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Consider equation

x? =7y = —1.

Let (xo,y0) be an integer solution. Taking mod 7 yields

x5 = —1(mod 7).
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e Can be used to show that equations have no integer or
rational solutions.

Consider equation

x? =7y = —1.
Let (xo,y0) be an integer solution. Taking mod 7 yields
x5 = —1(mod 7).

But this congruence has no solutions! (Otherwise (Z/7Z)%,

which has order 6, would contain an element of order 4.)
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Reduction techniques in number theory

e Can be used to show that equations have no integer or
rational solutions.

Consider equation
x? =7y = —1.

Let (xo,y0) be an integer solution. Taking mod 7 yields
x5 = —1(mod 7).

But this congruence has no solutions! (Otherwise (Z/7Z)%,

which has order 6, would contain an element of order 4.)

Thus, original equation has no integer solutions.
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e Can aid in understanding structure of solution set, ie. set
of rational points. J

Recall:

o An elliptic curve E is a smooth cubic in IP?
(with a rational point)

e Over a field K of characteristic # 2,3, “affine” part of E
can be given by equation

y> =f(x)

where f(x) =x®+ax+b (a,b € K) has no multiple roots;
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e Can aid in understanding structure of solution set, ie. set
of rational points. J

Recall:

o An elliptic curve E is a smooth cubic in IP?
(with a rational point)

e Over a field K of characteristic # 2,3, “affine” part of E
can be given by equation

y> =f(x)

where f(x) =x®+ax+b (a,b € K) has no multiple roots;
e E has one point “at infinity;”

e K-rational points E(K) form abelian group for tangent-
chord group law; identity element = point at infinity.
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Let E be an elliptic curve over a number field K.
Then the group E(K) is finitely generated.

Remark. Conclusion remains valid for abelian varieties

over finitely generated fields.

PROOF for elliptic curves E over K=Q was found by
Louis Mordell in 1922.

Important step - Weak Mordell Theorem:
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Reduction techniques in number theory

Theorem (Mordell — Weil)

Let E be an elliptic curve over a number field K.
Then the group E(K) is finitely generated.

Remark. Conclusion remains valid for abelian varieties

over finitely generated fields.

PROOF for elliptic curves E over K=Q was found by
Louis Mordell in 1922.

Important step - Weak Mordell Theorem:
E(Q)/2-E(Q) is finite.

Argument heavily relies on reduction.
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Assume that a,b € Z and pick a prime p > 2.
Reducing modulo p, we obtain:
y?> =f(x) where f(x)=x3+ax+b. (R)

Two possibilities:
o f has no multiple roots. Then (R) still defines an elliptic
curve, and we say that (E) has good reduction at p.
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curve, and we say that (E) has bad reduction at p.
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Consider an affine equation of elliptic curve:

y?> =f(x) where f(x) =x>+ax+b (NO multiple roots!) (E)

Assume that a,b € Z and pick a prime p > 2.
Reducing modulo p, we obtain:
y?> =f(x) where f(x)=x3+ax+b. (R)

Two possibilities:
o f has no multiple roots. Then (R) still defines an elliptic
curve, and we say that (E) has good reduction at p.

o f has multiple roots. Then (R) defines a singular rational
curve, and we say that (E) has bad reduction at p.

Primes of bad reduction are those that divide discriminant of f.

So, they constitute a finite set.
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Definition. Elliptic curve E has good reduction at p >3 if it
admits an equation (E) that has good reduction at p, and

bad reduction otherwise.

More precisely, E has good reduction if it is isomorphic to E’ that
can be given by equation (E) having good reduction at p.
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bad reduction otherwise.

More precisely, E has good reduction if it is isomorphic to E’ that
can be given by equation (E) having good reduction at p.

In technical language, this means that there exists an abelian
scheme E(,) over valuation ring Z() C Q with generic fiber E
(this scheme E(p) is then unique)
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Definition. Elliptic curve E has good reduction at p >3 if it
admits an equation (E) that has good reduction at p, and

bad reduction otherwise.

More precisely, E has good reduction if it is isomorphic to E’ that
can be given by equation (E) having good reduction at p.

In technical language, this means that there exists an abelian
scheme E(,) over valuation ring Z() C Q with generic fiber E
(this scheme E(p) is then unique)

Example.

Equation y? =x® —625x has bad reduction at p =15,
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Definition. Elliptic curve E has good reduction at p >3 if it
admits an equation (E) that has good reduction at p, and

bad reduction otherwise.

More precisely, E has good reduction if it is isomorphic to E’ that
can be given by equation (E) having good reduction at p.

In technical language, this means that there exists an abelian
scheme E(,) over valuation ring Z() C Q with generic fiber E
(this scheme E(p) is then unique)

Example.

Equation y? = x> —625x has bad reduction at p =5, but
elliptic curve E it defines is isomorphic to elliptic curve E’

given by y?> =x>—x which has good reduction at p =5.
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Reduction techniques in number theory

Definition. Elliptic curve E has good reduction at p >3 if it
admits an equation (E) that has good reduction at p, and

bad reduction otherwise.

More precisely, E has good reduction if it is isomorphic to E’ that
can be given by equation (E) having good reduction at p.

In technical language, this means that there exists an abelian
scheme E(,) over valuation ring Z() C Q with generic fiber E
(this scheme E(p) is then unique)

Example.

Equation y? = x> —625x has bad reduction at p =5, but
elliptic curve E it defines is isomorphic to elliptic curve E’

given by y?> =x>—x which has good reduction at p =5.

So, E has good reduction at p =>5.

V.
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Let E be an elliptic curve over Q.

e Let IT be (finite) set of primes of bad reduction U {2}.
e For Pc E(Q), we let Q(P) denote residue field of P

(ie, Q(P)=Q if P is the point at infinity, and Q(P) is
generated by affine coordinates of P otherwise).
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Sketch of proof of Weak Mordell Theorem

Let E be an elliptic curve over Q.

e Let IT be (finite) set of primes of bad reduction U {2}.
e For Pc E(Q), we let Q(P) denote residue field of P

(ie, Q(P)=Q if P is the point at infinity, and Q(P) is
generated by affine coordinates of P otherwise).

o Let m: E— E be isogeny P+ 2-P. ]

Since 71 has degree 4, for any P € E(Q) and any R € m '(P),

[Q(R) : Q] < 4.
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For p €11, using good reduction at p, one shows that

Q(R)/Q is unramified at p.
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HERMITE: There are only finitely many extensions of Q of
a given degree and unramified outside a given finite
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Thus, among field extensions Q(R), R €  !(E(Q)), there are
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Reduction techniques in number theory

Sketch of proof of Weak Mordell Theorem

For p €11, using good reduction at p, one shows that

Q(R)/Q is unramified at p.

HERMITE: There are only finitely many extensions of Q of
a given degree and unramified outside a given finite

set of primes.

Thus, among field extensions Q(R), R €  !(E(Q)), there are
only finitely many distinct =

their compositum Q(7 '(E(Q))) is a finite extension of Q.

Then a formal argument using Galois cohomology (“Kummer
sequence”) shows E(Q)/2-E(Q) is finite.

Andrei Rapinchuk (University of Virginia) GMU September 6, 2019 9 / 66



Reduction techniques in number theory

inchuk (University of Virginia) 6, 2019 10 / 66



Reduction techniques in number theory

SHAFAREVICH (ICM, 1962):If I1 is a finite set of primes then
there are finitely many isomorphism classes of elliptic curves E
over Q having good reduction at all p ¢ 1L
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(Shaferevich stated his theorem for an arbitrary number field K
and a finite set of places S.)
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(Shaferevich stated his theorem for an arbitrary number field K
and a finite set of places S.)

