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Reduction techniques in number theory

• Can be used to show that equations have no integer or
rational solutions.

Consider equation

x2 − 7y2 = −1.

Let (x0, y0) be an integer solution.

Taking mod 7 yields

x2
0 ≡ −1(mod 7).

But this congruence has no solutions!

(Otherwise (Z/7Z)×,

which has order 6, would contain an element of order 4.)

Thus, original equation has no integer solutions.
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Reduction techniques in number theory

• Can aid in understanding structure of solution set, i.e. set
of rational points.

Recall:

An elliptic curve E is a smooth cubic in P2

(with a rational point)

Over a field K of characteristic 6= 2, 3, “affine” part of E

can be given by equation

y2 = f (x)

where f (x) = x3 + ax + b (a, b ∈ K) has no multiple roots;

E has one point “at infinity;”

K-rational points E(K) form abelian group for tangent-

chord group law;

identity element = point at infinity.
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Reduction techniques in number theory

Theorem (Mordell – Weil)

Let E be an elliptic curve over a number field K.

Then the group E(K) is finitely generated.

Remark. Conclusion remains valid for abelian varieties

over finitely generated fields.

PROOF for elliptic curves E over K = Q was found by

Louis Mordell in 1922.

Important step - Weak Mordell Theorem:

E(Q)/2 · E(Q) is finite.

Argument heavily relies on reduction.
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Reduction techniques in number theory

Consider an affine equation of elliptic curve:

y2 = f (x) where f (x) = x3 + ax + b (NO multiple roots!) (E)

Assume that a, b ∈ Z and pick a prime p > 2.

Reducing modulo p, we obtain:

y2 = f̄ (x) where f̄ (x) = x3 + āx + b̄. (R)

Two possibilities:

f̄ has no multiple roots.

Then (R) still defines an elliptic
curve, and we say that (E) has good reduction at p.

f̄ has multiple roots.

Then (R) defines a singular rational
curve, and we say that (E) has bad reduction at p.

Primes of bad reduction are those that divide discriminant of f .

So, they constitute a finite set.
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Reduction techniques in number theory

Definition. Elliptic curve E has good reduction at p > 3

if it

admits an equation (E) that has good reduction at p, and

bad reduction otherwise.

More precisely, E has good reduction if it is isomorphic to E′ that
can be given by equation (E) having good reduction at p.

In technical language, this means that there exists an abelian
scheme E(p) over valuation ring Z(p) ⊂ Q with generic fiber E
(this scheme E(p) is then unique)

Example.

Equation y2 = x3 − 625x has bad reduction at p = 5,

but

elliptic curve E it defines is isomorphic to elliptic curve E′

given by y2 = x3 − x which has good reduction at p = 5.

So, E has good reduction at p = 5.
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Reduction techniques in number theory

Sketch of proof of Weak Mordell Theorem

Let E be an elliptic curve over Q.

• Let Π be (finite) set of primes of bad reduction ∪ {2}.

• For P ∈ E(Q), we let Q(P) denote residue field of P

(i.e., Q(P) = Q if P is the point at infinity, and Q(P) is
generated by affine coordinates of P otherwise).

• Let π : E→ E be isogeny P 7→ 2 · P.

Since π has degree 4, for any P ∈ E(Q) and any R ∈ π−1(P),

[Q(R) : Q] 6 4.

Andrei Rapinchuk (University of Virginia) GMU September 6, 2019 8 / 66



Reduction techniques in number theory

Sketch of proof of Weak Mordell Theorem

Let E be an elliptic curve over Q.

• Let Π be (finite) set of primes of bad reduction ∪ {2}.

• For P ∈ E(Q), we let Q(P) denote residue field of P

(i.e., Q(P) = Q if P is the point at infinity, and Q(P) is
generated by affine coordinates of P otherwise).

• Let π : E→ E be isogeny P 7→ 2 · P.

Since π has degree 4, for any P ∈ E(Q) and any R ∈ π−1(P),

[Q(R) : Q] 6 4.

Andrei Rapinchuk (University of Virginia) GMU September 6, 2019 8 / 66



Reduction techniques in number theory

Sketch of proof of Weak Mordell Theorem

Let E be an elliptic curve over Q.

• Let Π be (finite) set of primes of bad reduction ∪ {2}.

• For P ∈ E(Q), we let Q(P) denote residue field of P

(i.e., Q(P) = Q if P is the point at infinity, and Q(P) is
generated by affine coordinates of P otherwise).

• Let π : E→ E be isogeny P 7→ 2 · P.

Since π has degree 4, for any P ∈ E(Q) and any R ∈ π−1(P),

[Q(R) : Q] 6 4.

Andrei Rapinchuk (University of Virginia) GMU September 6, 2019 8 / 66



Reduction techniques in number theory

Sketch of proof of Weak Mordell Theorem

Let E be an elliptic curve over Q.

• Let Π be (finite) set of primes of bad reduction ∪ {2}.
• For P ∈ E(Q), we let Q(P) denote residue field of P

(i.e., Q(P) = Q if P is the point at infinity, and Q(P) is
generated by affine coordinates of P otherwise).

• Let π : E→ E be isogeny P 7→ 2 · P.

Since π has degree 4, for any P ∈ E(Q) and any R ∈ π−1(P),

[Q(R) : Q] 6 4.

Andrei Rapinchuk (University of Virginia) GMU September 6, 2019 8 / 66



Reduction techniques in number theory

Sketch of proof of Weak Mordell Theorem

Let E be an elliptic curve over Q.

• Let Π be (finite) set of primes of bad reduction ∪ {2}.
• For P ∈ E(Q), we let Q(P) denote residue field of P

(i.e., Q(P) = Q if P is the point at infinity, and Q(P) is
generated by affine coordinates of P otherwise).

• Let π : E→ E be isogeny P 7→ 2 · P.

Since π has degree 4, for any P ∈ E(Q) and any R ∈ π−1(P),

[Q(R) : Q] 6 4.

