
March 3, 2004

DISCUSSION OF INFINITY FOR HONORS 225

Sets containing infinitely many elements come in at least two different sizes. In this brief
handout, we will summarize the class discussion on counting the number of elements and
also covering sets with intervals. These two concepts are not the same, but linked in a
particular way.

The counting numbers 1, 2, 3, . . . form the most basic infinite set. They are also known
as the natural numbers. We will call a set countably infinite if there is a way to list
its elements using the counting numbers. In fancy language, we would say that there is a
one-to-one correspondence between the set and the natural numbers. If a set is neither a
finite set of elements nor a countably infinite set, we call it (imaginatively) uncountably
infinite.

Example: The integers form a countably infinite set. We count starting at 0, working
out, as in 0, 1,−1, 2,−2, 3,−3, . . .. You might have a different listing in mind. We only
need one that works.

Example: The rational numbers between 0 and 1 form a countably infinite set. Use the
lowest term form for each fraction, by running through the fractions in some order, such
as by increasing denominators, so that 1/2 is first, 1/3, 2/3 are next, then 1/4, 3/4, and so
on.

Example: The positive rational numbers form a countably infinite set. View pairs of
positive integers (m,n) as the number m/n. Count the grid starting at bottom left corner
and exhausting leftward diagonals, as in class.

The set of all real numbers between 0 and 1 contains all the rationals, plus all the irrationals.
We want to figure out if this set is countably infinite. In class, at first most students believed
the irrational numbers were less plentiful than the rational numbers. If so, then the real
numbers would be countably infinite, since two countably infinite sets when joined together
form a countably infinite set. To see why that is true, do the counting in alternation, one
from subset 1, then one from subset 2, and continue forever. Each element will eventually
be counted in order and this shows the desired result. [More advanced notion: a union of
a countably infinite number of countably infinite subsets is still countably infinite – count
first one from the first set, then one from the first two sets, then one from the first three,
and so on. Subtlety is needed to make sure we get elements counted from each subset
eventually.]

Most students are more comfortable with rational numbers and therefore guess that there
are more of them. This turns out to be wrong. One intuitive description: imagine an
infinite number of lottery power ball machines, which each generate one digit in the decimal
expansion. Would you expect such decimals to repeat or end in all zeroes?



Amazing Fact: The real numbers between 0 and 1 form an uncountably infinite set.

To show that the real numbers between 0 and 1 are uncountably infinite, which is a famous
result of Georg Cantor (1845-1918), we recall the decimal expansions of real numbers.
Each real number has a decimal expansion, and if we do not consider a decimal that ends
in an infinite repeating set of only 9’s, the decimal expansion is unique. Cantor proved
that the real numbers between 0 and 1 cannot be countably infinite by contradiction. IF
we assume the real numbers are listed in some way, starting with a first one, then a second,
and so forth, then we will show that this listing misses at least one real number. Indeed,
such a list misses most of them, but we will be happy to find one.

Cantor’s famous diagonal argument goes as follows: pick a first decimal digit other than 9
that differs with the first number, a second digit that differs from that of the second listed
number, and so on forever. The decimal created in this way is different from each number
on the list, so it is not on the list!

This is short, deep and fun!

Another important notion linked to exotic sets is the “length” of such sets. We will say
that a subset of the real numbers has length 0 if for any positive length we can chop
up an interval of that positive length into intervals of positive length and use the pieces to
cover the subset. Notice the careful language in this definition: we use intervals of positive
length to cover the set and we must be able to use arbitrarily small intervals to do the
covering.

Fact: Any countably infinite subset of the real numbers has length 0. To show this, for any
given interval, use half of it to cover the first number, half of the remaining subinterval to
cover the second number, then half of the remaining subinterval to cover the third number,
and so on. This will give an infinite number of pieces with total length any positive number
that covers the countably infinite set.

Fact: There are uncountably infinite sets with length 0. The most famous example is
called the Cantor set (see text, page 75). We start with the interval of size 1 from 0 to
1 and throw out the middle third. Then we take the middle third of each of the two
pieces and discard them. Then the middle thirds of each piece. Continue indefinitely. The
resulting strange object is the Cantor set. The Cantor set has length 0, since the length
of the pieces is always multiplied by a factor of 2/3 from the previous stage. To finish the
discussion, we need to check that the Cantor set is not countably infinite. We do this by
viewing it as having the same number of elements as the original interval(!!??). At each
level of cutting up, we can view the two thirds as two halves by changing the scale. This is
very much like viewing the symbols L, R as the binary ”digits” 0, 1 in a base 2 expansion.
Thus the Cantor set is created by working base 3, with ”digits” 0, 1, 2 and throwing out
the 1’s. We can view the 0 as a base 2 0 and the 2 in base 3 as a 1 in base 2.

In our text in Chapter 14, we will assign a notion of dimension to exotic sets like the
Cantor set. It will turn out to have a fractional dimension!