Sketch of proof (attributed to Tate by Serre in Abelian {-adic
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SHAFAREVICH (ICM, 1962):If I1 is a finite set of primes then

there are finitely many isomorphism classes of elliptic curves E

over Q having good reduction at all p ¢ 1L

(Shaferevich stated his theorem for an arbitrary number field K
and a finite set of places S.)

Sketch of proof (attributed to Tate by Serre in Abelian {-adic
Representations and Elliptic Curves)

e We can assume that 2,3 €II, and let A be localization
of Z wrt. IL

e Using that A is UFD, one shows that E can be given by
y?> =f(x) where f(x)=x>+ax+b (E)

with 4,b € A and discriminant A = —44% —27b% in A*.
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e Note that if elliptic curves Ej,E; given by equations (E)
have discriminants A, A, € A* and

A = Azulz, ueAx,
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such that A} = A,.
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e Note that if elliptic curves Ej,E; given by equations (E)
have discriminants A, A, € A* and

A = Azulz, ueAx,
then one can replace E; by Ej|~E; still given by (E) and
such that A} = A,.
e Since A*/(AX)'2 is finite, it is enough to show that for a
fixed Ag € A*, equation
—4a3 — 27b% = Ay (D)

has finitely many solutions (a,b) € A x A.
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e Note that if elliptic curves Ej,E; given by equations (E)
have discriminants A, A, € A* and

A = A2u12, ueAx,
then one can replace E; by Ej|~E; still given by (E) and
such that A} = A,.
e Since A*/(AX)'2 is finite, it is enough to show that for a
fixed Ag € A*, equation
—4a® - 27 = A (D)

has finitely many solutions (a,b) € A x A.

But since (D) defines a curve of genus 1, finiteness is

guaranteed by Siegel’s Theorem!
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felt that his theorem was an instance of a far more general

phenomenon.

Let K be a number field, and let S be a finite set of places
of K.

Andrei Rapinchuk (University of Virginia) GMU September 6, 2019 12 / 66



Reduction techniques in number theory
Shafarevich's Conjecture

While this argument is specific to elliptic curves, Shafarevich
felt that his theorem was an instance of a far more general

phenomenon.

Let K be a number field, and let S be a finite set of places

of K. Then for every g>1 there exist only finitely many iso-
morphism classes of abelian wvarieties of dimension g that have
good reduction at all p & S.
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Reduction techniques in number theory

Proof found by G.Faltings in 1982 was culmination of work
in Diophantine geometry.

Consequences include:

@ Mordell conjecture: a smooth projective curve of genus
g >2 over a number field K has finitely many K-rational

points;

e Shafarevich conjecture for curves: for ¢ >2, there are
only finitely many isomorphism classes of curves of

genus ¢ having good reduction at all p &€ S.

We would like to find analogs of these results for Iinear

algebraic groups.
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Reduction of reductive algebraic groups modulo p
Basic definitions

o A linear algebraic group is a subgroup G C GL, that
can be defined by polynomial equations in terms of

matrix entries Xij;

o If ideal of polynomials p(xi1,...,Xs,) that vanish on G is
generated by polynomials with coefficients in a (sub)field
K then G is K-defined;

(if charK=0 then it is enough to require that G be defined

by polynomials with coefficients in K)

e Morphisms of algebraic groups are group homomorphisms
that can be represented by polynomials in terms of x;
and det(x;) .
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e Unipotent radical of a (connected) algebraic group G is

largest connected unipotent normal subgroup.

e A (connected) algebraic group G is reductive if unipotent

radical is trivial.
Examples: GL,, SL,, Sp,,, SO.(q), .....

o A (connected) algebraic group G is (absolutely almost)
simple if it does not contain proper connected normal

subgroups.
Examples: SL,, Sp,,, SO,(q) (n =3 or >5), ...

It is semi-simple if it admits a surjective morphism from a

direct product of simple groups.
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Reduction of reductive algebraic groups modulo p
Classes of linear algebraic groups

e Unipotent radical of a (connected) algebraic group G is

largest connected unipotent normal subgroup.

e A (connected) algebraic group G is reductive if unipotent

radical is trivial.
Examples: GL,, SL,, Sp,,, SO.(q), .....

o A (connected) algebraic group G is (absolutely almost)
simple if it does not contain proper connected normal

subgroups.
Examples: SL,, Sp,,, SO,(q) (n =3 or >5), ...

It is semi-simple if it admits a surjective morphism from a

direct product of simple groups. Example: SO4(q)
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Examples of reductions of algebraic group modulo p

Example1. Let G=GL, over Q. One can think of G as
Z-group scheme Spec A where

o 1
A — Z |:x11, .. .,xnn, det(xlj)} .
Viz., for any commutative ring R, GL,(R) can be identified
with Homz_ ¢ (A, R).

Given a prime p, we can reduce modulo p:

L - 1
Ap —A®Z ]Fp - le [xlll“‘lxﬂnl deti(xl]):|
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Z-group scheme Spec A where

o 1
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Viz., for any commutative ring R, GL,(R) can be identified
with Homz_ ¢ (A, R).

Given a prime p, we can reduce modulo p:
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Then A, represents GL, over rings of characteristic p.
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Examples of reductions of algebraic group modulo p

Example1. Let G=GL, over Q. One can think of G as

Z-group scheme SpecA where
o 1
A — Z |:x11, .. .,xnn, det(xl]):| .
Viz., for any commutative ring R, GL,(R) can be identified
with Homz_ ¢ (A, R).

Given a prime p, we can reduce modulo p:

— — 1
Api= A®zFy =y X1, Yo gy |
Then A, represents GL, over rings of characteristic p.

Thus, reduction of GL,/Z modulo p is GL,/F,.
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Examples of reductions of algebraic group modulo p

In particular, 1-dimensional split torus G, = GL; is
represented Z[x,x!].
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Reduction of reductive algebraic groups modulo p
Examples of reductions of algebraic group modulo p

In particular, 1-dimensional split torus G, = GL; is
represented Z[x,x7!]. Its reduction modulo p is represented
by Fplx,x1],
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In particular, 1-dimensional split torus G, = GL; is
represented Z[x,x7!]. Its reduction modulo p is represented

by F,lx,x7!], ie. 1-dimensional split torus over [F,.

More generally, reduction modulo p of d-dimensional split
torus GY%, which is represented by Z[xi,..., x5, x| 1,...,x;1], is
d-dimensional split torus over TF,.
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Examples of reductions of algebraic group modulo p

In particular, 1-dimensional split torus G, = GL; is
represented Z[x,x7!]. Its reduction modulo p is represented

by F,lx,x7!], ie. 1-dimensional split torus over [F,.

More generally, reduction modulo p of d-dimensional split
torus GY%, which is represented by Z[xi,..., x5, x| 1,...,x;1], is
d-dimensional split torus over TF,.

Example 2. Let G=SL,. Then G is represented by Z-algebra
Z[xn, N /xnn] /(det(xij) - 1)
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In particular, 1-dimensional split torus G, = GL; is
represented Z[x,x7!]. Its reduction modulo p is represented

by F,lx,x7!], ie. 1-dimensional split torus over [F,.

More generally, reduction modulo p of d-dimensional split
torus GY%, which is represented by Z[xi,..., x5, x| 1,...,x;1], is
d-dimensional split torus over TF,.

Example 2. Let G=SL,. Then G is represented by Z-algebra
Z[x11, ..., Xu]/ (det(x;) — 1).

Reduction modulo p is TFplxy,..., X/ (det(x;) —1) which

represents SL, over rings of characteristic p.
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Examples of reductions of algebraic group modulo p

In particular, 1-dimensional split torus G, = GL; is
represented Z[x,x7!]. Its reduction modulo p is represented

by F,lx,x7!], ie. 1-dimensional split torus over [F,.

