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3.8 Finding Antiderivatives; Divergence and Curl of a Vector Field

Overview: The antiderivative in one variable calculus is an important concept.
For partial derivatives, a similar idea allows us to solve for a function whose patrtial
derivative in one of the variables is given, as seen earlier. However, when several
partial derivatives of an unknown function are given simultaneously, there may
not be any function with those values! In particular, the gradient field for smooth
functions must respect Clairaut’'s theorem, so not every vector field is the gradient
of some scalar function! This section explores these questions and in answering
them, introduces two very important additional vector derivatives, the Curl and
Divergence.

3.8.1 SolvingV f = v for f givenv

Looking back: Recall how antiderivatives were introduced in one variable calcu-
lus: to find F’ with a given derivativef, you learned:

1. For f given by a simple formula, guess and check led to an antiderivAtive
2. Any other anti derivativé> had the propertys = F + C.

3. When all else fails, any continuoyshas anti-derivativé”(z) = [ f(t) dt
for any fixeda.

Earlier in this chapter the corresponding result for a single partial derivative
was found to be similar, except that instead of adding constants to get new solutions
from old ones, functions independent of the single variable could be added.

The gradient vector has partial derivatives in components, so we might expect that
this result would allow us to solve the system of equati®iig = v. This consists

of n simultaneous equations in dimensien This is partially correct, but a new
twist emerges: not every vector fieldis a gradient field!

The following simple example illustrates the difficulty:

Example 3.44 An example in 2D: solve fak so that%—g =x+y, % = 2z 4+ 3y.

Our strategy would be to solve one of these for a general form, then impose the
other condition. This is like solving two equations in 2 unknowns by elimination.
So, starting with partial differential equation in x, we find a partial solut@n=
Gl:

1
Gi(z,y) = ;2% + 2y +c(y)
and then taking the y partial derivative 6f; we must satisfy

oG

By @Y =a+dy) =20+ 3y
This can't be solved foe(y) sincec’ (y) = x + 3y requires some: dependence.
Alternatively, (please check it) solving thepartial differential equation first, we
getGa(z,y) = 2zy + 3/2y> + co(x) and then the partial differential equation in
x cannot be satisfied also!



78 Chapter 3 Draft December 26, 2007

What went wrong?

Mixed partial derivatives must be equal, saGisolves both equations, th%ﬁ% =

2
—gxgy means%(%—g) = 6%(3: +y) = 1 must equaa%(%—f) = 2 (27 + 3y) = 2

which is not true! Therefore no G exists!

In general, the equality of mixed partial derivatives in 2D means th&tGf =
(v1,v2) is continuously differentiable, it implieg2 — 5% — 0 at every point.

For the general linear homogeneous vector fieldhis becomes the following
condition, interpreted as describing the range of the gradient operator on purely
quadratic functions: Supposing = Az+ By, v; = Cx+ Dy we find 52 — §1 —

A B

C D
is symmetric! Sound familiar? We already know for purely quadratic functions the

gradient is linked to the Hessian, which is symmetric.

C — BsoVG = v becomes the condition that tBex 2 matrix M =

Example 3.45 Find G so thatVG = (2x + 3y)i + (3x + 4y)].

Solution: Solving in order ofr theny, we find: G(x,y) = 2 + 3zy + g1(y),
and then using thg equation, we findG(z,y) = 2? + 3zy + 2y + C, for any
constantC'.

Here are two examples of non gradient linear fields in 2D that are of some impor-
tance in applications:

1. rigid rotation generator with constant angular velocity:= —wy, vo = wzx

then%f%—”;:erw:Qw.

2. Linear sheap; = ay,vs = 0, wherea is a constant. Theffz — 22 = —q,

You should recall plotting these examples in Chapter 1 when vector fields were
introduced.

Non-linear examples: For non-linear vector fields, a similar situation holds: Not
every vector field is a gradient, since gradients must have linked components when
Clairaut’s theorem is considered; to find a function that has the given gradient, use
elimination; at the end, the solution is unique up to a constant.

Example 3.46 Find G(z,y) so thatVG = e cosyi— e” sinyj.

