
Differential Topology Solutions #4

1. Consider the map
V ×W → V ⊕W, v×w → v⊕w.

Is this map bilinear?

The map is not bilinear. Let f : V ×W → V ⊕W be the map f(v,w) = v ⊕w. Then
for any v1, v2 ∈ V and w ∈ W,

f(v1 + v2, w) = (v1 + v2)⊕w.

On the other hand,

f(v1, w) + f(v2, w) = v1 ⊕w + v2 ⊕w = (v1 + v2)⊕ 2w.

For w 6= 0, 2w 6= w so that f(v1 + v2, w) 6= f(v1, w) + f(v2, w).

2. Suppose v1, . . . , vp ∈ V are linearly dependent vectors. Show that

T(v1, . . . , vp) = 0

for all T ∈ Λp(V∗). Is this true for all T ∈ J p(V∗)? If so, prove it, and if not, find a
counterexample.

3. Chapter 10, Section 2, #3.

4. Chapter 10, Section 2, #10 (a) and (b).

5. Chapter 10, Section 3, Exercise on p. 165.

The Tensor Product of Vector Spaces. Let V and W be vector spaces over a field (you
may assume they are real vector spaces). The tensor product V ⊗ W is a vector space
equipped with a bilinear map

V ×W −→ V ⊗W, v×w → v⊗w
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(for every v ∈ V,w ∈ W) which is universal in the following sense. For any bilinear map

b : V ×W −→ U

where U is a vector space (over the same field), there is a unique linear map

L : V ⊗W −→ U

such that L(v ⊗ w) = b(v,w). In other words, any linear map b : V × W −→ U factors
through the tensor product V ⊗W. Another way of saying this is that the diagram

V ×W //

b
&&LLLLLLLLLLL V ⊗W

L
²²

U

commutes for every vector space U and for every bilinear map b.

6. Find a basis of V ⊗W (given a basis of V and of W). Find the dimension of V ⊗W.

Let {e1, . . . , en} be a basis of V and {f1, . . . , fm} be a basis of W. Let

f : V ×W → V ⊗W, f(v,w) = v⊗w.

Claim 1 The set {ei ⊗ fj}, i = 1, . . . , n and j = 1, . . . , m form a basis of V ⊗W.

Proof: We form an nm-dimensional vector space U as follows: U is the set of all
formal linear combinations (over R) of basis elements gij, i = 1, . . . , n, and j =

1, . . . , m. In other words, by definition, gij forms a basis of U. We show that U ∼=
V⊗W, under the map gij → ei⊗ fj. Note that a priori we don’t know whether ei⊗ fj

span V ⊗W, so this map may not be surjective.

First we display a bilinear map b : V ×W → U. Let b(ei, fj) = gij and extend so that
b is bilinear:

b(

n∑

i=1

aiei,

m∑

j=1

cjfj) =
∑

i,j

aicjgij.

By the universality property of the tensor product, there is a unique linear map L

such that
V ×W //

b
&&LLLLLLLLLLL V ⊗W

L
²²

U
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commutes. We can also find L directly on the image of f: L(v⊗w) = b(v,w) implies
that L(ei ⊗ fj) = gij.

We show that L is an isomorphism. Clearly b is a surjective map (it hits all the
gij), so that L must be surjective. Suppose that L is not injective. Then ker L is
nontrivial. Choose any nonzero vector x ∈ V ⊗ W in the kernel. (Note that I do
not assume that x has the form v ⊗w). Clearly x is not in the linear span of ei ⊗ fj,
since L(

∑
aijei⊗ fj) =

∑
aijb(ei, fj) =

∑
aijgij 6= 0 unless all the aij = 0 (remember

we constructed U so that gij were linearly independent). Now consider the map
L ′ : V ⊗ W given by L ′(v ⊗ w) = b(v,w) and L ′(x) = g11. This is a linear map, as
is easy to check (it is important that x is linearly independent of ei ⊗ fj, otherwise
linearity would fail). Also, since x 6∈ ker L ′, L ′ 6= L. Therefore the commutative
diagram

V ×W //

b
&&LLLLLLLLLLL V ⊗W

L ′
²²

U

commutes. Thus L is not the unique linear map making the diagram commute, as is
given by the universality property of V ⊗ W, a contradiction. Therefore ker L = 0

and L is an isomorphism.

