
Differential Topology Solution Set #3

Select Solutions

1. Chapter 1, Section 4, #7

2. Chapter 1, Section 4, #8

3. Chapter 1, Section 4, #11(a)-(b)

#11(a) The n × n matrices with determinant 1 form a group denoted SL(n). Prove
that SL(n) is a submanifold of M(n) and thus is a Lie group.

Consider the determinant map

det : M(n) → R.

If we show that 1 is a regular value of det, then we will have shown that SL(n) is a
submanifold, since det−1(1) = SL(n). To show it’s a regular value, we need to show
that its derivative is surjective at every point in the level set SL(n).

We show that d(det)A is surjective for all A ∈ SL(n) by calculating directly. Note
that TA(M(n)) ∼= M(n) for any matrix A. We choose a basis Eij for the vector space
M(n), where Eij is the matrix with 1 in the ijth entry, and 0s everywhere else.

We begin by assuming that A = I, the identity matrix. Then

d(det)I(Eij) = lim
h→0

det(I + hEij) − det I

h

=

{
0 if i 6= j

1 if i = j.

(Notice that if i 6= j, then I + hEij has the same determinant as I, since the term hEij

is off-diagonal with just one entry. On the other hand, det(I + hEii) = (1 + h) since
I + hEii has 1 in every diagonal entry except the iith, where it has 1 + h.)
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Since d(det)I maps to R, we are only required to show that it is nonzero to show
that it is surjective. It follows that d(det)I is surjective.

Now for generic A ∈ SL(n), you can do one of two things to prove this: either you
can calculate directly as we did when A = I, or you can prove that the derivative
of the determinant is the trace (as we did in class). Here is the first way. Let (Â)ij

indicate the minor of the matrix A with the ith column and jth row eliminated.

d(det)A(Eij) = lim
t→0

det(A + tEij) − det A

t

= lim
t→0

det(A + tEij) − 1

t

Note that

det(A + tEij) = a1j det((Â)1j) − a2j det((Â)2j) + · · ·
± (aij + t) det((Â)ij) · · · ± det((Â)nj)

= a1j det((Â)1j) − a2j det((Â)2j) + · · ·
± aij det((Â)ij) · · · ± det((Â)nj)± t det((Â)ij)

= det A± t det((Â)ij)

= 1± t det((Â)ij).

We substitute this into the equation for d(det) and find

d(det)A(Eij) = lim
t→0

1± t det((Â)ij) − 1

t

= ±det((Â)ij).

Lastly we need to show that, for any A ∈ SL(n), there exists some ij such that this
determinant is nonzero. But this is clear, for if every (n−1)× (n−1) minor of A had
a zero determinant, then the matrix A would itself have 0 determinant, contrary to
its being in SL(n).

#11(b) The tangent space of SL(n) at I may be computed by the kernel of the d(det)I,
since SL(n) is determined by the level set of det at I (i.e. det = 1) We found that

d(det)I(Eij) =

{
0 if i 6= j

1 if i = j.
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Thus the kernel is the set of all Eij such that i 6= j. This is precisely the set of traceless
matrices (note that tr(Eii) = 1 for all i).

4. Chapter 1, Section 5, #7

5. Chapter 1, Section 5, #10

6. Chapter 1, Section 6, #6. Read the definition of contractible from #4.

7. Chapter 1, Section 6, #7. Show that the antipodal map x → −x of Sk → Sk is homo-
topic to the identity if k is odd.

If k is odd, then Sk ⊂ Rk+1 where k + 1 is even. Then the matrix

At =




cos πt − sin πt 0 0 0 0

sin πt cos πt 0 0 0 0

0 0 · · · · · · 0 0

0 0 · · · · · · 0 0

0 0 0 0 cos πt − sin πt

0 0 0 0 sin πt cos πt




provides a homotopy from the identity map to the antipodal map. More specifically,
let F : Sk × I → Sk be given by

F(x, t) = At(x)

for any x ∈ Sk. Note that At(x) ∈ Sk as well, since At(At)
T = I (so in particular,

unit-length vectors get mapped to unit-length vectors).

