Differential Topology Solutions #5

1. Chapter 4, Section 4, #3. Let $c : [a, b] \to X$ be a smooth curve, and let c(a) = p, c(b) = q. Show that if ω is the differential of a function on X, $\omega = df$, then

$$\int_a^b c^* \omega = f(q) - f(p).$$

Solution. We note that $c^*(df) = d(c^*f) = d(f \circ c)$. Therefore

$$\int_a^b c^* \omega = \int_a^b d(f \circ c) = f \circ c(b) - f \circ c(a) = f(q) - f(p).$$

2. Chapter 4, Section 4, #5. A *closed curve* on a manifold X is a smooth map $\gamma : S^1 \to X$. If ω is a 1-form on X, define the *line integral* of ω around γ by

$$\oint_{\gamma} \omega = \int_{S^1} \gamma^*(\omega).$$

For the case of $X = \mathbb{R}^k$, write $\oint_{\gamma} \omega$ explicitly in terms of the coordinate expressions of γ and ω .

Solution. The one form ω on \mathbb{R}^k may be written explicitly as $\omega = \sum_{j=1}^k g_j dx_j$, where x_1, \ldots, x_k are coordinates on \mathbb{R}^k , and g_j are real-valued functions on \mathbb{R}^k . In these coordinates, $\gamma = (\gamma_1, \ldots, \gamma_k)$, where each $\gamma_i : S^1 \to \mathbb{R}$. Note that

$$\gamma^*(\omega) = \sum_j (g_j \circ \gamma) \gamma^*(dx_j) = \sum_j (g_j \circ \gamma) d\gamma_j.$$

Then

$$\oint_{\gamma} \omega = \int_{S^1} \gamma^*(\omega) = \sum_j \int_{S^1} (g_j \circ \gamma) d\gamma_j.$$

3. Chapter 4, Section 4, #7. Suppose that the 1-form ω on X is the differential of a function, $\omega = df$. Prove that $\oint_{\gamma} \omega = 0$ for all closed curves γ on X.

Solution. By definition, $\oint_{\gamma} \omega = \int_{S^1} \gamma^*(\omega)$, where $\gamma : S^1 \to X$. Let $S^1(1)$ be the manifold with boundary given by the "upper hemisphere" of S^1 (including endpoints), and $S^1(2)$ be the manifold with boundary given by the "lower hemisphere" of S^1 (including endpoints). Then for any 1-form α ,

$$\int_{S^{1}} \alpha = \int_{S^{1}(1)} \alpha + \int_{S^{1}(2)} \alpha.$$
 (0.1)

[This follows from the fact that the integrals on any parameterizations of S¹ and the disjoint union S¹(1) \coprod S¹(2) are the same – remember that integration on manifolds is defined in terms of parameterizations, and that what happens on the end points doesn't matter since it's dimension 0 and we're integrating a 1-form.] Substituting $\alpha = \gamma^* \omega = d(f \circ \gamma)$, we obtain:

$$\begin{split} \oint_{\gamma} \omega &= \int_{S^{1}(1)} (\gamma^{*} \omega) + \int_{S^{1}(2)} (\gamma^{*} \omega) \\ &= \int_{S^{1}(1)} d(f \circ \gamma) + \int_{S^{1}(2)} d(f \circ \gamma) \\ &= (f \circ \gamma(q) - f \circ \gamma(p)) + (f \circ \gamma(p) - f \circ \gamma(q)) \quad \text{By Problem #1} \\ &= 0 \end{split}$$

where p and q are the two points in the intersection of $S^{1}(1)$ and $S^{1}(2)$.

- 4. Chapter 4, Section 4, #9.
- 5. Chapter 4, Section 4, #10.
- 6. Chapter 4, Section 4, #14.
- 7. Chapter 4, Section 5, #1.
- 8. Chapter 4, Section 7, #4.

Solution/Hint. Show that $(\operatorname{curl} \overrightarrow{F} \cdot \overrightarrow{n}) dA = d\omega$ on S. It follows that the integrals are the same. Then apply Stokes' Theorem.

Additional problems for graduate students, or undergraduate extra credit

9. Chapter 4, Section 7, #8. Let $X = \partial W$, with W compact, and $f : X \to Y$ be a smooth map. Suppose that ω is a closed k form on Y, where $k = \dim X$. Prove that if f extends to all of W, then $\int_X f^* \omega = 0$.

Solution. Let $F : W \to Y$ be the extension of f. Note that $\partial F = f$. By Stokes' theorem,

$$\int_{X} f^{*} \omega = \int_{\partial W} f^{*} \omega = \int_{W} d(f^{*} \omega) = \int_{W} f^{*}(d\omega) = 0.$$

(Recall that ω closed means that $d\omega = 0$.)

10. Chapter 4, Section 7, #9.