More generally, reduction modulo p of d-dimensional split
torus GY%, which is represented by Z[xi,..., x5, x| 1,...,x;1], is

d-dimensional split torus over TF,.

Example 2. Let G=SL,. Then G is represented by Z-algebra
Z[x11, ..., Xu]/ (det(x;) — 1).

Reduction modulo p is TFplxy,..., X/ (det(x;) —1) which

represents SL, over rings of characteristic p.

Thus, reduction of SL,/Z modulo p is SL,/IF,.
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Example 3. Let G =S0,(q) where g=x>+---+x%> and n > 3.
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Examples of reductions of algebraic group modulo p

Example 3. Let G =S50,(q) where g=x3+---+x3 and n>3.

Then reduction of G modulo any p >2 is SO,(7) where

g=x3+---+x2 over F,.
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g=x3+---+x2 over F,.

In all these examples, reduction modulo p of a given
algebraic group/Z is an algebraic group of same type /IF,. J
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In all these examples, reduction modulo p of a given
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More precisely, groups in Example 1 (i.e., GL, and split tori)
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Example 3. Let G =S50,(q) where g=x3+---+x3 and n>3.

Then reduction of G modulo any p >2 is SO,(7) where
g=x3+---+x2 over F,.

In all these examples, reduction modulo p of a given J

algebraic group/Z is an algebraic group of same type /IF,.

More precisely, groups in Example 1 (i.e., GL, and split tori)
are (connected and) reductive, and so are their reductions
modulo all p.

Groups in Examples 2 and 3 are (connected and) semi-simple,
and their reductions (for p #2 in Example 3) are (connected
and) semi-simple.
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Examples of reductions of algebraic group modulo p

Example 3. Let G =S50,(q) where g=x3+---+x3 and n>3.

Then reduction of G modulo any p >2 is SO,(7) where
g=x3+---+x2 over F,.

In all these examples, reduction modulo p of a given
algebraic group/Z is an algebraic group of same type /IF,. J

More precisely, groups in Example 1 (i.e., GL, and split tori)
are (connected and) reductive, and so are their reductions
modulo all p.

Groups in Examples 2 and 3 are (connected and) semi-simple,
and their reductions (for p #2 in Example 3) are (connected
and) semi-simple.

Here are examples of a different nature.
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Example 4. Fix a prime p >2, and consider L= Q(,/p).
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Recall that for z=a+b/p €L, the norm Np,(z) =a*—pb*.
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Examples of reductions of algebraic group modulo p

Example 4. Fix a prime p >2, and consider L= Q(,/p).

Recall that for z=a+b/p €L, the norm Np,(z) =a*—pb*.
There exists algebraic Q-group G = Rg/)Q(Gm) (norm torus)

such that
G(Q) = {z€L*[Ny/q(z) =1}
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Examples of reductions of algebraic group modulo p

Example 4. Fix a prime p >2, and consider L= Q(,/p).
Recall that for z=a+b/p €L, the norm Np,(z) =a*—pb*.

There exists algebraic Q-group G = Rg/)Q(Gm) (norm torus)
such that

G(Q) = {z€L*[Np(z) =1}

G = {X:(Z ’;b> \det(x)zl}.

Explicitly,
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Example 4. Fix a prime p >2, and consider L= Q(,/p).

Recall that for z=a+b/p €L, the norm Np,(z) =a*—pb*.
There exists algebraic Q-group G = Rg/)Q(Gm) (norm torus)
such that

G(Q) = {z€L*[Np(z) =1}

G = {X:(Z ’;b> \det(x)zl}.

Matrix < \{f] _i/f)> conjugates G into

((52) e}

Explicitly,

Andrei Rapinchuk (University of Virginia) GMU September 6, 2019



Reduction of reductive algebraic groups modulo p
Examples of reductions of algebraic group modulo p

Example 4. Fix a prime p >2, and consider L= Q(,/p).

Recall that for z=a+b/p €L, the norm Np,(z) =a*—pb*.
There exists algebraic Q-group G = Rg/)Q(Gm) (norm torus)
such that

G(Q) = {z€L*[Np(z) =1}

G = {X:(Z ’;b> \det(x)zl}.

Matrix < \{f] _i/f)> conjugates G into

((52) -}

So, G is 1-dimensional (Q-anisotropic) torus.

Explicitly,
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Examples of reductions of algebraic group modulo p

G is given by following equations on 2 x 2-matrix X = (x;):

_ _ 2 2 _
X11 = Xa4, X1p = PpX21, X —pxy =1 (T)
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Examples of reductions of algebraic group modulo p

G is given by following equations on 2 x 2-matrix X = (x;):
X11 = Xaa, X12 = pxp1, X3 —pxg =1L (T)

Reducing modulo p, we obtain:

_ _ 2 _
X1 = X4, x12=0, x3; =1
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Examples of reductions of algebraic group modulo p

G is given by following equations on 2 x 2-matrix X = (x;):
X11 = Xaa, X12 = pxp1, X3 —pxg =1L (T)
Reducing modulo p, we obtain:

_ _ 2 _
X1 = X4, x12=0, x3; =1

Solutions are of the form =+ < th (1) )
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Examples of reductions of algebraic group modulo p

G is given by following equations on 2 x 2-matrix X = (x;):
X11 = Xaa, X12 = pxp1, X3 —pxg =1L (T)
Reducing modulo p, we obtain:

X =xy, Xn=0 xj;=1
. 10
Solutions are of the form =+ 1)

So, reduction of (T) modulo p defines disconnected IF,-group
whose connected component is 1-dimensional unipotent group! J
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Examples of reductions of algebraic group modulo p

G is given by following equations on 2 x 2-matrix X = (x;):
X11 = Xaa, X12 = pxp1, X3 —pxg =1L (T)
Reducing modulo p, we obtain:

X1 = X4, x12=0, x3; =1

Solutions are of the form =+ < th (1) )

So, reduction of (T) modulo p defines disconnected IF,-group J

whose connected component is 1-dimensional unipotent group!

On the other hand, reducing (T) modulo any gq>2, g #p,

one still gets 1-dimensional torus.
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Example 5 (noncommutative version of Example 4) Fix a prime

p>2, and let D be quaternion algebra corresponding to pair

(=1,p).
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Example 5 (noncommutative version of Example 4) Fix a prime
p>2, and let D be quaternion algebra corresponding to pair
(=1,p). So, D has Q-basis 1,i,j, k with multiplication table
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Examples of reductions of algebraic group modulo p

Example 5 (noncommutative version of Example 4) Fix a prime
p>2, and let D be quaternion algebra corresponding to pair
(=1,p). So, D has Q-basis 1,i,j, k with multiplication table

Z'Z_

=-1, ?=p, k=ij=—ji, kK> =p.
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Reduction of reductive algebraic groups modulo p
Examples of reductions of algebraic group modulo p

Example 5 (noncommutative version of Example 4) Fix a prime
p>2, and let D be quaternion algebra corresponding to pair
(=1,p). So, D has Q-basis 1,i,j, k with multiplication table

2=-1, P=p k=ij=—ji, ¥=p.

For a quaternion z =a+bi+c¢j+dk, the reduced norm is

Nrdp,q(z) = a® + b* — pc* — pd®.
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Examples of reductions of algebraic group modulo p

Example 5 (noncommutative version of Example 4) Fix a prime
p>2, and let D be quaternion algebra corresponding to pair
(=1,p). So, D has Q-basis 1,i,j, k with multiplication table

2=-1, P=p, k=ij=—ji, =p.