Andrei Rapinchuk (University of Virginia) GMU September 6, 2019 8 / 66



Reduction techniques in number theory

Sketch of proof of Weak Mordell Theorem

Let E be an elliptic curve over Q.

• Let Π be (finite) set of primes of bad reduction ∪ {2}.
• For P ∈ E(Q), we let Q(P) denote residue field of P

(i.e., Q(P) = Q if P is the point at infinity, and Q(P) is
generated by affine coordinates of P otherwise).

• Let π : E→ E be isogeny P 7→ 2 · P.

Since π has degree 4, for any P ∈ E(Q) and any R ∈ π−1(P),

[Q(R) : Q] 6 4.

Andrei Rapinchuk (University of Virginia) GMU September 6, 2019 8 / 66



Reduction techniques in number theory

Sketch of proof of Weak Mordell Theorem

Let E be an elliptic curve over Q.

• Let Π be (finite) set of primes of bad reduction ∪ {2}.
• For P ∈ E(Q), we let Q(P) denote residue field of P

(i.e., Q(P) = Q if P is the point at infinity, and Q(P) is
generated by affine coordinates of P otherwise).

• Let π : E→ E be isogeny P 7→ 2 · P.

Since π has degree 4, for any P ∈ E(Q) and any R ∈ π−1(P),

[Q(R) : Q] 6 4.

Andrei Rapinchuk (University of Virginia) GMU September 6, 2019 8 / 66



Reduction techniques in number theory

Sketch of proof of Weak Mordell Theorem

For p /∈ Π, using good reduction at p, one shows that

Q(R)/Q is unramified at p.

HERMITE: There are only finitely many extensions of Q of

a given degree and unramified outside a given finite

set of primes.

Thus, among field extensions Q(R), R ∈ π−1(E(Q)), there are

only finitely many distinct

⇒

their compositum Q(π−1(E(Q))) is a finite extension of Q.

Then a formal argument using Galois cohomology (“Kummer

sequence”) shows E(Q)/2 · E(Q) is finite.
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Reduction techniques in number theory

SHAFAREVICH (ICM, 1962): If Π is a finite set of primes then

there are finitely many isomorphism classes of elliptic curves E

over Q having good reduction at all p /∈ Π.

(Shaferevich stated his theorem for an arbitrary number field K
and a finite set of places S.)

Sketch of proof

(attributed to Tate by Serre in Abelian `-adic

Representations and Elliptic Curves)

•We can assume that 2, 3 ∈ Π, and let A be localization
of Z w.r.t. Π.

• Using that A is UFD, one shows that E can be given by

y2 = f (x) where f (x) = x2 + ax + b (E)

with a, b ∈ A and discriminant ∆ = −4a3 − 27b2 in A×.

Andrei Rapinchuk (University of Virginia) GMU September 6, 2019 10 / 66



Reduction techniques in number theory

SHAFAREVICH (ICM, 1962): If Π is a finite set of primes then

there are finitely many isomorphism classes of elliptic curves E

over Q having good reduction at all p /∈ Π.

(Shaferevich stated his theorem for an arbitrary number field K
and a finite set of places S.)

Sketch of proof

(attributed to Tate by Serre in Abelian `-adic

Representations and Elliptic Curves)

•We can assume that 2, 3 ∈ Π, and let A be localization
of Z w.r.t. Π.

• Using that A is UFD, one shows that E can be given by

y2 = f (x) where f (x) = x2 + ax + b (E)

with a, b ∈ A and discriminant ∆ = −4a3 − 27b2 in A×.

Andrei Rapinchuk (University of Virginia) GMU September 6, 2019 10 / 66



Reduction techniques in number theory

SHAFAREVICH (ICM, 1962): If Π is a finite set of primes then

there are finitely many isomorphism classes of elliptic curves E

over Q having good reduction at all p /∈ Π.

(Shaferevich stated his theorem for an arbitrary number field K
and a finite set of places S.)

Sketch of proof

(attributed to Tate by Serre in Abelian `-adic

Representations and Elliptic Curves)

•We can assume that 2, 3 ∈ Π, and let A be localization
of Z w.r.t. Π.

• Using that A is UFD, one shows that E can be given by

y2 = f (x) where f (x) = x2 + ax + b (E)

with a, b ∈ A and discriminant ∆ = −4a3 − 27b2 in A×.

Andrei Rapinchuk (University of Virginia) GMU September 6, 2019 10 / 66



Reduction techniques in number theory

SHAFAREVICH (ICM, 1962): If Π is a finite set of primes then

there are finitely many isomorphism classes of elliptic curves E

over Q having good reduction at all p /∈ Π.

(Shaferevich stated his theorem for an arbitrary number field K
and a finite set of places S.)

Sketch of proof

(attributed to Tate by Serre in Abelian `-adic

Representations and Elliptic Curves)

•We can assume that 2, 3 ∈ Π, and let A be localization
of Z w.r.t. Π.

• Using that A is UFD, one shows that E can be given by

y2 = f (x) where f (x) = x2 + ax + b (E)

with a, b ∈ A and discriminant ∆ = −4a3 − 27b2 in A×.

Andrei Rapinchuk (University of Virginia) GMU September 6, 2019 10 / 66



Reduction techniques in number theory

SHAFAREVICH (ICM, 1962): If Π is a finite set of primes then

there are finitely many isomorphism classes of elliptic curves E

over Q having good reduction at all p /∈ Π.

(Shaferevich stated his theorem for an arbitrary number field K
and a finite set of places S.)

Sketch of proof (attributed to Tate by Serre in Abelian `-adic

Representations and Elliptic Curves)

•We can assume that 2, 3 ∈ Π, and let A be localization
of Z w.r.t. Π.

• Using that A is UFD, one shows that E can be given by

y2 = f (x) where f (x) = x2 + ax + b (E)

with a, b ∈ A and discriminant ∆ = −4a3 − 27b2 in A×.

