Differential Topology Solution Set #3

Select Solutions

1. Chapter 1, Section 4, #7
2. Chapter 1, Section 4, #8
3. Chapter 1, Section 4, #11(a)-(b)

#11(a) The n x n matrices with determinant 1 form a group denoted SL(n). Prove
that SL(n) is a submanifold of M(n) and thus is a Lie group.

Consider the determinant map
det: M(n) — R.

If we show that 1 is a regular value of det, then we will have shown that SL(n) is a
submanifold, since det '(1) = SL(n). To show it’s a regular value, we need to show
that its derivative is surjective at every point in the level set SL(n).

We show that d(det) A is surjective for all A € SL(n) by calculating directly. Note

that TA(M(n)) = M(n) for any matrix A. We choose a basis E;; for the vector space
M (n), where Ej; is the matrix with 1 in the ijth entry, and Os everywhere else.

We begin by assuming that A = I, the identity matrix. Then

I Ei) — I

h—0 h
CJo ifiAj
1 ifi=j.

(Notice that if 1 # j, then I + hE;; has the same determinant as I, since the term hEj;
is off-diagonal with just one entry. On the other hand, det(I + hEi;) = (1 + h) since
I + hE;; has 1 in every diagonal entry except the iith, where it has 1 + h.)



Since d(det); maps to R, we are only required to show that it is nonzero to show
that it is surjective. It follows that d(det); is surjective.

Now for generic A € SL(n), you can do one of two things to prove this: either you
can calculate directly as we did when A = I, or you can prove that the derivative

of the determinant is the trace (as we did in class). Here is the first way. Let (A);;
indicate the minor of the matrix A with the ith column and jth row eliminated.

det(A + tEij) —detA

d(det)A(Eij) = lim

t—0 t
= lim
t—0 t

Note that
det(A + tEy) = aj;det((A);) — aydet((A)y) + - --
+ (ay +t) det((A)y) - - - + det((A)r)
= Qay; det((ﬁ\)ﬁ) — ay; det((ﬁ)za') +oee
+ aydet((A)y) - - £ det((A) ) £ tdet((A)y)
= det A + tdet((A)y)
=14+ tdet((A)y).
We substitute this into the equation for d(det) and find
d(det)a(Eg) = lim 1= 9etlA)y) = T

t—0 t

=+ det((A)y).

Lastly we need to show that, for any A € SL(n), there exists some 1ij such that this
determinant is nonzero. But this is clear, for if every (n—1) x (n—1) minor of A had
a zero determinant, then the matrix A would itself have 0 determinant, contrary to
its being in SL(n).

#11(b) The tangent space of SL(n) at I may be computed by the kernel of the d(det);,
since SL(n) is determined by the level set of det at I (i.e. det = 1) We found that
0 ifid#]

d(det):(Ey) = {1 if i =j
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Thus the kernel is the set of all E;; such that i # j. This is precisely the set of traceless
matrices (note that tr(E;i) = 1 for all 1).

Chapter 1, Section 5, #7
Chapter 1, Section 5, #10
Chapter 1, Section 6, #6. Read the definition of contractible from #4.

Chapter 1, Section 6, #7. Show that the antipodal map x — —x of S* — S* is homo-
topic to the identity if k is odd.

If k is odd, then S* ¢ R**! where k + 1 is even. Then the matrix

cosit —sinmtt 0 0 0 0
sin7tt  cos7tt 0 0 0 0
0 0 ce 0 0
Av= 0 0 . 0 0
0 0 0 0 cosmt —sinTtt
0 0 0 0 sin7tt cosTt

provides a homotopy from the identity map to the antipodal map. More specifically,
let F: S* x I — S*be given by
Fx, 1) = Al(x)

for any x € S*. Note that A((x) € S* as well, since A{(A{)" = I (so in particular,
unit-length vectors get mapped to unit-length vectors).

. Chapter 1, Section 7, #4

. Chapter 1, Section 7, #6. Prove that S* is simply connected if k > 1.

Recall that S*is simply connected if every map f : S' — S*is homotopic to a constant
map. If k > 1, then there exists a point p € S* such that p & f(S'). Rotate the sphere
in R*"! so that p is the North Pole, stereographically project every point in S* — {p}
into the k-plane perpendicular to the vector p. This is a diffeomorphism ¢ from
S* — {p} to the k-plane R*. Then ¢ o f : S — R¥ is a map of S' into a contractible
space, so it is clearly homotopic to a constant map S' — ¢, where q € R¥. We write
this homotopy explicitly:

F:S'"xI—R* F(x,0)=dof(x), F(x,1)=q.



10.
11.
12.

Then we apply ¢~ to obtain a homotopy
G:S'"xI—S* G(x,0)=f(x), G(x,1)=d '(q).
from f(x) to the constant map S" — ¢'(q).
Chapter 1, Section 7, #8 (just do a couple)
Chapter 1, Section 8, #1

Chapter 1, Section 8, #7. Show that if k is odd, there exists a vector field v on Sk
having no zeros.

We follow the hint. At a point (x1,%2,...,%ks1) € S*¥ C R*), let
~ _
VI (X1, %2+« Xier1) = (%2, X1, = X4, X3, -1y — Xt 1, Xk

Note that V'(x) is tangent to S* at x, since
BV —
v (X) "X = (_XZ)X1)_X4aX3> s )_Xk—H)Xk) ’ (X1)x2) e Xk—H)

= —X2X1 + X1X2 — * + + — X1 Xk + XX = O.

Furthermore, since x # 0, it follows that V(X) +# 0 on Sk,



13.
14.

15.

Additional problems for graduate students, or undergraduate extra credit

Oops.

Let m*(A) be the measure of A as defined in class. In other words, for all ¢ > 0,
there is a countable set of rectangles {S;} such that A C U;S; and

ivol(si) —e<mi(A) < iVOI(Si)
i=1 i=1

Find a (Cantor-like) subset A of the unit interval [0, 1] with the properties:

(a) A is constructed by removing a countable number of intervals from [0, 1] (open
and/or closed)

(b) Between any two points p, q € A, there is a point b € (p, q) not contained in A.
(¢) m*(A) #0and m*(A) < 1.

Generalize this to obtain a set with these properties with arbitrary measure in (0, 1).
Hint. You will need to use convergence of series.

Find an example of a k-dimensional manifold such that T(M) is not diffeomorphic
to M x R¥, and prove your answer.

Let M = S?%, and suppose T(S?) were diffeomorphic to S? x R%. Choose a nonzero
vector v € R?, such as v = (1,0). Then the global map

$s:S7 5 S2xR2=T(S?)

given by s(x) = (x,V) gives a nonzero smooth vector field on S? (the vector field is
constantly valued v). This implies that the antipodal map on S? is homotopic to the
identity map (see Exercise #8 in Chapter 1, Section 8). We showed already that if k
is odd that the antipodal map on S* is homotopic to the identity; we need to show
that if k = 2, then the antipodal map on S is not homotopic to the identity.

I did not see any way to prove this without introducing more sophisticated tech-
niques which we will see in Chapter 3, so just stating that there is no nonvanishing
vector field on S? (mentioned in Exercise #7 of Chapter 1, Section 8) is sufficient for
this problem.