For a quaternion z =a+bi+c¢j+dk, the reduced norm is
Nrdp,q(z) = a® + b* — pc* — pd®.
There exists an algebraic Q-group G =SL;p with

G(Q) = {z € D* | Nrdp,o(z) =1}.
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Examples of reductions of algebraic group modulo p

Using regular representation of D, one realizes G by matrices

a —b pc —pd

b a pd —pc . 232 2 2 _

c 4 a4 —b with a® +b° —pc® —pd- = 1. (SL)
d —c b a
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Using regular representation of D, one realizes G by matrices

a —b pc —pd

b a pd —pc . 232 2 2 _

c 4 a4 —b with a® +b° —pc® —pd- = 1. (SL)
d —c b a

One can find matrix over Q(v—1) or Q(,/p) that conjugates

G into matrices

A O .
(O A) with A € SL,.
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G into matrices
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Using regular representation of D, one realizes G by matrices

a —b pc —pd

b a pd —pc . 232 2 2 _

c 4 a4 —b with a® +b° —pc® —pd- = 1. (SL)
d —c b a

One can find matrix over Q(v—1) or Q(,/p) that conjugates

G into matrices

A O .
(O A) with A € SL,.

So, G ~SL, over either field, hence over Q.
In other words, G is Q-form of SL,
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Reduction of reductive algebraic groups modulo p
Examples of reductions of algebraic group modulo p

Using regular representation of D, one realizes G by matrices

a —b pc —pd

b a pd —pc . 232 2 2 _

c 4 a4 —b with a® +b° —pc® —pd- = 1. (SL)
d —c b a

One can find matrix over Q(v—1) or Q(,/p) that conjugates

G into matrices

A O .
(O A) with A € SL,.

So, G~SL, over either field, hence over Q.

In other words, G is Q-form of SL, (in particular, simple

group).
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Examples of reductions of algebraic group modulo p

Reducing equations that define (SL) yields system with
solution set

a —b 0 0

boa 0 0 ih 2R =1
c d a —

d —c b
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Examples of reductions of algebraic group modulo p

Reducing equations that define (SL) yields system with
solution set

a —b 0 0

boa 0 0 ih 2R =1
c d a —

d —c b

This group is no longer simple!
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Reduction of reductive algebraic groups modulo p
Examples of reductions of algebraic group modulo p

Reducing equations that define (SL) yields system with

solution set

a —b 0 0

boa 0 0 ih 2R =1
c d a —

d —c b

This group is no longer simple! In fact, it is solvable and

has mnontrivial unipotent radical, hence nonreductive.
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Reduction of reductive algebraic groups modulo p

Thus, reductive Q-groups in Examples 1-3 can be described
by polynomial systems with coefficients in Z (or valuation
ring Z,) C Q) such that their reductions modulo p still

define reductive groups.
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Reduction of reductive algebraic groups modulo p

Thus, reductive Q-groups in Examples 1-3 can be described
by polynomial systems with coefficients in Z (or valuation
ring Z,) C Q) such that their reductions modulo p still

define reductive groups.

On the contrary, systems in Examples 4-5 after reduction no

longer define reductive group.

In analogy with curves, we say that a reductive Q-group G
has good reduction at p if it can be defined by a system
of equations with coefficients in Z() such that reduced
modulo p system defines reductive group;
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Reduction of reductive algebraic groups modulo p

Thus, reductive Q-groups in Examples 1-3 can be described
by polynomial systems with coefficients in Z (or valuation
ring Z,) C Q) such that their reductions modulo p still

define reductive groups.

On the contrary, systems in Examples 4-5 after reduction no

longer define reductive group.

In analogy with curves, we say that a reductive Q-group G
has good reduction at p if it can be defined by a system
of equations with coefficients in Z() such that reduced
modulo p system defines reductive group; otherwise, it has

bad reduction.
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Reduction of reductive algebraic groups modulo p

(Note that choice of a system over Z(, defining G amounts

to finding a group scheme over Z with generic fiber G.)
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to finding a group scheme over Z with generic fiber G.)
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(Note that choice of a system over Z(, defining G amounts

to finding a group scheme over Z with generic fiber G.)

So, groups in Examples 1-3 have good reduction.

One can show that group in Example 4 has bad reduction

for any p > 2,

Andrei Rapinchuk (University of Virginia GMU September 6, 2019 26 / 66
pi



Reduction of reductive algebraic groups modulo p

(Note that choice of a system over Z(, defining G amounts

to finding a group scheme over Z with generic fiber G.)

So, groups in Examples 1-3 have good reduction.

One can show that group in Example 4 has bad reduction
for any p >2, and group in Example 5 has bad reduction
for all p =3(mod4).
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Reduction of reductive algebraic groups modulo p

(Note that choice of a system over Z(, defining G amounts

to finding a group scheme over Z with generic fiber G.)

So, groups in Examples 1-3 have good reduction.

One can show that group in Example 4 has bad reduction
for any p >2, and group in Example 5 has bad reduction
for all p =3(mod4).

(For p=1(mod4), group SL;p in Example 5 is isomorphic to

SL,, hence has good reduction,
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Reduction of reductive algebraic groups modulo p

(Note that choice of a system over Z(, defining G amounts

to finding a group scheme over Z with generic fiber G.)

So, groups in Examples 1-3 have good reduction.

One can show that group in Example 4 has bad reduction
for any p >2, and group in Example 5 has bad reduction
for all p =3(mod4).

(For p=1(mod4), group SL;p in Example 5 is isomorphic to
SL,, hence has good reduction, even though there is system

defining it that has bad reduction).

Andrei Rapinchuk (University of Virginia) GMU September 6, 2019 26 / 66
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Let K be a field, and v be a discrete valuation.
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Good reduction: general case

Let K be a field, and v be a discrete valuation.

Definition
A reductive K-group G has good reduction at v if there exists

a reductive group scheme § over valuation ring O, C K,

such that
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Good reduction: general case

Let K be a field, and v be a discrete valuation.

A reductive K-group G has good reduction at v if there exists
a reductive group scheme § over valuation ring O, C K,

such that

generic fiber §®p, K, is isomorphic to G ®x Ky.
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Good reduction: general case

Let K be a field, and v be a discrete valuation.

A reductive K-group G has good reduction at v if there exists
a reductive group scheme § over valuation ring O, C K,

such that

generic fiber G ®p, K, is isomorphic to G ®x Ky.

Then special fiber (reduction)

G® = g0, KO

is a connected reductive group (K®)  residue field)
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Examples.

0.If G is K-split then G has a good reduction at any v,
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Examples.

0.If G is K-split then G has a good reduction at any v,

given by Chevalley construction.

1. For a central simple K-algebra A, group G =SL;, has good
reduction at v if there exists an Azumaya algebra A over
O, such that

ARk K, ~ A®p, Ky

(in other words, A is unramified at v).
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Examples.

0.If G is K-split then G has a good reduction at any v,

given by Chevalley construction.

1. For a central simple K-algebra A, group G =SL;, has good
reduction at v if there exists an Azumaya algebra A over
O, such that

A®xK, ~ A®o, Ky

(in other words, A is unramified at v).

2. G =Spin,(q) has good reduction at v if
g ~ AMmx3+ - +a.x3) with A €K, a; € OF

(assuming that char K(®) # 2).

Andrei Rapinchuk (University of Virginia) GMU September 6, 2019
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Good reduction: general case

Suppose K is equipped with a set V of discrete valuations.
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Suppose K is equipped with a set V of discrete valuations.

We are interested in reductive K-groups of same type that
have good reduction at all v € V.
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have good reduction at all v € V.
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Good reduction: general case

Suppose K is equipped with a set V of discrete valuations.

We are interested in reductive K-groups of same type that
have good reduction at all v € V.

To make requirement of “having same type” precise, we give

Definition

A K-group G' is a K-form (or K/K-form) of G if
G ®x K~ G Xk K.
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Examples.

1.If A is a central simple algebra of degree n
over K, then G'=SL;4 is a K-form of G =SL,.
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Good reduction: general case

Examples.