Andrei Rapinchuk (University of Virginia) GMU September 6, 2019 10 / 66



Reduction techniques in number theory

SHAFAREVICH (ICM, 1962): If Π is a finite set of primes then

there are finitely many isomorphism classes of elliptic curves E

over Q having good reduction at all p /∈ Π.

(Shaferevich stated his theorem for an arbitrary number field K
and a finite set of places S.)

Sketch of proof (attributed to Tate by Serre in Abelian `-adic

Representations and Elliptic Curves)

•We can assume that 2, 3 ∈ Π, and let A be localization
of Z w.r.t. Π.

• Using that A is UFD, one shows that E can be given by

y2 = f (x) where f (x) = x2 + ax + b (E)

with a, b ∈ A and discriminant ∆ = −4a3 − 27b2 in A×.

Andrei Rapinchuk (University of Virginia) GMU September 6, 2019 10 / 66



Reduction techniques in number theory

SHAFAREVICH (ICM, 1962): If Π is a finite set of primes then

there are finitely many isomorphism classes of elliptic curves E

over Q having good reduction at all p /∈ Π.

(Shaferevich stated his theorem for an arbitrary number field K
and a finite set of places S.)

Sketch of proof (attributed to Tate by Serre in Abelian `-adic

Representations and Elliptic Curves)

•We can assume that 2, 3 ∈ Π, and let A be localization
of Z w.r.t. Π.

• Using that A is UFD, one shows that E can be given by

y2 = f (x) where f (x) = x2 + ax + b (E)

with a, b ∈ A and discriminant ∆ = −4a3 − 27b2 in A×.
Andrei Rapinchuk (University of Virginia) GMU September 6, 2019 10 / 66



Reduction techniques in number theory

• Note that if elliptic curves E1, E2 given by equations (E)
have discriminants ∆1, ∆2 ∈ A× and

∆1 = ∆2 u12, u ∈ A×,

then one can replace E1 by E′1 ' E1 still given by (E) and
such that ∆′1 = ∆2.

• Since A×/(A×)12 is finite,

it is enough to show that for a
fixed ∆0 ∈ A×, equation

−4a3 − 27b2 = ∆0 (D)

has finitely many solutions (a, b) ∈ A×A.

But since (D) defines a curve of genus 1, finiteness is

guaranteed by Siegel’s Theorem!
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Reduction techniques in number theory

Shafarevich’s Conjecture

While this argument is specific to elliptic curves,

Shafarevich

felt that his theorem was an instance of a far more general

phenomenon.

Conjecture.

Let K be a number field, and let S be a finite set of places

of K.

Then for every g > 1 there exist only finitely many iso-

morphism classes of abelian varieties of dimension g that have

good reduction at all p /∈ S.
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Reduction techniques in number theory

Proof found by G. Faltings in 1982 was culmination of work

in Diophantine geometry.

Consequences include:

Mordell conjecture: a smooth projective curve of genus

g > 2 over a number field K has finitely many K-rational

points;

Shafarevich conjecture for curves: for g > 2, there are

only finitely many isomorphism classes of curves of

genus g having good reduction at all p /∈ S.

We would like to find analogs of these results for linear

algebraic groups.
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Reduction of reductive algebraic groups modulo p

1 Reduction techniques in number theory

2 Reduction of reductive algebraic groups modulo p

3 Good reduction: general case

4 Division algebras with the same maximal subfields

5 Genus of a division algebra

6 Genus of a simple algebraic group

7 Applications
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Reduction of reductive algebraic groups modulo p

Basic definitions

A linear algebraic group is a subgroup G ⊂ GLn that

can be defined by polynomial equations in terms of

matrix entries xij;

If ideal of polynomials p(x11, . . . , xnn) that vanish on G is

generated by polynomials with coefficients in a (sub)field

K then G is K-defined;

(if char K = 0 then it is enough to require that G be defined

by polynomials with coefficients in K)

Morphisms of algebraic groups are group homomorphisms

that can be represented by polynomials in terms of xij

and det(xij)
−1.
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that can be represented by polynomials in terms of xij

and det(xij)
−1.
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Reduction of reductive algebraic groups modulo p

Classes of linear algebraic groups

Unipotent radical of a (connected) algebraic group G is

largest connected unipotent normal subgroup.

A (connected) algebraic group G is reductive if unipotent

radical is trivial.

Examples: GLn, SLn, Sp2n, SOn(q), .....

A (connected) algebraic group G is (absolutely almost)

simple if it does not contain proper connected normal

subgroups.

Examples: SLn, Sp2n, SOn(q) (n = 3 or > 5), ...

It is semi-simple if it admits a surjective morphism from a

direct product of simple groups. Example: SO4(q)
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Reduction of reductive algebraic groups modulo p

Examples of reductions of algebraic group modulo p

Example 1. Let G = GLn over Q.

One can think of G as

Z-group scheme Spec A where

A = Z
[
x11, . . . , xnn, 1

det(xij)

]
.

Viz., for any commutative ring R, GLn(R) can be identified

with HomZ-alg(A, R).

Given a prime p, we can reduce modulo p:

Ap := A⊗Z Fp = Fp

[
x11, . . . , xnn, 1

det(xij)

]
.

Then Ap represents GLn over rings of characteristic p.

Thus, reduction of GLn/Z modulo p is GLn/Fp.
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Reduction of reductive algebraic groups modulo p

Examples of reductions of algebraic group modulo p

In particular, 1-dimensional split torus Gm = GL1 is

represented Z[x, x−1].

Its reduction modulo p is represented

by Fp[x, x−1]

,

i.e. 1-dimensional split torus over Fp.

More generally, reduction modulo p of d-dimensional split
torus Gd

m,

which is represented by Z[x1, . . . , xd, x−1
1 , . . . , x−1

d ], is
d-dimensional split torus over Fp.

Example 2. Let G = SLn.

Then G is represented by Z-algebra

Z[x11, . . . , xnn]/(det(xij)− 1).

Reduction modulo p is Fp[x11, . . . , xnn]/(det(xij)− 1) which

represents SLn over rings of characteristic p.