Solution: Solving in order ofc theny, we find: G(x,y) = e* cosy + g1(y), and
then using they equation, we findG(z,y) = e* cosy + C, for any constanC.
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What happens in 3D? Now there are three equations if we writ&/@ait= v in

components:
oG oG oG

9r  Vay T
and these lead to 3 equations involving equality of mixed partial derivatives of
G. These pairs are the original 2D conditi%& - %—1;1 = 0 along with its cyclic
versions sending simultaneously— y — z — z and subscript$ — 2 — 3 — 1.
These aréys — &4 = 0 and%2 — 9 = 0. These get organized into a vector by

:’U3

or —
the unusual but useful rule of making each component be the one that is neither a
subscript nor a derivative. In particular, this makes the original 2D #em- %—2
appear in thehird component. Note that each of the components vy, v3 of v
and each of the partial derivative variablesy, z appears twice, once with a plus

sign and once with a minus sign.

This twisted vector derivative of a vector function is called the of the vector
field v. It is often denoted using the vector operaoas follows:

curl(v) =V x v.
So using the mnemonic device for cross products, we find

i

j k
ov ov ov ov ov ov
9o 9 oa|_ YU _ Y2y, et T AN gz Yh1
VXxv= dr Oy 8z| (ay 8z)l+(8z 81:>J+(3x 5y> )
v V2 U3

As the name suggests, the curl of a vector field measures its local rotation in
some sense. It plays an important part in several application areas. In fluid dynam-
ics, the curl of the velocity vector field is called the vorticity. In electromagnetic
theory, the curl occurs when magnetic and electric effects are linked.

The interpretation of the curl will be developed in Chapter 5, where a fundamental
theorem (Stokes’ theorem) ties its integral with another quantity. For now, we

regard the above conditions as a concise and clever formulation of conditions which
gradient vector fields must satisfy, summarized in the following:

Theorem 3.47 If v = VG whereG has continuous second derivatives, thérx
v=0.

Alternative organization: For general vector functions, the condition on being a
gradient can be expressed using the Jacobian matrix:
0 0
If VG = v, then v _ M should be a symmetric matrix.

or  O(w,y,2)

Notice that the curl has components equal to the entries in the niatrik”, where
J is the Jacobian matrix. The diagonal elements of such a matrix are always zero,
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while the off-diagonals come in pairs (with opposite signs). Thus a 2-D Jacobian
ends up with one component for curl, while a 3-D Jacobian has three independent
entries.

For the general linear homogeneous vector fieldhis becomes the following
conditions, interpreted as describing the range of the gradient operator on purely
quadratic functions: Supposing = Ajiz + Aoy + Ajzz, forj = 1,2,3. We

find 222 — %—? = Ay — A1 SOVG = v becomes the condition that tBex 3
matrix A that generatesg is symmetric! In 3-D as well as 2-D, for purely quadratic

functions the gradient is linked to the Hessian, which is symmetric.

3.8.2 Solvability of curl(A) = v

Once we have created the curl, the corresponding question arises:

What is the range of the curl operator? In more concrete terms, is every vector field
v a solution ofV x A = v? In electromagnetism, if is the magnetic field, then
such a vector functiod is called the vector potential.

The answer is again NO, based again on the equality of mixed partial derivatives
for such a solutior..

The calculation of the appropriate condition-ertomes by a judicious use of
partial derivatives applied to the components of the vector syStemA = v:

0A3  9Ay
oy o
DA, 9As
0z oz ?
DAy  9A,
T oy ©

As mentioned earlier, the first component on the left side involveg émel > deriv-

atives and components only. ligartial derivative therefore involves x derivatives

of terms with y and z each coming in once per term (either as derivative or com-
ponent location) and likewise the y partial derivative of the second component of
the curl and the z partial derivative of the third component have similar properties.
Combining these six terms by adding, it turns out that each mixed partial derivative
of each component cA appears twice, always involving the other variables in the
derivatives and with opposite signs. This makes the total sum to be the scalar quan-
tity 0. Without grouping the calculation, it is less clearly the case but nonetheless

true that
8’01 81)2 81)3 _
o "oy T !

as follows by simplifying the expression il from the terms:
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0A; 0A3

0 0As3 0As 0 0 ,0As 04
2oy o 9 e el er oy
6'2A1 82A1 82A2 82A2 82A3 82A3

0y0z B 020y + 020x  0xdz + 0xdy B oyox

The divergence of a vector field in 3D is defined to be the scalar quantity
% + %—ZQ + %, and a necessary condition for a vector fieltb be given as the
curl of another vector field! is that the divergence af must be) at all points.