1.If A is a central simple algebra of degree n
over K, then G'=SL;4 is a K-form of G =SL,.

2.If g is a nondegenerate quadratic form in n variables
over K (charK # 2) and

G = Spin, (9),
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Examples.

1.If A is a central simple algebra of degree n
over K, then G'=SL;4 is a K-form of G =SL,.

2.If g is a nondegenerate quadratic form in n variables
over K (charK # 2) and

G = Spin,(q),
then for any other nondegenerate quadratic form g in n
variables,

G’ = Spin, (¢')

is a K-form of G.

Andrei Rapinchuk (University of Virginia) GMU September 6, 2019 31/ 66



Good reduction: general case

Examples.

1.If A is a central simple algebra of degree n
over K, then G'=SL;4 is a K-form of G =SL,.

2.If g is a nondegenerate quadratic form in n variables
over K (charK # 2) and
G = Spin, (q),

then for any other nondegenerate quadratic form g in n
variables,

G’ = Spin, (¢')

is a K-form of G.

If n is odd then these are all K-forms.

v
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Good reduction: general case

Examples.

1.If A is a central simple algebra of degree n
over K, then G'=SL;4 is a K-form of G =SL,.

2.If g is a nondegenerate quadratic form in n variables
over K (charK # 2) and

G = Spin,(q),
then for any other nondegenerate quadratic form g in n
variables,

G’ = Spin, (¢')

is a K-form of G.

If n is odd then these are all K-forms.

Otherwise, there may be K-forms coming from hermitian forms
over noncommutative division algebras.

v
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So, our main question becomes:
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So, our main question becomes:

Given a reductive K-group G, find all (inner) forms of G
that have good reduction at all v e V. J
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Good reduction: general case

So, our main question becomes:

Given a reductive K-group G, find all (inner) forms of G
that have good reduction at all v e V. J

To make this question meaningful, one needs to specialize

K, V and G.
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Good reduction: general case

So, our main question becomes:

Given a reductive K-group G, find all (inner) forms of G
that have good reduction at all v e V. J

To make this question meaningful, one needs to specialize

K, V and G.

Most popular case: K field of fractions of Dedekind ring R,

and V consists of places associated with maximal ideals of R.
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Good reduction: general case

Inventiones math. 4, 168191 (1967)

G iiber D
GUNTER HARDER (Heidelberg)

Eialeitung
Sddcin] Dedcku\dnnl (4),5.2), sl S=Spec(A). Mit K wolen i
den Quot nen, und wi setzen s =Spec(K). Sei
e 14 o5 i mmmchc vnuus ion. Sei G ein halbeinfaches Grup-
penschema aber S (s. (6], S. 382), wir wollen dafir G/S oder auch G/A
schreiben. Mit G, o it g allgemeine Faser* von G, d.h.

GimGxs.

nderen Worten, G, ist die Konstantenerweiterung von G/ mit K,
wir wollendaher auch G 0 G, schreiben, Wi nennen das lbeinfache

ber X besitat 5. (61 S, 393, e heibe ratona il wenn Gy ein
Chevalleyschema dber K ist (s. (6], S. 408). Ein Ziel dieser Arbeit ist,
Strukturausagen Ube soche Gruppenschemata i gevinnen und sie 7
Klassifizieren.

Spiiter wollen wir dann die Voray n, dab K ein alge-
braieher Zahlkerpe st und o de affne Ring ener oll‘rncn mlmem

werden wir den Fll, da G Faktoren vom Typ £y enthill, aussehlicten

en Pllenwind der starke Approimationsatz (K (15
g unsre Haupusulate
it dee Berschnuag von
Kinsensabin, dic K in (15 auf Grand des sk Approxima-
tionssatzes andeutungsweise durchfaht. Die Verbindung zwischen unse-
rem Problem und dem der Bestimmung der Klassenzahl wird durch
Satz2.3.1 gegeben
Wit werden uns in hohem Mafe auf das Séminire géometsic algé-
brique 1963/
und auch die dort entwickelte Terminologie ausgiebig verwenden. In der
‘Thise von DEMAZURE (zitert TD) sind die far uns wesentlichen Begriffe
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Inventiones math. 4, 168191 (1967)

G iiber D
GUNTER HARDER (Heidelberg)

Eialeitung
Sci A cin Dedekindring (4], . 22), s S =Spec(4). Mit K wollen wir

n dafiir G/S oder auch G/A
lgemeine Faser" von

schreiben. Mit G, bezeichnen wir dic ,

G=Gxs.

Mit anderen Worten, G, ist die Konstantenerweiterung von G/A mit K,
i woln daber uch G 0 G, chrlben, Wi e do hlbenfiche

ber X besitat 5. (61 S, 393, e heibe ratona il wenn Gy ein
Chevalleyschema dber K ist (s. (6], S. 408). Ein Ziel dieser Arbeit ist,
Strukturaussagen iber solche Gruppenschemata zu gewinnen und sie zu
Klassifizieren.

Spiiter wollen wir dann die Voraussetzung machen, daB K ein alge.
braischer Zahlkrper ist und A der affine Ring einer offenen Teilmenge
UcSpec(Aq), wobei A, der Ring der ganzen Zahlen von K ist.

In diesem Fall kbnnen wir dann die Voraussetzung, daB G/ rational
quasitrivial ist, durch eine wesentlich schwichere Voraussetzung ersetzen.
Da wir aber vom Hasseprinzip fir H'(K, G) Gebrauch machen missen,
werden wir den Fall, daB G Faktoren vom Typ E, enthil, ausschliefen

missen.
iden Fillen wird der starke Approximationssatz (KNESER (15,
16)) eine entscheidende Rolle spielen. Einige unserer Hauptresultate
erweisen sich als im wesentlichen dquivalent mit der Berechnung von
Klassenzahlen, die KNeseR in (/5] auf Grund des starken Approxima-
tionssatzes andeutungsweise durchfaht. Die Verbindung zwischen unse-
rem Problem und dem der Bestimmung der Klassenzahl wird durch
Satz 2.3.1 gegeben.
Wit werden uns n hohem Mabe auf das Séminaire géometri algs
brique 1963/¢

und auch die dort entwickelte Tcrmmnlon: ausgiebig verwenden. In der
‘Thise von DEMAZURE (zitert TD) sind die far uns wesentlichen Begriffe

Good reduction: general case

184 G. Harom:
Lemma 4.1.3. Sei G/A flach von endlichem Typ, sei Gy/K eine reduk-
tive Gruppe, dann ist
HY(K,G)={¢|¢,elmH'(4,,G)— H'(K, , G) fiir alle peSpec(A)}.

Beweis. Es ist klar, daB die linke Seite in der rechten Seite enthalten
ist. Sei £ H'(K,G), und fi alle p sei

¢,elm(H'(4,,6)—H'(R,,G)).

Es gibt eine endliche Erweiterung K'/K, so daB éeH'(K'/K,G). Wir
konnen wegen der Satze in § 2 die Erweiterung K" so groB wahlen, da fir
GxA'

)
der schwache Approximationssatz gilt. (Man wihle K’ so grof, daB das

Radikal R von G iiber K" auflsbar wird und G/R zerfallt.) Wir betrach-
ten das Diagramm

1 G(K) = G(K) == G(K' ® K)
= F
und reprisentieren ¢ durch einen Kozyklus
aeG(K'®K)).
X
Ist UcSpec(d) offen, 5o sei A'(U) der AbschluB von A(V) in K'.