Thus, reduction of SLn/Z modulo p is SLn/Fp.
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Reduction of reductive algebraic groups modulo p

Examples of reductions of algebraic group modulo p

Example 3. Let G = SOn(q) where q = x2
1 + · · ·+ x2

n and n > 3.

Then reduction of G modulo any p > 2 is SOn(q̄) where
q̄ = x2

1 + · · ·+ x2
n over Fp.

In all these examples, reduction modulo p of a given

algebraic group/Z is an algebraic group of same type /Fp.

More precisely, groups in Example 1 (i.e., GLn and split tori)
are (connected and) reductive,

and so are their reductions
modulo all p.

Groups in Examples 2 and 3 are (connected and) semi-simple,

and their reductions (for p 6= 2 in Example 3) are (connected
and) semi-simple.

Here are examples of a different nature.
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More precisely, groups in Example 1 (i.e., GLn and split tori)
are (connected and) reductive,

and so are their reductions
modulo all p.
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Reduction of reductive algebraic groups modulo p

Examples of reductions of algebraic group modulo p

Example 4. Fix a prime p > 2, and consider L = Q(
√

p).

Recall that for z = a + b
√

p ∈ L, the norm NL/Q(z) = a2 − pb2.

There exists algebraic Q-group G = R(1)
L/Q

(Gm) (norm torus)

such that

G(Q) = {z ∈ L× | NL/Q(z) = 1}.
Explicitly,

G =

{
X =

(
a pb
b a

)
| det(X) = 1

}
.

Matrix
( √

p −√p
1 1

)
conjugates G into{(

u 0
0 v

)
| uv = 1

}
,

So, G is 1-dimensional (Q-anisotropic) torus.
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Reduction of reductive algebraic groups modulo p

Examples of reductions of algebraic group modulo p

G is given by following equations on 2× 2-matrix X = (xij):

x11 = x44, x12 = px21, x2
11 − px2

21 = 1. (T)

Reducing modulo p, we obtain:

x11 = x44, x12 = 0, x2
11 = 1.

Solutions are of the form ±
(

1 0
u 1

)
.

So, reduction of (T) modulo p defines disconnected Fp-group

whose connected component is 1-dimensional unipotent group!

On the other hand, reducing (T) modulo any q > 2, q 6= p,

one still gets 1-dimensional torus.
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Reduction of reductive algebraic groups modulo p

Examples of reductions of algebraic group modulo p

Example 5 (noncommutative version of Example 4) Fix a prime

p > 2

,

and let D be quaternion algebra corresponding to pair

(−1, p). So, D has Q-basis 1, i, j, k with multiplication table

i2 = −1, j2 = p, k = ij = −ji, k2 = p.

For a quaternion z = a + bi + cj + dk, the reduced norm is

NrdD/Q(z) = a2 + b2 − pc2 − pd2.

There exists an algebraic Q-group G = SL1,D with

G(Q) = {z ∈ D× | NrdD/Q(z) = 1}.
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Reduction of reductive algebraic groups modulo p

Examples of reductions of algebraic group modulo p

Using regular representation of D, one realizes G by matrices
a −b pc −pd
b a pd −pc
c d a −b
d −c b a

 with a2 + b2 − pc2 − pd2 = 1. (SL)

One can find matrix over Q(
√
−1) or Q(

√
p) that conjugates

G into matrices (
A O
O A

)
with A ∈ SL2.

So, G ' SL2 over either field, hence over Q.

In other words, G is Q-form of SL2

(in particular, simple

group).
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Reduction of reductive algebraic groups modulo p

Examples of reductions of algebraic group modulo p

Reducing equations that define (SL) yields system with

solution set


a −b 0 0
b a 0 0
c d a −b
d −c b a

 with a2 + b2 = 1.

This group is no longer simple!

In fact, it is solvable and

has nontrivial unipotent radical, hence nonreductive.
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Reduction of reductive algebraic groups modulo p

Thus, reductive Q-groups in Examples 1-3 can be described

by polynomial systems with coefficients in Z (or valuation

ring Z(p) ⊂ Q) such that their reductions modulo p still

define reductive groups.

On the contrary, systems in Examples 4-5 after reduction no

longer define reductive group.

In analogy with curves, we say that a reductive Q-group G

has good reduction at p

if it can be defined by a system

of equations with coefficients in Z(p) such that reduced

modulo p system defines reductive group; otherwise, it has

bad reduction.
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Reduction of reductive algebraic groups modulo p

(Note that choice of a system over Z(p) defining G amounts

to finding a group scheme over Z(p) with generic fiber G.)

So, groups in Examples 1-3 have good reduction.

One can show that group in Example 4 has bad reduction

for any p > 2,

and group in Example 5 has bad reduction

for all p ≡ 3(mod 4).

(For p ≡ 1(mod 4), group SL1,D in Example 5 is isomorphic to

SL2, hence has good reduction,

even though there is system

defining it that has bad reduction).
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Good reduction: general case

1 Reduction techniques in number theory

2 Reduction of reductive algebraic groups modulo p

3 Good reduction: general case

4 Division algebras with the same maximal subfields

5 Genus of a division algebra

6 Genus of a simple algebraic group

7 Applications
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Good reduction: general case

Let K be a field, and v be a discrete valuation.

Definition

A reductive K-group G has good reduction at v if there exists

a reductive group scheme G over valuation ring Ov ⊂ Kv

such that

generic fiber G⊗Ov Kv is isomorphic to G⊗K Kv.

Then special fiber (reduction)

G(v) = G⊗Ov K(v)

is a connected reductive group (K(v) residue field)
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Good reduction: general case

Examples.

0. If G is K-split then G has a good reduction at any v,

given by Chevalley construction.

1. For a central simple K-algebra A, group G = SL1,A has good
reduction at v if there exists an Azumaya algebra A over
Ov such that

A⊗K Kv ' A⊗Ov Kv

(in other words, A is unramified at v).