Since {gij} is a basis for U, their image under L−1 is a basis for V ⊗W. It follows that
ei ⊗ fj, i = 1, . . . , n and j = 1, . . . , m span V ⊗W, and that the dimension of V ⊗W

is nm.
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Additional problems for graduate students, or undergraduate extra credit

The nth exterior power of a vector space V is a vector space AltnV , equipped with an
alternating multilinear map

V × · · · × V → AltnV, v1 × · · · × vn → v1 ¯ · · · ¯ vn,

that is universal in the following sense. For any alternating multilinear map b : V × · · · ×
V → U (where U is a vector space), there is a unique linear map L : AltnV → U which
takes v1 ¯ · · · ¯ vn to b(v1, . . . , vn).

7. Show that Λn(V∗) ∼= AltnV∗, where V∗ is the dual to V (and Λn(V∗) is the same as
we defined in class). Hint. Show that Λn(V∗) has the universality property, or use
the universality property of AltnV∗ to construct a map between the two spaces and
then prove it’s an isomorphism.

We follow the same method as applied in the problem above. We first define a
multilinear map

b : V∗ × · · · × V∗ → Λn(V∗)

and then use the universality property of AltnV∗. Choose a basis {φi}
k
i=1 of V∗. Let

b be given by
b(φi1 , . . . , φin) = φi1 ∧ · · ·∧ φin,

and extend so that the map is bilinear. Recall that as the {ij} vary on the right hand
side, we span Λn(V∗), as proven in class. It follows that b is surjective.

[Alternatively define b(w1, . . . , wn) = w1 ∧ · · · ∧ wn and prove it’s bilinear – also,
mention why it is surjective, since it’s not defined on basis elements.]

By the universality property of the exterior algebra, there is a unique linear map L

such that the diagram

V∗ × · · · × V∗ //

b ''PPPPPPPPPPPP Altn(V∗)

L
²²

Λn(V∗)

commutes. By construction, L(w1 ¯ · · · ¯wn) = w1 ∧ · · · ∧ wn for all wi ∈ V∗. We
prove that L is an isomorphism.

Clearly L is surjective since b is. We need only prove that L is injective. Suppose
not. Then let x ∈ ker L be nonzero. Note that x must be linearly independent of
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{φi1¯· · ·¯φin}, since the image of these elements is nonzero under L (and L is linear).
It follows that we may define L ′ so that L ′ = L on the linear span of {φi1 ¯ · · ·¯φin},
but L ′(x) 6= 0. Extend L ′ to all of Altn(V∗) by linearity. The map L ′ is linear, and it
also makes the above diagram commute, violating the uniqueness of L. Therefore L

must be injective. It follows that L : Altn(V∗) → Λn(V∗) is an isomorphism.

8. Show that Λn(V) can be constructed as a quotient of V ⊗ V ⊗ · · · ⊗ V (n times). In
other words, there is a surjective map

L : V⊗n −→ Λn(V).

Write down the map, show it’s surjective, and find its kernel.

For intuitive purposes, we start with n = 2. Let e1, . . . ek be a basis of V . A basis of
V ⊗V is given by ei × ej. Consider the map L(ei ⊗ ej) = ei ∧ ej, and extend the map
linearly to all of V⊗V . Clearly L is surjective, since V ∧V has a basis given by ei ∧ej

with i < j. The map is linear because it is defined on a basis of V ⊗ V and extended
linearly. We need only find the kernel. Since dim V ⊗ V = k2 and dim Λ2(V) =

(
k
2

)
,

the dimension of the kernel is k2 −
(

k
2

)
= k2+k

2
.

