gradient is linked to the Hessian, which is symmetric.

Example 3.45 Find G so that∇G = (2x + 3y)i + (3x + 4y)j.

Solution: Solving in order ofx theny, we find: G(x, y) = x2 + 3xy + g1(y),
and then using they equation, we find:G(x, y) = x2 + 3xy + 2y2 + C, for any
constantC.

Here are two examples of non gradient linear fields in 2D that are of some impor-
tance in applications:

1. rigid rotation generator with constant angular velocity:v1 = −ωy, v2 = ωx
then ∂v2

∂x − ∂v1
∂y = ω + ω = 2ω.

2. Linear shearv1 = ay, v2 = 0, wherea is a constant. Then∂v2
∂x − ∂v1

∂x = −a.

You should recall plotting these examples in Chapter 1 when vector fields were
introduced.

Non-linear examples:For non-linear vector fields, a similar situation holds: Not
every vector field is a gradient, since gradients must have linked components when
Clairaut’s theorem is considered; to find a function that has the given gradient, use
elimination; at the end, the solution is unique up to a constant.

Example 3.46 Find G(x, y) so that∇G = ex cos y i− ex sin y j.

Solution: Solving in order ofx theny, we find:G(x, y) = ex cos y + g1(y), and
then using they equation, we find:G(x, y) = ex cos y + C, for any constantC.
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What happens in 3D? Now there are three equations if we write out∇G = v in
components:

∂G

∂x
= v1,

∂G

∂y
= v2,

∂G

∂z
= v3

and these lead to 3 equations involving equality of mixed partial derivatives of
G. These pairs are the original 2D condition∂v2

∂x − ∂v1
∂y = 0 along with its cyclic

versions sending simultaneouslyx → y → z → x and subscripts1 → 2 → 3 → 1.
These are∂v3

∂y − ∂v1
∂z = 0 and ∂v1

∂z − ∂v3
∂x = 0. These get organized into a vector by

the unusual but useful rule of making each component be the one that is neither a
subscript nor a derivative. In particular, this makes the original 2D term∂v2

∂x − ∂v1
∂y

appear in thethird component. Note that each of the componentsv1, v2, v3 of v
and each of the partial derivative variablesx, y, z appears twice, once with a plus
sign and once with a minus sign.

This twisted vector derivative of a vector function is called thecurl of the vector
field v. It is often denoted using the vector operator∇ as follows:

curl(v) = ∇× v.

So using the mnemonic device for cross products, we find

∇× v =

∣∣∣∣∣∣

i j k
∂
∂x

∂
∂y

∂
∂z

v1 v2 v3

∣∣∣∣∣∣
= (

∂v3

∂y
− ∂v2

∂z
) i + (

∂v1

∂z
− ∂v3

∂x
) j + (

∂v2

∂x
− ∂v1

∂y
)k.

As the name suggests, the curl of a vector field measures its local rotation in
some sense. It plays an important part in several application areas. In fluid dynam-
ics, the curl of the velocity vector field is called the vorticity. In electromagnetic
theory, the curl occurs when magnetic and electric effects are linked.

The interpretation of the curl will be developed in Chapter 5, where a fundamental
theorem (Stokes’ theorem) ties its integral with another quantity. For now, we
regard the above conditions as a concise and clever formulation of conditions which
gradient vector fields must satisfy, summarized in the following:

Theorem 3.47 If v = ∇G whereG has continuous second derivatives, then∇×
v = 0.

Alternative organization: For general vector functions, the condition on being a
gradient can be expressed using the Jacobian matrix:

If ∇G = v, then
∂v
∂r

=
∂(v1, v2, v3)
∂(x, y, z)

should be a symmetric matrix.

Notice that the curl has components equal to the entries in the matrixJ−JT , where
J is the Jacobian matrix. The diagonal elements of such a matrix are always zero,
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while the off-diagonals come in pairs (with opposite signs). Thus a 2-D Jacobian
ends up with one component for curl, while a 3-D Jacobian has three independent
entries.

For the general linear homogeneous vector fieldthis becomes the following
conditions, interpreted as describing the range of the gradient operator on purely
quadratic functions: Supposingvj = Aj1x + Aj2y + Aj3z, for j = 1, 2, 3. We
find ∂v2

∂x − ∂v1
∂y = A21 − A12 so∇G = v becomes the condition that the3 × 3

matrixA that generatesv is symmetric! In 3-D as well as 2-D, for purely quadratic
functions the gradient is linked to the Hessian, which is symmetric.

3.8.2 Solvability ofcurl(A) = v

Once we have created the curl, the corresponding question arises:

What is the range of the curl operator? In more concrete terms, is every vector field
v a solution of∇×A = v? In electromagnetism, ifv is the magnetic field, then
such a vector functionA is called the vector potential.

The answer is again NO, based again on the equality of mixed partial derivatives
for such a solutionA.