2. G = Spinn(q) has good reduction at v if

q ∼ λ(a1x2
1 + · · ·+ anx2

n) with λ ∈ K×v , ai ∈ O×v
(assuming that char K(v) 6= 2).
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Good reduction: general case

Suppose K is equipped with a set V of discrete valuations.

We are interested in reductive K-groups of same type that
have good reduction at all v ∈ V.

To make requirement of “having same type” precise, we give

Definition

A K-group G′ is a K-form (or K/K-form) of G if

G′ ⊗K K ' G ⊗K K.
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Good reduction: general case

Examples.

1. If A is a central simple algebra of degree n
over K, then G′ = SL1,A is a K-form of G = SLn.

2. If q is a nondegenerate quadratic form in n variables
over K (char K 6= 2) and

G = Spinn(q),

then for any other nondegenerate quadratic form q′ in n
variables,

G′ = Spinn(q
′)

is a K-form of G.

If n is odd then these are all K-forms.

Otherwise, there may be K-forms coming from hermitian forms
over noncommutative division algebras.
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Good reduction: general case

So, our main question becomes:

Given a reductive K-group G, find all (inner) forms of G
that have good reduction at all v ∈ V.

To make this question meaningful, one needs to specialize

K, V and G.

Most popular case: K field of fractions of Dedekind ring R,

and V consists of places associated with maximal ideals of R.
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Good reduction: general case

Basic case R = Z:
B.H. Gross (Invent. math. 124(1996), 263-279) and B. Conrad.

Theorem (Gross)

Let G be an absolutely almost simple simply connected algebraic
group over Q. Then G has good reduction at all primes p if
and only if G is split over all Qp.

Then nonsplit groups with good reduction can be constructed
explicitly and in some cases even classified.

Proposition

Let G be an absolutely almost simple simply connected algebraic

group over a number field K, and assume that V contains almost

all places of K. Then the number of K-forms of G that have
good reduction at all v ∈ V is finite.
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Good reduction: general case

Case R = k[x], K = k(x), and

V = { vp(x) | p(x) ∈ k[x] irreducible }.

Theorem (Raghunathan–Ramanathan, 1984)

Let k be a field of characteristic zero, and let G0 be a connected

reductive group over k. If G′ is a K-form of G0 ⊗k K that has

good reduction at all v ∈ V then

G′ = G′0 ⊗k K

for some k-form G′0 of G0.
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Good reduction: general case

Case R = k[x, x−1], K = k(x), and

V = { vp(x) | p(x) ∈ k[x] irreducible, 6= x }.

Theorem (Chernousov–Gille–Pianzola, 2012)

Let k be a field of characteristic zero, and let G0 be a connected

reductive group over k. Then K-forms of G0 ⊗k K that have good

reduction at all v ∈ V are in bijection with H1(k((x)) , G0).

This was used to prove conjugacy of Cartan subalgebras in

some infinite-dimensional Lie algebras.
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Good reduction: general case

We analyze higher-dimensional situation.

Let K be a finitely generated field.

Pick a model X = Spec A for K where A is a nice
(regular, ...) finitely generated Z-algebra.

Let V be set of places associated with prime divisors on X
(divisorial set).

This situation arises when one tries to understand simple groups
having same isomorphism classes of maximal tori.

Prasad and I observed that such problems are relevant for analysis
of length-commensurable and isospectral locally symmetric spaces.

Using results over number fields, we showed that

in certain
situations isospectral locally symmetric spaces are commensurable
(Publ. math. IHES 109(2009), 113-184)
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Division algebras with the same maximal subfields

1 Reduction techniques in number theory

2 Reduction of reductive algebraic groups modulo p

3 Good reduction: general case

4 Division algebras with the same maximal subfields

5 Genus of a division algebra

6 Genus of a simple algebraic group

7 Applications
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Division algebras with the same maximal subfields

Consider the following question:

(∗) Let D1 and D2 be finite-dimensional central division algebras

over a field K.

How are D1 and D2 related if they have

same maximal subfields?

• D1 and D2 have same maximal subfields if

deg D1 = deg D2 =: n;

for P/K of degree n, P ↪→ D1 ⇔ P ↪→ D2.
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Division algebras with the same maximal subfields

Geometry

Prasad-A.R.: In many (although not all) situations, two arithmeti-

cally defined locally symmetric spaces having same lengths of

closed geodesics are commensurable.

Arithmetic Riemann surfaces were considered by A. Reid.

Underlying algebraic fact:

Let D1 and D2 be two quaternion division algebras over a

number field K. If D1 and D2 have same maximal subfields

then D1 ' D2.
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Division algebras with the same maximal subfields

However, most Riemann surfaces are not arithmetic

⇒

One needs to understand to what degree this fact extends to

more general fields

• Let H = { x + iy | y > 0 }.

“Most” Riemann surfaces are of the form:

M = H/Γ

where Γ ⊂ PSL2(R) is a discrete torsion free subgroup.

• Some properties of M can be understood in terms of the

associated quaternion algebra.
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Division algebras with the same maximal subfields

Let

• π : SL2(R) → PSL2(R);

• Γ̃ = π−1(Γ) ⊂ M2(R).

Set AΓ = Q[Γ̃(2)], Γ̃(2) ⊂ Γ̃ generated by squares.

One shows: AΓ is a quaternion algebra with center

KΓ = Q(tr γ | γ ∈ Γ(2))

(trace field).

(Note that for general Fuchsian groups, KΓ is not necessarily
a number field.)
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Division algebras with the same maximal subfields

• If Γ is arithmetic, then AΓ is the quaternion algebra

involved in its description;

• In general, AΓ does not determine Γ, but is an invariant

of the commensurability class of Γ.