We note immediately that ker L contains elements of the form ei ⊗ ei. There are k of
these elements, and they are linearly independent in V⊗V . Furthermore, L(ei⊗ej) =

−L(ej⊗ei) implies that ei⊗ej+ej⊗ei is in the kernel, for all i, j. There are
(

k
2

)
elements

of this form. They are clearly linearly independent of all the ei ⊗ ei, and they are
also linearly independent of each other. Thus we have found k+

(
k
2

)
= k2+k

2
linearly

independent elements in the kernel. Since this is the dimension of the kernel, we
have found a basis of the kernel, and hence the whole kernel. In other words,

K = span{ei ⊗ ei, ei ⊗ ej − ej ⊗ ei}, i, j = 1, . . . , k.

We now do the general case. A basis of V⊗n is given by {ei1 ⊗ · · · ⊗ ein}, ij = 1, . . . k.
Consider the map L(ei1⊗· · ·⊗ein) = ei1 ∧ · · ·∧ein ∈ Λn(V), and extend by linearity
to V⊗n. Clearly L is surjective, since a basis of Λn(V) is given by those ei1 ∧ · · ·∧ ein

with increasing indices. The map is linear because it is defined on a basis of V⊗n

and extended linearly. We need only find the kernel. Since dim V⊗n = kn and
dim Λn(V) =

(
k
n

)
, the kernel is dimension kn −

(
k
n

)
.

Clearly basis elements of V⊗n with repeating indices are in the kernel. It is also clear
that two different basis elements of V⊗n with permuted indices map to the same
elements (up to sign) in Λn(V). Thus the kernel contains all elements of the form

ker L ⊃ {ei1 ⊗ · · · ⊗ ein − (−1)sgn(σ)eσ(i1) ⊗ · · · ⊗ eσ(in), ej1 ⊗ · · · ⊗ ejn}
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where j1, . . . , jn not all distinct, and σ is any permutation in Sn of the numbers
i1, . . . , in. These elements are all linearly independent in V⊗n, which can be veri-
fied by a tedious induction on n argument, for n ≥ 2. (For the case that n = 1, these
two different kinds of elements of the kernel overlap - check it out!). Now we count
the number of these elements. The elements of repeating indices could be counted
directly by summing over the number of repeats. However, it is more useful for our
purposes if we express this number as a difference. The number of basis elements
with repeating indices is kn minus the number of basis elements in V⊗n with distinct
indices. The number of basis elements with distinct indices is

(
k
n

)
n! (where the n!

term comes from the fact that order is important). Therefore,

#{ej1 ⊗ · · · ⊗ ejn} where j1, . . . , jn not all distinct

= kn −

(
k

n

)
n!.

On the other hand, the number of (distinct, up to sign)elements in the set {ei1⊗· · ·⊗
ein −(−1)sgn(σ)eσ(i1)⊗· · ·⊗eσ(in)} is obtained by first fixing i1, . . . , in to be strictly in-
creasing (since they are distinct), and then considering all the permutations σ might
be. We must exclude the identity permutation, since the element we obtain using it
is 0. We obtain

#{ei1 ⊗ · · · ⊗ ein − (−1)sgn(σ)eσ(i1) ⊗ · · · ⊗ eσ(in)}

=

(
k

n

)
· (n! − 1) number of increasing index sequences times

number of nontrivial permutations

It is left only to show that the dimension of the span of the vectors we found (con-
tained in the kernel) is indeed the dimension of the kernel itself. In other words, we
need to prove that

kn −

(
k

n

)
= kn −

(
k

n

)
n! +

(
k

n

)
(n! − 1).

But this is obvious. It follows now that

ker L = span{ei1 ⊗ · · · ⊗ ein − (−1)sgn(σ)eσ(i1) ⊗ · · · ⊗ eσ(in), ej1 ⊗ · · · ⊗ ejn}

where j1, . . . , jn not all distinct, and σ is any permutation in Sn of the numbers
i1, . . . , in.
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