Es gibt jetat sicher cine offene, nicht lecre Menge Uy = Spec(4), so daB
aim Bild der Abbildung

Jr: G(A'(U) ® A'(U)—G(K' ®K')
gy X
liegt, also ist a=jy(a;), und weil G/A flach ist, ergibt sich, daB a, ein
Kozyklus ist. Sei S die Menge der abgeschlossenen Primideale von 4,

die nicht in U, liegen, fiir jedes pe S gibt es nach Voraussetzung iiber &
ein Element 6,eG'(K,), so daB

=pi(by)-a- pa(b) " 'eIm(G(4; ® 4) > G(K; ® K}).

Dafiir muB man eventuell K’ ein wenig groBer machen, und es ist
A=4,04,
s A
entsprechend st K} definiert.

Nun gibt es wegen der Wahl von K’ ein Element be G(K’), das an
den endlich vielen Stellen peS sehr dicht bei b, liegt, wir setzen

a'=p)-a-pa®)"




Good reduction: general case

Basic case R = Z:
B.H. Gross (Invent. math. 124(1996), 263-279) and B. Conrad.
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Theorem (Gross)

Let G be an absolutely almost simple simply connected algebraic
group over Q. Then G has good reduction at all primes p if
and only if G is split over all Q,.
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Then nonsplit groups with good reduction can be constructed
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Good reduction: general case

Basic case R = Z:
B.H. Gross (Invent. math. 124(1996), 263-279) and B. Conrad.

Theorem (Gross)

Let G be an absolutely almost simple simply connected algebraic
group over Q. Then G has good reduction at all primes p if
and only if G is split over all Q,.

Then nonsplit groups with good reduction can be constructed
explicitly and in some cases even classified.

Proposition

Let G be an absolutely almost simple simply connected algebraic
group over a number field K, and assume that V contains almost

all places of K. Then the number of K-forms of G that have
good reduction at all v €V is finite.
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Good reduction: general case

Case R=k[x], K=k(x), and

V = { 0,4 | p(x) €k[x] irreducible }.
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Good reduction: general case

Case R=k[x], K=k(x), and

V = { 0,4 | p(x) €k[x] irreducible }.

Theorem (Raghunathan—Ramanathan, 1984)
Let k be a field of characteristic zero, and let Gy be a connected

reductive group over k. If G' is a K-form of Go®;K that has
good reduction at all veV then

G =GyexK
for some k-form Gj of Go.

Andrei Rapinchuk (University of Virginia) GMU September 6, 2019 35 / 66



Good reduction: general case

Case R =k[x,x '], K=k(x), and

V = {9y | p(x) € k[x] irreducible, # x }.
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Good reduction: general case

Case R =k[x,x '], K=k(x), and

V = {9y | p(x) € k[x] irreducible, # x }.

Theorem (Chernousov—Gille-Pianzola, 2012)

Let k be a field of characteristic zero, and let Go be a connected
reductive group over k. Then K-forms of Go®xK that have good
reduction at all v €V are in bijection with H'(k((x)), Go).
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Good reduction: general case

Case R =k[x,x '], K=k(x), and

V = {9y | p(x) € k[x] irreducible, # x }.

Theorem (Chernousov—Gille-Pianzola, 2012)

Let k be a field of characteristic zero, and let Go be a connected
reductive group over k. Then K-forms of Go®xK that have good
reduction at all v €V are in bijection with H'(k((x)), Go).

This was used to prove conjugacy of Cartan subalgebras in

some infinite-dimensional Lie algebras.
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Good reduction: general case

We analyze higher-dimensional situation.

o Let K be a finitely generated field.

e Pick a model X =SpecA for K where A is anice
(regular, ...) finitely generated Z-algebra.

o Let V be set of places associated with prime divisors on X

(divisorial set).

This situation arises when one tries to understand simple groups
having same isomorphism classes of maximal tori.

Prasad and I observed that such problems are relevant for analysis
of length-commensurable and isospectral locally symmetric spaces.

Using results over number fields, we showed that in certain
situations isospectral locally symmetric spaces are commensurable
(Publ. math. THES 109(2009), 113-184)
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Division algebras with the same maximal subfields

Consider the following question:

(%) Let Dy and D, be finite-dimensional central division algebras
over a field K. How are Dy and D, related if they have

same maximal subfields?

eD; and D; have same maximal subfields if
o degD; = degD, =: n;

o for P/K of degree n, P— Dy < P < D,.
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Division algebras with the same maximal subfields

Geom

Prasad-A.R.: In many (although not all) situations, two arithmeti-
cally ~defined locally symmetric spaces having same lengths of

closed geodesics are commensurable.
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Division algebras with the same maximal subfields

Geometry

Prasad-A.R.: In many (although not all) situations, two arithmeti-
cally defined locally symmetric spaces having same lengths of

closed geodesics are commensurable.

Arithmetic Riemann surfaces were considered by A. Reid.

Underlying algebraic fact:

Let Dy and D, be two quaternion division algebras over a
number field K. If Dy and Dy have same maximal subfields
then D; ~ D,.
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Division algebras with the same maximal subfields

However, most Riemann surfaces are not arithmetic =
One needs to understand to what degree this fact extends to

more general fields

elet H= {x+iy | y>0}

“Most” Riemann surfaces are of the form:

M = H/T

where T C PSL,(R) is a discrete torsion free subgroup.

e Some properties of M can be understood in terms of the

associated quaternion algebra.

Andrei Rapinchuk (University of Virginia) GMU September 6, 2019 41 / 66



Division algebras with the same maximal subfields
Let

® 7T : SLz(]R) — PSLz(]R);
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Division algebras with the same maximal subfields

Let
® 7T : SLz(]R) — PSLz(]R);

o I' = 7)) C My(R).

Set Ar = Q[I'®], T® c T generated by squares.

One shows: Ar is a quaternion algebra with center
Kr = Q(try |y €T®)

(trace field).

(Note that for general Fuchsian groups, Kr is not necessarily
a number field.)
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Division algebras with the same maximal subfields

o If I' is arithmetic, then Ar is the quaternion algebra

involved in its description;
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Division algebras with the same maximal subfields

o If I' is arithmetic, then Ar is the quaternion algebra

involved in its description;

e In general, Ar does not determine I, but is an invariant

of the commensurability class of T.

To a (nontrivial) semi-simple 7 € [® there corresponds:

o geometrically: a closed geodesic c, C M,

if y ~ j:( tg tSl > (ty > 1) then length ((c,) = 2logt,;

e algebraically: a maximal etale subalgebra Kr[y] C Ar.
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Division algebras with the same maximal subfields

For a Riemannian manifold M:

L(M) = set of lengths of closed geodesics in M
((weak) length spectrum of M)
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Division algebras with the same maximal subfields

For a Riemannian manifold M:

L(M) = set of lengths of closed geodesics in M
((weak) length spectrum of M)

Riemannian manifolds M; and M, are

e iso-length spectral if L(M;) = L(Ma);

o length-commensurable if Q-L(M;) = Q-L(Ma).
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Let M; = H/T; (i =1,2) be Riemann surfaces.

If M; and M; are length-commensurable then:
QO Kr, = K, = K;

@ Given closed geodesics c,, C M; for i=1,2 such that
U(cy,)/l(cy,) = m/n (m,n € Z)

elements 7{" and v} are conjugate =

K[y1] C Ar, and K]y,] C Ar, are isomorphic.

So, Ar, and Ar, share “lots” of maximal etale subalgebras.

(Not all — but we will ignore it for now ...)
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eFor M; and M; to be commensurable, Ar, and Ar, must
be isomorphic.
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eFor M; and M; to be commensurable, Ar, and Ar, must
be isomorphic.

So, proving that length-commensurable M; and M) are
commensurable implicitly involves answering a version of (x).

e Recall: If M=H/T is a compact Riemann surface then
compact Riemann surfaces isospectral to M split into finitely
many isometry classes.

What about length-commensurable Riemann surfaces?