To a (nontrivial) semi-simple γ ∈ Γ̃(2) there corresponds:

• geometrically: a closed geodesic cγ ⊂ M,

if γ ∼ ±
(

tγ 0
0 t−1

γ

)
(tγ > 1) then length `(cγ) = 2 log tγ;

• algebraically: a maximal etale subalgebra KΓ[γ] ⊂ AΓ.
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Division algebras with the same maximal subfields

For a Riemannian manifold M:

L(M) = set of lengths of closed geodesics in M

((weak) length spectrum of M)

Definition.
Riemannian manifolds M1 and M2 are

• iso-length spectral if L(M1) = L(M2);

• length-commensurable if Q · L(M1) = Q · L(M2).
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Division algebras with the same maximal subfields

Let Mi = H/Γi (i = 1, 2) be Riemann surfaces.

If M1 and M2 are length-commensurable then:

1 KΓ1 = KΓ2 =: K;

2 Given closed geodesics cγi ⊂ Mi for i = 1, 2 such that

`(cγ2)/`(cγ1) = m/n (m, n ∈ Z)

elements γm
1 and γn

2 are conjugate ⇒

K[γ1] ⊂ AΓ1 and K[γ2] ⊂ AΓ2 are isomorphic.

So, AΓ1 and AΓ2 share “lots” of maximal etale subalgebras.

(Not all – but we will ignore it for now ...)
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Division algebras with the same maximal subfields

• For M1 and M2 to be commensurable, AΓ1 and AΓ2 must
be isomorphic.

So, proving that length-commensurable M1 and M2 are
commensurable implicitly involves answering a version of (∗).

• Recall: If M = H/Γ is a compact Riemann surface then
compact Riemann surfaces isospectral to M split into finitely
many isometry classes.

What about length-commensurable Riemann surfaces?

Theorem

Let Mi = H/Γi (i ∈ I) be a family of length-commensurable
Riemann surfaces where Γi ⊂ PSL2(R) is finitely generated and
Zariski- dense. Then quaternion algebras AΓi (i ∈ I) split into
finitely many isomorphism classes (over common center).
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Division algebras with the same maximal subfields

Algebra

Amitsur’s Theorem

Let D1 and D2 be central division algebras over K.

If D1 and D2 have same splitting fields, i.e. for F/K we
have

D1 ⊗K F ' Mn1(F) ⇔ D2 ⊗K F ' Mn2(F),

then 〈[D1]〉 = 〈[D2]〉 in Br(K).

Proof of Amitsur’s Theorem uses generic splitting fields
(function fields of Severi-Brauer varieties),

which are
infinite extensions of K.

What happens if one allows only splitting fields of

finite degree, or just maximal subfields?
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Division algebras with the same maximal subfields

• Amitsur’s Theorem is no longer true in this setting.

(Counterexamples can be found using cubic algebras over
number fields.)

This leads to question (∗) and its variations.

Question (Prasad-A.R.)

Are quaternion algebras over K = Q(x) determined by their
maximal subfields?

• Yes – D. Saltman

• Same over K = k(x), k a number field

(S. Garibaldi - D. Saltman)
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Genus of a division algebra

1 Reduction techniques in number theory

2 Reduction of reductive algebraic groups modulo p

3 Good reduction: general case

4 Division algebras with the same maximal subfields

5 Genus of a division algebra

6 Genus of a simple algebraic group

7 Applications
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Genus of a division algebra

Definition.

Let D be a finite-dimensional central division algebra over K.

The genus of D is

gen(D) = { [D′] ∈ Br(K) | D′ has same maximal subfields as D }

Question 1. When does gen(D) reduce to a single element?

(This means that D is uniquely determined by maximal subfields.)

Question 2. When is gen(D) finite?

Over number fields:

genus of every quaternion algebra reduces to one element;
genus of every division algebra is finite.

(Follows from Albert-Hasse-Brauer-Noether Theorem.)

Andrei Rapinchuk (University of Virginia) GMU September 6, 2019 50 / 66



Genus of a division algebra

Definition.

Let D be a finite-dimensional central division algebra over K.

The genus of D is

gen(D) = { [D′] ∈ Br(K) | D′ has same maximal subfields as D }

Question 1. When does gen(D) reduce to a single element?

(This means that D is uniquely determined by maximal subfields.)

Question 2. When is gen(D) finite?

Over number fields:

genus of every quaternion algebra reduces to one element;
genus of every division algebra is finite.

(Follows from Albert-Hasse-Brauer-Noether Theorem.)

Andrei Rapinchuk (University of Virginia) GMU September 6, 2019 50 / 66



Genus of a division algebra

Definition.

Let D be a finite-dimensional central division algebra over K.

The genus of D is

gen(D) = { [D′] ∈ Br(K) | D′ has same maximal subfields as D }

Question 1. When does gen(D) reduce to a single element?

(This means that D is uniquely determined by maximal subfields.)

Question 2. When is gen(D) finite?

Over number fields:

genus of every quaternion algebra reduces to one element;
genus of every division algebra is finite.

(Follows from Albert-Hasse-Brauer-Noether Theorem.)

Andrei Rapinchuk (University of Virginia) GMU September 6, 2019 50 / 66



Genus of a division algebra

Definition.

Let D be a finite-dimensional central division algebra over K.

The genus of D is

gen(D) = { [D′] ∈ Br(K) | D′ has same maximal subfields as D }

Question 1. When does gen(D) reduce to a single element?

(This means that D is uniquely determined by maximal subfields.)

Question 2. When is gen(D) finite?

Over number fields:

genus of every quaternion algebra reduces to one element;
genus of every division algebra is finite.

(Follows from Albert-Hasse-Brauer-Noether Theorem.)

Andrei Rapinchuk (University of Virginia) GMU September 6, 2019 50 / 66



Genus of a division algebra

Definition.

Let D be a finite-dimensional central division algebra over K.

The genus of D is

gen(D) = { [D′] ∈ Br(K) | D′ has same maximal subfields as D }

Question 1. When does gen(D) reduce to a single element?

(This means that D is uniquely determined by maximal subfields.)

Question 2. When is gen(D) finite?

Over number fields:

genus of every quaternion algebra reduces to one element;
genus of every division algebra is finite.