Vector operator notation for the divergencéis v.

The divergence is a measurement of outward flow rate (flow per areain 2D, per
volume in 3D) and is important in fluid and solid dynamics as measuring deforma-
tion of volumes. Another major theorem that relates the integral of the divergence
to another quantity is known as either the divergence theorem or Gauss’ theorem

and is discussed in Chapter 5.

Example 3.48 Divergence of linear vector field: For a 2D linear vector field of
the formv; = Ax + By, vo = Cx+ Dy, we findV - v = A + C which is the trace
of the matrix (sum of diagonal elements). Note that it is constantandy.

Example 3.49 The position vector field has components; = z andv, = y, SO
its divergence i + 92 = 14 1 = 2. This is of course a special case of the

previous example.

Example 3.50 Unit radial fieldv = e, in 2D has componentg =

T _
Verrge 2T

Y which leads to a divergence 351 + %, which after some calculation
+ * v

)
x2 y2

(exercise below), becomegr.

3.8.3 Finding vector potentials

From our work so far, we know that a vector potential, if it exists, will not be
unigue. To any potentiak, an arbitrary gradient field can be added to get another
vector potential with the same curl everywhere. Physicists sometimes call such
additions a choice of gauge, and in electromagnetic field theory, special choices
are made to simplify Maxwell's equations. For now, we will be happy to describe
how to find one solution.

For simplicity, the third component ok can be taken to be zero, since a gradient
field can take care of that if needed. This means that some equations simplify:

oh

0z 1

oA _

0z 2
0As 0A;

Ox oy
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These can be solved sequentially, namélyis determined using the first equation
up to a function ofr andz, while A; is determined by the second equation, up to a
function ofy andz. The third equation can then be solved provided our solvability
conditions holds.

Example 3.51 Find A so thatcurli(A) = yi+ x j Note that the solvability con-
dition holds. Solution: From the first equationds = —yz + c2(z, y), while the

second yieldsA; = zz + ¢1(x, y) and finally the third equation holds as long as
(c2)e — (c1)y = 0, so if the goal is to find some solution, we can gick= c; = 0
for this example.

Remark on solving for divergence:The condition of a fixed divergence function
does not create any solvability issues. To find a vector function with given diver-
gence is easy: solve with zero components in two entries and solve the single sim-
ple partial differential equation in the third. For example, to séiyer 52 + 9 =

k(x,y, z) for any known functiork(z, y, ), solve forv; with vy = v3 = 0.

3.8.4 EXERCISES
Writing: Explaining, Reacting, Questioning

1. Find the “antigradient” of the constant vector field in 2D if one exists: given
u = A,v= B, find F sothatVF =< u,v >.

2. For homogeneous linear vector fields in 2D, the general form has four pa-
rameters. Explain which linear vector fields are gradients and do a careful
counting of how many conditions are generated (i.e. count dimensions) in
solvingVF =< Ax + By,Cx + Dy >.

3. Cal Clueless regards the “del operatdr’as applying to functions rather
than being an operator. Therefore when he tries to calculate the curl of the
vector field using the mnemonic device of the determinant he gets strange
answers, such as:

4. Rewrite the divergence operation and the curl operation as matrix operations
acting on functions (the componentswin columns. What matrices do you
get?

5. From the form of the gradient in polar coordinate$, what is the polar
coordinate condition in terms of the components for being a gradient?

Calculational Exercises
For problems 3-10 solve the equation or explain why there is no solution:

1. VF =< 22 —y? 22y > .
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VG =<sin2x,cos2y >
VF =< sin(2z + 3y), 2 cos(2z + 3y) >

VG =< L5 >

_z
22+y2° 224y
VU=<2z+y,y+z,0+2>

V(,b =< - 3 Y ) . >
@) @428 (@221?)

3 3
2 2

. VF =< ——L___at(-1,2).

V16—z2—y2

. VF =< f(x), g9(y), h(z) > for any continuous functiong, g, h.
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For problems 12-15 solve the equation or explain why there is no solution:

. Solve the following equations or show that there is no solution

For homogeneous linear vector fields in 2D, the general form has four para-
meters. Explain which linear vector fields amerls and do a careful count-
ing of how many conditions are generated (i.e. count dimensions) in solving

V xu=< Ax + By,Cx + Dy >.

VXv=<2x+3y,3x—2y >