8. Chapter 1, Section 7, #4

9. Chapter 1, Section 7, #6. Prove that Sk is simply connected if k > 1.

Recall that Sk is simply connected if every map f : S1 → Sk is homotopic to a constant
map. If k > 1, then there exists a point p ∈ Sk such that p 6∈ f(S1). Rotate the sphere
in Rk+1 so that p is the North Pole, stereographically project every point in Sk − {p}

into the k-plane perpendicular to the vector p. This is a diffeomorphism φ from
Sk − {p} to the k-plane Rk. Then φ ◦ f : S1 → Rk is a map of S1 into a contractible
space, so it is clearly homotopic to a constant map S1 → q, where q ∈ Rk. We write
this homotopy explicitly:

F : S1 × I → Rk, F(x, 0) = φ ◦ f(x), F(x, 1) = q.
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Then we apply φ−1 to obtain a homotopy

G : S1 × I → Sk, G(x, 0) = f(x), G(x, 1) = φ−1(q).

from f(x) to the constant map S1 → φ−1(q).

10. Chapter 1, Section 7, #8 (just do a couple)

11. Chapter 1, Section 8, #1

12. Chapter 1, Section 8, #7. Show that if k is odd, there exists a vector field −→v on Sk

having no zeros.

We follow the hint. At a point (x1, x2, . . . , xk+1) ∈ Sk ⊂ Rk+1), let

−→v (x1, x2, . . . xk+1) = (−x2, x1, −x4, x3, . . . , −xk+1, xk).

Note that −→v (x) is tangent to Sk at x, since

−→v (x) · x = (−x2, x1, −x4, x3, . . . , −xk+1, xk) · (x1, x2, . . . xk+1)

= −x2x1 + x1x2 − · · ·− xk+1xk + xkxk+1 = 0.

Furthermore, since x 6= 0, it follows that −→v (x) 6= 0 on Sk.
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Additional problems for graduate students, or undergraduate extra credit

13. Oops.

14. Let m∗(A) be the measure of A as defined in class. In other words, for all ε > 0,
there is a countable set of rectangles {Si} such that A ⊂ ∪iSi and

∞∑

i=1

vol(Si) − ε < m∗(A) ≤
∞∑

i=1

vol(Si)

Find a (Cantor-like) subset A of the unit interval [0, 1] with the properties:

(a) A is constructed by removing a countable number of intervals from [0, 1] (open
and/or closed)

(b) Between any two points p, q ∈ A, there is a point b ∈ (p, q) not contained in A.

(c) m∗(A) 6= 0 and m∗(A) < 1.

Generalize this to obtain a set with these properties with arbitrary measure in (0, 1).
Hint. You will need to use convergence of series.

15. Find an example of a k-dimensional manifold such that T(M) is not diffeomorphic
to M× Rk, and prove your answer.

Let M = S2, and suppose T(S2) were diffeomorphic to S2 × R2. Choose a nonzero
vector v ∈ R2, such as v = (1, 0). Then the global map

s : S2 → S2 × R2 ∼= T(S2)

given by s(x) = (x, v) gives a nonzero smooth vector field on S2 (the vector field is
constantly valued v). This implies that the antipodal map on S2 is homotopic to the
identity map (see Exercise #8 in Chapter 1, Section 8). We showed already that if k

is odd that the antipodal map on Sk is homotopic to the identity; we need to show
that if k = 2, then the antipodal map on S2 is not homotopic to the identity.

I did not see any way to prove this without introducing more sophisticated tech-
niques which we will see in Chapter 3, so just stating that there is no nonvanishing
vector field on S2 (mentioned in Exercise #7 of Chapter 1, Section 8) is sufficient for
this problem.
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