(Follows from Albert-Hasse-Brauer-Noether Theorem.)

Andrei Rapinchuk (University of Virginia) GMU September 6, 2019 50 / 66



Genus of a division algebra

Definition.

Let D be a finite-dimensional central division algebra over K.

The genus of D is

gen(D) = { [D′] ∈ Br(K) | D′ has same maximal subfields as D }

Question 1. When does gen(D) reduce to a single element?

(This means that D is uniquely determined by maximal subfields.)

Question 2. When is gen(D) finite?

Over number fields:

genus of every quaternion algebra reduces to one element;
genus of every division algebra is finite.

(Follows from Albert-Hasse-Brauer-Noether Theorem.)

Andrei Rapinchuk (University of Virginia) GMU September 6, 2019 50 / 66



Genus of a division algebra

Definition.

Let D be a finite-dimensional central division algebra over K.

The genus of D is

gen(D) = { [D′] ∈ Br(K) | D′ has same maximal subfields as D }

Question 1. When does gen(D) reduce to a single element?

(This means that D is uniquely determined by maximal subfields.)

Question 2. When is gen(D) finite?

Over number fields:

genus of every quaternion algebra reduces to one element;
genus of every division algebra is finite.

(Follows from Albert-Hasse-Brauer-Noether Theorem.)

Andrei Rapinchuk (University of Virginia) GMU September 6, 2019 50 / 66



Genus of a division algebra

Definition.

Let D be a finite-dimensional central division algebra over K.

The genus of D is

gen(D) = { [D′] ∈ Br(K) | D′ has same maximal subfields as D }

Question 1. When does gen(D) reduce to a single element?

(This means that D is uniquely determined by maximal subfields.)

Question 2. When is gen(D) finite?

Over number fields:

genus of every quaternion algebra reduces to one element;
genus of every division algebra is finite.

(Follows from Albert-Hasse-Brauer-Noether Theorem.)

Andrei Rapinchuk (University of Virginia) GMU September 6, 2019 50 / 66



Genus of a division algebra

Definition.

Let D be a finite-dimensional central division algebra over K.

The genus of D is

gen(D) = { [D′] ∈ Br(K) | D′ has same maximal subfields as D }

Question 1. When does gen(D) reduce to a single element?

(This means that D is uniquely determined by maximal subfields.)

Question 2. When is gen(D) finite?

Over number fields:

genus of every quaternion algebra reduces to one element;
genus of every division algebra is finite.

(Follows from Albert-Hasse-Brauer-Noether Theorem.)
Andrei Rapinchuk (University of Virginia) GMU September 6, 2019 50 / 66



Genus of a division algebra

Theorem 1 (Stability Theorem)

Let char k 6= 2. If |gen(D)| = 1 for every quaternion algebra D over k,

then |gen(D′)| = 1 for any quaternion algebra D′ over k(x).

• Same statement is true for division algebras of exponent 2.

• |gen(D)| > 1 if D is not of exponent 2.

• gen(D) can be infinite.

Construction yields examples over fields that are infinitely generated

( in fact, HUGE )
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Genus of a division algebra

Theorem 2.

Let K be a finitely generated field. Then for any central

division K-algebra D the genus gen(D) is finite.

• Proofs of both theorems use analysis of ramification and

info about unramified Brauer group.

BASIC FACT: Let v be a discrete valuation of K, and n be

prime to characteristic of residue field K(v).

If D1 and D2 are central division K-algebras of degree n

having same maximal subfields, then either both algebras are

ramified at v or both are unramified.

(When n is divisible by char K(v), we need some additional assumptions)
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Genus of a division algebra

• Recall that a c. s. a. A over K (or its class [A] ∈ Br(K))

is unramified at v if

there exists Azumaya algebra A/Ov

such that

A⊗K Kv ' A⊗Ov Kv.

If (n , char K(v)) = 1 or K(v) is perfect, there is a residue map

rv : nBr(K) −→ H1(G(v), Z/nZ),

where G(v) is absolute Galois group of K(v).

• Then x ∈ nBr(K) is unramified at v ⇔ rv(x) = 0.

Given a set V of discrete valuations of K, one defines
corresponding unramified Brauer group:

Br(K)V = { x ∈ Br(K) | x unramified at all v ∈ V }.
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Genus of a division algebra

• To prove Theorem 1 (Stability Theorem) we use:
if K = k(x) and V = set of geometric places, then

nBr(K)V = nBr(k)

when (n, char k) = 1 (Faddeev)

• There are two proofs of Theorem 2. Both show that a
finitely generated field K can be equipped with set V of
discrete valuations so that one can make some finiteness
statements about unramified Brauer group.

More recent argument works in all characteristics, but
gives no estimate of size of gen(D).

Earlier argument works when (n , char K) = 1, gives
finiteness of nBr(K)V and estimate

| gen(D) | 6 | nBr(K)V | · ϕ(n)r

where r is number of v ∈ V that ramify in D.
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Genus of a division algebra

Question. Does there exist a quaternion division algebra D

over K = k(C), where C is a smooth geometrically integral

curve over a number field k, such that

|gen(D)| > 1?

• The answer is not known for any finitely generated K.

• One can construct examples where 2Br(K)V is “large.”
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Genus of a simple algebraic group

1 Reduction techniques in number theory

2 Reduction of reductive algebraic groups modulo p

3 Good reduction: general case

4 Division algebras with the same maximal subfields

5 Genus of a division algebra

6 Genus of a simple algebraic group

7 Applications
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Genus of a simple algebraic group

• To define the genus of an algebraic group, we replace

maximal subfields with maximal tori in the definition of

genus of division algebra.

Let G1 and G2 be semi-simple groups over a field K.

G1 & G2 have same isomorphism classes of maximal K-tori

if every maximal K-torus T1 of G1 is K-isomorphic to

a maximal K-torus T2 of G2, and vice versa.

Let G be an absolutely almost simple K-group.

genK(G) = set of isomorphism classes of K-forms G′ of G having

same K-isomorphism classes of maximal K-tori as G.
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Genus of a simple algebraic group

Question 1′. When does genK(G) reduce to a single element?