Let M; = H/T; (Z S I)
Riemann surfaces where T'; C PSLy(R) is finitely generated and

be a family of length-commensurable

Zariski- dense. Then quaternion algebras Ar, (i € I) split into
finitely many isomorphism classes (over common center).
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have
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Division algebras with the same maximal subfields
Algebra

Amitsur’'s Theorem

Let D; and D; be central division algebras over K.

If Dy and D, have same splitting fields, ie. for F/K we
have

Dy ®KF2M,11(F) & Dy ®KP2M112(F)/

then ([D4]) = ([Dz]) in Br(K).

Proof of Amitsur’'s Theorem uses generic splitting fields
(function fields of Severi-Brauer varieties), which are

infinite extensions of K.

What  happens if one allows only splitting fields of

finite degree, or just maximal subfields?
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e Amitsur’s Theorem is no longer true in this setting.
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Division algebras with the same maximal subfields

e Amitsur’s Theorem is no longer true in this setting.

(Counterexamples can be found using cubic algebras over
number fields.)

This leads to question (%) and its variations.

Question (Prasad-A.R.)

Are quaternion algebras over K = Q(x) determined by their
maximal subfields?

e Yes — D.Saltman

e Same over K=k(x), k a number field

(S. Garibaldi - D. Saltman)
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Genus of a division algebra

Definition.

Let D be a finite-dimensional central division algebra over K.
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(This means that D is uniquely determined by maximal subfields.)
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Genus of a division algebra

Definition.

Let D be a finite-dimensional central division algebra over K.

The genus of D is
gen(D) = {[D'] € Br(K) | D’ has same maximal subfields as D }

Question 1. When does gen(D) reduce to a single element?

(This means that D is uniquely determined by maximal subfields.)
Question 2. When is gen(D) finite?

Over number fields:

e genus of every quaternion algebra reduces to one element;J

e genus of every division algebra is finite.

(Follows from Albert-Hasse-Brauer-Noether Theorem.)
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Genus of a division algebra

Theorem 1 (Stability Theorem)

Let chark # 2. If |gen(D)| =1 for every quaternion algebra D over k,
then |gen(D')| =1 for any quaternion algebra D’ over k(x).
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Theorem 1 (Stability Theorem)

Let chark # 2. If |gen(D)| =1 for every quaternion algebra D over k,
then |gen(D')| =1 for any quaternion algebra D’ over k(x).

e Same statement is true for division algebras of exponent 2.

e |[gen(D)| >1 if D is not of exponent?2.
e gen(D) can be infinite.

Construction yields examples over fields that are infinitely generated

( in fact, HUGE )

Andrei Rapinchuk (University of Virginia GMU September 6, 2019 51 / 66
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Genus of a division algebra

Let K be a finitely generated field. Then for any central

division K-algebra D the genus gen(D) is finite.
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info about wunramified Brauer group.

BASIC FACT: Let v be a discrete valuation of K, and n be
prime to characteristic of residue field K.
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info about wunramified Brauer group.

BASIC FACT: Let v be a discrete valuation of K, and n be
prime to characteristic of residue field K.
If D; and D, are central division K-algebras of degree n

having same maximal subfields, then either both algebras are

ramified at v or both are unramified.

Andrei Rapinchuk (University of Virginia) GMU September 6, 2019



Genus of a division algebra

Let K be a finitely generated field. Then for any central

division K-algebra D the genus gen(D) is finite.

e Proofs of both theorems use analysis of ramification and

info about wunramified Brauer group.

BASIC FACT: Let v be a discrete valuation of K, and n be
prime to characteristic of residue field K.

If D; and D, are central division K-algebras of degree n
having same maximal subfields, then either both algebras are

ramified at v or both are unramified.

(When n is divisible by char K®, we need some additional assumptions)
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Genus of a division algebra

e Recall that a c.s.a. A over K (or its class [A] € Br(K))
is unramified at v if there exists Azumaya algebra A/O,
such that

ARk Ky ¥ A®p, Ko.

If (n,charK®) =1 or K® is perfect, there is a residue map
ro: #Br(K) — HY(SW,Z/nZz),

where §(® is absolute Galois group of K.

e Then x € ,Br(K) is unramified at v < ry(x) =0. J

Given a set V of discrete valuations of K, one defines
corresponding unramified Brauer group:

Br(K)y = {x € Br(K) | x unramified at all v € V }.
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e To prove Theorem 1 (Stability Theorem) we use:
if K=k(x) and V = set of geometric places, then
when (n,chark) = 1 (Faddeev)
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e There are two proofs of Theorem 2. Both show that a
finitely generated field K can be equipped with set V of
discrete valuations so that one can make some finiteness
statements about unramified Brauer group.

Andrei Rapinchuk (University of Virginia) GMU September 6, 2019 54 / 66



e To prove Theorem 1 (Stability Theorem) we use:
if K=k(x) and V = set of geometric places, then
when (n,chark) = 1 (Faddeev)

e There are two proofs of Theorem 2. Both show that a
finitely generated field K can be equipped with set V of
discrete valuations so that one can make some finiteness
statements about unramified Brauer group.

Andrei Rapinchuk (University of Virginia) GMU September 6, 2019 54 / 66



e To prove Theorem 1 (Stability Theorem) we use:
if K=k(x) and V = set of geometric places, then
when (n,chark) = 1 (Faddeev)

e There are two proofs of Theorem 2. Both show that a
finitely generated field K can be equipped with set V of
discrete valuations so that one can make some finiteness
statements about unramified Brauer group.

@ More recent argument works in all characteristics, but
gives no estimate of size of gen(D).
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e To prove Theorem 1 (Stability Theorem) we use:
if K=k(x) and V = set of geometric places, then
when (n,chark) = 1 (Faddeev)

e There are two proofs of Theorem 2. Both show that a
finitely generated field K can be equipped with set V of
discrete valuations so that one can make some finiteness
statements about unramified Brauer group.

@ More recent argument works in all characteristics, but
gives no estimate of size of gen(D).

o Earlier argument works when (1, charK) =1, gives
finiteness of ,Br(K)y and estimate

|gen(D) | < [4Br(K)v | - ¢(n)

where v is number of v € V that ramify in D.
Andrei Rapinchuk (University of Virginia) GMU September 6, 2019 54 / 66
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Genus of a division algebra

Question. Does there exist a quaternion division algebra D
over K = k(C), where C is a smooth geometrically integral
curve over a number field k, such that

|gen(D)| > 17
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Question. Does there exist a quaternion division algebra D
over K = k(C), where C is a smooth geometrically integral

curve over a number field k, such that

|gen(D)| > 17

e The answer is not known for any finitely generated K.
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Genus of a division algebra

Question. Does there exist a quaternion division algebra D
over K = k(C), where C is a smooth geometrically integral
curve over a number field k, such that

|gen(D)| > 17

e The answer is not known for any finitely generated K.

e One can construct examples where ,Br(K)y is “large.”
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Genus of a simple algebraic group

e To define the genus of an algebraic group, we replace
maximal subfields with maximal tori in the definition of

genus of division algebra.
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G1 & Gy have same isomorphism classes of maximal K-tori
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Genus of a simple algebraic group

e To define the genus of an algebraic group, we replace
maximal subfields with maximal tori in the definition of

genus of division algebra.

Let G; and G, be semi-simple groups over a field K.

Gi1 & Gy have same isomorphism classes of maximal K-tori
if every maximal K-torus T; of G; is K-isomorphic to

a maximal K-torus T, of G,, and vice versa.

Let G be an absolutely almost simple K-group.

gen; (G) =set of isomorphism classes of K-forms G’ of G having

same K-isomorphism classes of maximal K-tori as G.
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Genus of a simple algebraic group

Question 1. When does geny(G) reduce to a single element?
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Question 2'. When is geny(G) finite?