The calculation of the appropriate condition onv comes by a judicious use of
partial derivatives applied to the components of the vector system∇×A = v:

∂A3

∂y
− ∂A2

∂z
= v1

∂A1

∂z
− ∂A3

∂x
= v2

∂A2

∂x
− ∂A1

∂y
= v3

As mentioned earlier, the first component on the left side involves they andz deriv-
atives and components only. Itsx partial derivative therefore involves x derivatives
of terms with y and z each coming in once per term (either as derivative or com-
ponent location) and likewise the y partial derivative of the second component of
the curl and the z partial derivative of the third component have similar properties.
Combining these six terms by adding, it turns out that each mixed partial derivative
of each component ofA appears twice, always involving the other variables in the
derivatives and with opposite signs. This makes the total sum to be the scalar quan-
tity 0. Without grouping the calculation, it is less clearly the case but nonetheless
true that

∂v1

∂x
+

∂v2

∂y
+

∂v3

∂z
= 0

as follows by simplifying the expression inA from the terms:
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∂

∂x
(
∂A3

∂y
− ∂A2

∂z
) +

∂

∂y
(
∂A1

∂z
− ∂A3

∂x
) +

∂

∂z
(
∂A2

∂x
− ∂A1

∂y
) =

∂2A1

∂y∂z
− ∂2A1

∂z∂y
+

∂2A2

∂z∂x
− ∂2A2

∂x∂z
+

∂2A3

∂x∂y
− ∂2A3

∂y∂x
= 0

The divergence of a vector fieldv in 3D is defined to be the scalar quantity
∂v1
∂x + ∂v2

∂y + ∂v3
∂z , and a necessary condition for a vector fieldv to be given as the

curl of another vector fieldA is that the divergence ofv must be0 at all points.
Vector operator notation for the divergence is∇ · v.
The divergence is a measurement of outward flow rate (flow per area in 2D, per

volume in 3D) and is important in fluid and solid dynamics as measuring deforma-
tion of volumes. Another major theorem that relates the integral of the divergence
to another quantity is known as either the divergence theorem or Gauss’ theorem
and is discussed in Chapter 5.

Example 3.48 Divergence of linear vector field: For a 2D linear vector field of
the formv1 = Ax+By, v2 = Cx+Dy, we find∇·v = A+C which is the trace
of the matrix (sum of diagonal elements). Note that it is constant inx andy.

Example 3.49 The position vector fieldr has componentsv1 = x andv2 = y, so
its divergence is∂v1

∂x + ∂v2
∂y = 1 + 1 = 2. This is of course a special case of the

previous example.

Example 3.50 Unit radial fieldv = er in 2D has componentsv1 = x√
x2+y2

, v2 =
y√

x2+y2
, which leads to a divergence of∂v1

∂x + ∂v2
∂y , which after some calculation

(exercise below), becomes1/r.

3.8.3 Finding vector potentials

From our work so far, we know that a vector potential, if it exists, will not be
unique. To any potentialA, an arbitrary gradient field can be added to get another
vector potential with the same curl everywhere. Physicists sometimes call such
additions a choice of gauge, and in electromagnetic field theory, special choices
are made to simplify Maxwell’s equations. For now, we will be happy to describe
how to find one solution.

For simplicity, the third component ofA can be taken to be zero, since a gradient
field can take care of that if needed. This means that some equations simplify:

−∂A2

∂z
= v1

∂A1

∂z
= v2

∂A2

∂x
− ∂A1

∂y
= v3
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These can be solved sequentially, namelyA2 is determined using the first equation
up to a function ofx andz, whileA1 is determined by the second equation, up to a
function ofy andz. The third equation can then be solved provided our solvability
conditions holds.

Example 3.51 Find A so thatcurl(A) = y i + x j Note that the solvability con-
dition holds. Solution: From the first equation,A2 = −yz + c2(x, y), while the

second yields:A1 = xz + c1(x, y) and finally the third equation holds as long as
(c2)x − (c1)y = 0, so if the goal is to find some solution, we can pickc1 = c2 = 0
for this example.

Remark on solving for divergence:The condition of a fixed divergence function
does not create any solvability issues. To find a vector function with given diver-
gence is easy: solve with zero components in two entries and solve the single sim-
ple partial differential equation in the third. For example, to solve∂v1

∂x + ∂v2
∂y + ∂v3

∂z =
k(x, y, z) for any known functionk(x, y, z), solve forv1 with v2 = v3 = 0.

3.8.4 EXERCISES

Writing: Explaining, Reacting, Questioning

1. Find the “antigradient” of the constant vector field in 2D if one exists: given
u = A, v = B, find F so that∇F =< u, v >.

2. For homogeneous linear vector fields in 2D, the general form has four pa-
rameters. Explain which linear vector fields are gradients and do a careful
counting of how many conditions are generated (i.e. count dimensions) in
solving∇F =< Ax + By,Cx + Dy >.

3. Cal Clueless regards the “del operator”∇ as applying to functions rather
than being an operator. Therefore when he tries to calculate the curl of the
vector field using the mnemonic device of the determinant he gets strange
answers, such as:

4. Rewrite the divergence operation and the curl operation as matrix operations
acting on functions (the components ofv in columns. What matrices do you
get?

5. From the form of the gradient in polar coordinatesr, θ, what is the polar
coordinate condition in terms of the components for being a gradient?

Calculational Exercises
For problems 3-10 solve the equation or explain why there is no solution:

1. ∇F =< x2 − y2, 2xy > .
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2. ∇G =< sin 2 x, cos 2 y >

3. ∇F =< sin(2x + 3y), 2 cos(2x + 3y) >

4. ∇G =< x
x2+y2 , y

x2+y2 >

5. ∇U =< x + y, y + z, x + z >

6. ∇φ =< x

(x2+y2+z2)
3
2
, y

(x2+y2+z2)
3
2
, z

(x2+y2+z2)
3
2

>

7. ∇F =< 1√
16−x2−y2

at (−1, 2).

8. ∇F =< f(x), g(y), h(z) > for any continuous functionsf, g, h.

For problems 12-15 solve the equation or explain why there is no solution:

9. Solve the following equations or show that there is no solution

10. For homogeneous linear vector fields in 2D, the general form has four para-
meters. Explain which linear vector fields arecurls and do a careful count-
ing of how many conditions are generated (i.e. count dimensions) in solving
∇× u =< Ax + By,Cx + Dy >.

11. ∇× v =< 2x + 3y,3x− 2y >

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.