Question 2′. When is genK(G) finite?

Theorem 3 (Prasad-A.R.)

Let G be an absolutely almost simple simply connected algebraic
group over a number field K.

(1) genK(G) is finite;

(2) If G is not of type An, D2n+1 or E6, then |genK(G)| = 1.

Conjecture. (1) For K = k(x), k a number field, and G
an absolutely almost simple simply connected K-group with
|Z(G)| 6 2, we have |genK(G)| = 1;

(2) If G is an absolutely almost simple group over a finitely
generated field K of “good” characteristic then genK(G) is
finite.
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Genus of a simple algebraic group

“Unramified division algebras”  “groups with good reduction”

Theorem 3.

Let G be an absolutely almost simple simply connected group

over K, and v be a discrete valuation of K.

Assume that K(v) is finitely generated, and G has good

reduction at v.

Then every G′ ∈ genK(G) has good reduction at v, and

reduction G′(v) ∈ genK(v)(G(v)).
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Genus of a simple algebraic group

Let K be a finitely generated field equipped with a set
V of discrete valuations such that:

(I) for any a ∈ K×, set V(a) := {v ∈ V | v(a) 6= 0} is finite;

(II) for every v ∈ V, residue field K(v) is finitely generated.

Corollary.

Let G be an absolutely almost simple simply connected K-group.

There exists a finite subset S ⊂ V (depending on G) such that

every G′ ∈ genK(G) has good reduction at all v ∈ V \ S.
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Genus of a simple algebraic group

Let K be a finitely generated field equipped with a set
V of discrete valuations such that:

(I) for any a ∈ K×, set V(a) := {v ∈ V | v(a) 6= 0} is finite;

(II) for every v ∈ V, residue field K(v) is finitely generated.

Corollary.

Let G be an absolutely almost simple simply connected K-group.

There exists a finite subset S ⊂ V (depending on G) such that

every G′ ∈ genK(G) has good reduction at all v ∈ V \ S.

Andrei Rapinchuk (University of Virginia) GMU September 6, 2019 60 / 66



Genus of a simple algebraic group

Let K be a finitely generated field equipped with a set
V of discrete valuations such that:

(I) for any a ∈ K×, set V(a) := {v ∈ V | v(a) 6= 0} is finite;

(II) for every v ∈ V, residue field K(v) is finitely generated.

Corollary.

Let G be an absolutely almost simple simply connected K-group.

There exists a finite subset S ⊂ V (depending on G) such that

every G′ ∈ genK(G) has good reduction at all v ∈ V \ S.

Andrei Rapinchuk (University of Virginia) GMU September 6, 2019 60 / 66



Genus of a simple algebraic group

Let K be a finitely generated field equipped with a set
V of discrete valuations such that:

(I) for any a ∈ K×, set V(a) := {v ∈ V | v(a) 6= 0} is finite;

(II) for every v ∈ V, residue field K(v) is finitely generated.

Corollary.

Let G be an absolutely almost simple simply connected K-group.

There exists a finite subset S ⊂ V (depending on G) such that

every G′ ∈ genK(G) has good reduction at all v ∈ V \ S.

Andrei Rapinchuk (University of Virginia) GMU September 6, 2019 60 / 66



Genus of a simple algebraic group

So, finiteness of genK(G) is related to following property:

A set V of discrete valuations of K satisfies (Φ) for an
absolutely almost simple K-group G if

(Φ) set of K-isomorphism classes of (inner) K-forms G′ of G

having good reduction at all v ∈ V \ S is finite, for any

finite S ⊂ V

Question.
When can a finitely generated field K be equipped with V

that satisfies (Φ)?

Does a divisorial V satisfy (Φ)?
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Genus of a simple algebraic group

Additional challenges for arbitrary groups:

It is not known how to classify forms by cohomological

invariants.

Even when such description is available (e.g. for type G2),

one needs to prove finiteness of unramified cohomology

in degrees > 2, which is a difficult problem.

• Finiteness results for unramified Brauer groups imply that

divisorial V does satisfy (Φ) for inner forms of type An−1

for any finitely generated K such that char K - n.
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Genus of a simple algebraic group

Theorem 3

Let C be a smooth geometrically integral curve over a number

field k, K = k(C), and V divisorial set of places. Fix n > 5.

Then set of K-isomorphism classes of Spinn(q) with good

reduction at all v ∈ V is finite.

• Similar results for groups of types An, Cn, F4 that split over a
quadratic extension, and G2.

PROOF consists of two parts.

1 Using Milnor’s conjecture proved by Voevodsky, we reduce to
finiteness of unramified cohomology Hi(K, µ2)V , µ2 = {±1}.

2 Prove finiteness of Hi(K, µ2)V for all i > 1.

Difficult case: i = 3. We adapt Jannsen’s proof of Kato’s local-global
principle for H3.
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Applications

Finiteness of genus

• Finiteness of genK(G) for inner forms of type An over any

finitely generated field K.

Theorem 4

Let K = k(C) where C is a smooth geometrically integral curve
over a number field k, and G = Spinn(q) where q is a quadratic
form.

If either n > 5 is odd, or n > 10 is even and q is
isotropic, then genK(G) is finite.

Theorem 5

Let G be a simple algebraic group of type G2.

(1) If K = k(x), where k is a number field, then |genK(G)| = 1;

(2) If K = k(x1, . . . , xr) or k(C), where k is a number field,

then genK(G) is finite.
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Applications

Global-to-local map

Theorem 6

Suppose V satisfies (I) & (Φ).

Then the natural map

H1(K, G) −→ ∏
v∈V

H1(Kv, G)

for adjoint group G is proper. In particular, its kernel X(G)
is finite.

True for:

• PSLn over a finitely generated field K, (n , char K) = 1;

• SOn(q) over K = k(C), k a number field;

• G of type G2 over K = k(C), k a number field.
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