Theorem 3 (Prasad-A.R.)

Let G be an absolutely almost simple simply connected algebraic
group over a number field K.
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Let G be an absolutely almost simple simply connected algebraic
group over a number field K.

(1) geny (G) is finite;

GMU September 6, 2019 58 / 66

Andrei Rapinchuk (University of Virginia)



Genus of a simple algebraic group

Question 1. When does geny(G) reduce to a single element?

Question 2'. When is geny(G) finite?

Theorem 3 (Prasad-A.R.)

Let G be an absolutely almost simple simply connected algebraic
group over a number field K.

(1) geny (G) is finite;
@) If G is not of type An, Dopi1 or Es, then |geng(G)| =1.
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Genus of a simple algebraic group

Question 1. When does geny(G) reduce to a single element?

Question 2'. When is geny(G) finite?

Theorem 3 (Prasad-A.R.)

Let G be an absolutely almost simple simply connected algebraic
group over a number field K.

(1) geny (G) is finite;
@) If G is not of type An, Dopi1 or Es, then |geng(G)| =1.

Conjecture. (1) For K = k(x), k a number field, and G
an absolutely almost simple simply connected K-group with
1Z(G)| <2, we have |geng(G)| =1,
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Genus of a simple algebraic group

Question 1. When does geny(G) reduce to a single element?

Question 2'. When is geny(G) finite?

Theorem 3 (Prasad-A.R.)

Let G be an absolutely almost simple simply connected algebraic
group over a number field K.

(1) geny (G) is finite;
@) If G is not of type An, Dopi1 or Es, then |geng(G)| =1.

Conjecture. (1) For K = k(x), k a number field, and G
an absolutely almost simple simply connected K-group with
1Z(G)| <2, we have |geng(G)| =1,

(2) If G is an absolutely almost simple group over a finitely
generated field K of “good” characteristic then geng(G) is
finite.
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Genus of a simple algebraic group

“Unramified division algebras” ~» “groups with good reduction”
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“Unramified division algebras” ~» “groups with good reduction”

Theorem 3.
Let G be an absolutely almost simple simply connected group

over K, and v be a discrete valuation of K.

Assume that K©) s finitely generated, and G has good

reduction at wv.

Andrei Rapinchuk (University of Virginia) GMU September 6, 2019 59 / 66



Genus of a simple algebraic group

“Unramified division algebras” ~» “groups with good reduction”

Theorem 3.

Let G be an absolutely almost simple simply connected group

over K, and v be a discrete valuation of K.

Assume that K©) s finitely generated, and G has good

reduction at wv.

Then cvery G' € geny(G) has good reduction at v, and

reduction G ©)

€ geny ) (G™).
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Genus of a simple algebraic group

Let K be a finitely generated field equipped with a set
V of discrete valuations such that:
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Let K be a finitely generated field equipped with a set
V of discrete valuations such that:

() for any a € K*, set V(a):={veV|v(a)#0} is finite;

(I) for every v €V, residue field K® is finitely generated.
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Genus of a simple algebraic group

Let K be a finitely generated field equipped with a set
V of discrete valuations such that:

() for any a € K*, set V(a):={veV|v(a)#0} is finite;

(I) for every v €V, residue field K® is finitely generated.

Let G be an absolutely almost simple simply connected K-group.

There exists a finite subset S CV (depending on G) such that
every G' € geny(G) has good reduction at all ve V\S.
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Genus of a simple algebraic group

So, finiteness of gen,(G) is related to following property:
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that satisfies (P)?
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Genus of a simple algebraic group

So, finiteness of geng(G) is related to following property:

A set V of discrete valuations of K satisfies (®) for an

absolutely almost simple K-group G if

(@) set of K-isomorphism classes of (inner) K-forms G' of G
having good reduction at all v € V\S is finite, for any
finite SCV

When can a finitely generated field K be equipped with V
that satisfies (P)?

Does a divisorial V satisfy (®)?
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e Even when such description is available (e.g. for type Gy),
one needs to prove finiteness of unramified cohomology

in degrees > 2, which is a difficult problem.
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Genus of a simple algebraic group

Additional challenges for arbitrary groups:

e It is not known how to classify forms by cohomological

invariants.

e Even when such description is available (e.g. for type Gy),
one needs to prove finiteness of unramified cohomology

in degrees > 2, which is a difficult problem.

o Finiteness results for unramified Brauer groups imply that
divisorial V does satisfy (®) for inner forms of type A,_;

for any finitely generated K such that charK { n.
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Theorem 3

Let C be a smooth geometrically integral curve over a number
field 'k, K=k(C), and V divisorial set of places. Fix n > 5.
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Let C be a smooth geometrically integral curve over a number
field 'k, K=k(C), and V divisorial set of places. Fix n > 5.
Then set of K-isomorphism classes of Spin,(q)
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with  good
reduction at all veV s finite.

e Similar results for groups of types A, C,, Fs that split over a
quadratic extension, and G,.

PROOF consists of two parts.

© Using Milnor’s conjecture proved by Voevodsky, we reduce to
finiteness of unramified cohomology H!(K,pa)y, pa = {£1}.
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Let C be a smooth geometrically integral curve over a number

field 'k, K=k(C), and V divisorial set of places. Fix n >5.

Then set of K-isomorphism classes of Spin,(q) with good
reduction at all veV s finite.

e Similar results for groups of types A, C,, Fs that split over a
quadratic extension, and G,.

PROOF consists of two parts.

© Using Milnor’s conjecture proved by Voevodsky, we reduce to
finiteness of unramified cohomology H!(K,pa)y, pa = {£1}.

@ Prove finiteness of H!(K,up)y for all i> 1.
Difficult case: i = 3.
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Genus of a simple algebraic group

Let C be a smooth geometrically integral curve over a number

field 'k, K=k(C), and V divisorial set of places. Fix n >5.

Then set of K-isomorphism classes of Spin,(q) with good
reduction at all veV s finite.

e Similar results for groups of types A, C,, Fs that split over a
quadratic extension, and G,.

PROOF consists of two parts.

© Using Milnor’s conjecture proved by Voevodsky, we reduce to
finiteness of unramified cohomology H!(K,pa)y, pa = {£1}.
@ Prove finiteness of H!(K,up)y for all i> 1.

Difficult case: i =3. We adapt Jannsen’s proof of Kato’s local-global
principle for HS.
Andrei Rapinchuk (University of Virginia)
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Theorem 4
Let K = k(C) where C is a smooth geometrically integral curve
over a number field k, and G = Spin, (q) where q is a quadratic

form.
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Applications
Finiteness of genus

e Finiteness of gen,(G) for inner forms of type A, over any

finitely generated field K.

Theorem 4

Let K = k(C) where C is a smooth geometrically integral curve
over a number field k, and G = Spin, (q) where q is a quadratic
form. If either n >5 is odd, or n>10 is even and q is
isotropic, then gen,(G) is finite.
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Applications
Finiteness of genus

e Finiteness of gen,(G) for inner forms of type A, over any

finitely generated field K.

Let K = k(C) where C is a smooth geometrically integral curve

over a number field k, and G = Spin, (q) where q is a quadratic
form. If either n >5 is odd, or n>10 is even and q is
isotropic, then gen,(G) is finite.

Let G be a simple algebraic group of type Gp.
(1) If K=k(x), where k is a number field, then |geny(G)|=1;

(@) If K=k(x1,...,x,) or k(C), where k is a number field,
then gen,(G) is finite.
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Suppose 'V satisfies (I) & (®). Then the natural map
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for adjoint group G is proper. In particular, its kernel 1II(G)
is finite.

True for:

e PSL, over a finitely generated field K, (n, charK) =1;
e SO,(q) over K=k(C), k a number field;

e G of type Gy over K=k(C), k a number field.
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