
Differential Topology Solution Set #2

Select Solutions

1. Show that X compact implies that any smooth map f : X → Y is proper. Recall that
a space is called compact if, for every cover {U�} by open sets such that

X = ∪�U�

there is a finite subcover. This means that there is a finite subset U�i of all the U�

such that
X = ∪i∈IU�i

and I is a finite set.

Alternatively, you may use the definition that X is compact if and only if it is closed
and bounded.

Let Z ⊂ Y be a compact set. We need to prove that f-1(Z) is compact. It is sufficient
to prove that f-1(Z) is closed and bounded. It is obviously bounded, since any
subset of a compact set X is bounded (since X is). We show it is closed.

Since Z is compact, it is closed. The map f : X → Y is continuous, and so the inverse
image of closed sets are closed. Therefore, f-1(Z) must also be closed.

2. Chapter 1, Section 3, #2

3. Chapter 1, Section 3, #4 Construct a local diffeomorphism f : R2 → R2 that is not a
diffeomorphism onto its image.

Let f(x, y) = (ey cos x, ey sin x). We begin by simplifying our life and writing f(x, y)

in polar coordinates (r, θ). We obtain:

f(x, y) = (ey, x).

This function is globally defined. Clearly f is smooth (it is infinitely differentiable in
all directions). We check that it is also locally invertible, with a smooth inverse.
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Choose a point (x, y). Let an open neighborhood be given by U = {(a, b) : x − �
2

<

a < x + �
2
, y − 1 < b < y + 1}. Then clearly U contains (x, y). The image of U under

f consists of

V = {(s, t) such that ey-1 < s < ey+1 and x −
π

2
< t < x +

π

2
}.

In the neighborhood V , the inverse map is

f-1(s, t) = (t, ln s).

Note that t is the unique value mod 2π such that x − �
2

< t < x + �
2
. Notice also that

ln s is always well-defined, because s > 0 in the image (indeed, (0, 0) is not in the
image of f at all). These observations imply the inverse map is well-defined. Also,
f-1 is infinitely differentiable in both directions as well – as long as s 6= 0, which it is
not. It follows that f is locally a diffeomorphism.

On the other hand, f is clearly not a diffeomorphism onto its image: in particular,
it is not 1-1 on its image since there are many values of (ey, x) that are equivalent
if we do not restrict the domain of x. (Remember we’re in polar coordinates, so
(ey, x) = (ey, x + 2kπ) for any integer k ∈ Z.)

4. Chapter 1, Section 3, #7(a).

5. Chapter 1, Section 4, #1

6. Chapter 1, Section 4, #2(a)-(b)

(a) If X is compact and Y connected, show every submersion f : X → Y is surjective.

Suppose f is a submersion that is not surjective. Let y0 = f(x0) be a point in the
image of X, and y1 be a point not in f(X). Since Y is connected, let s(t) be a smooth
path in Y such that s(0) = y0 and s(1) = y1. Since X is compact, the inverse image
f-1(s(t)) is closed in X (of course, f(f-1(s(t))) 6= s(t) for all t since not all of s(t) lies
in f(X)).

Let g(t) be a curve in X such that f(g(t)) = s(t) for 0 ≤ t ≤ t ′, where f-1(s(t ′ + ε))

is empty for small enough ε. We let x ′ = g(t ′), and y ′ = f(x ′). Then for any
parametrization φ of Y around y ′, (i.e. φ : U → V , where U ⊂ Rl open and V an
open neighborhood of y ′ in Y,) f ◦ φ-1 is not surjective since φ-1(s(t ′ + ε)) is not in
the image of f, but is in the parametrization neighborhood.

But this contradicts the local submersion theorem, which says that there exist local
coordinates around x ′ and y ′ such that f(x1, . . . , xk) = (x1, . . . , xl), the canonical
submersion, where k ≥ l are the dimensions of X and Y, respectively.
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(b) Show that there exist no submersions of compact manifolds into Euclidean spaces.

If there were, then by part (a) there would be a surjective map from a compact set
onto Rn for some n. Consider the projection π : Rn → R1 to the first coordinate.
Then π ◦ f : X → R1 is a smooth surjective function. Every smooth function on
a compact set X has a maximum and a minimum, so π ◦ f cannot be surjective, a
contradiction.

7. Chapter 1, Section 4, #3

8. Chapter 1, Section 5, #1

9. Chapter 1, Section 5, #2

10. Chapter 1, Section 5, #4
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Additional problems for graduate students, or undergraduate extra credit

11. Chapter 1, Section 3, 7(b)

12. Chapter 1, Section 3, #10

13. Chapter 1, Section 4, #7

14. Chapter 1, Section 4, #12

15. Suppose that X is given by

X = {

(
ei�1 0

0 ei�2

)
such that θi ∈ R}.

Show that the subset

X ′ = {

(
ei� 0

0 e-i�

)
, θ ∈ R}

is a submanifold of X. Do this by finding a smooth map f : X → C and showing that
there is a regular value y of f such that X = f-1(y).

Hint. Think about determinants.

Let f : X → C be the determinant map. In other words,

f(

(
ei�1 0

0 ei�2

)
) = ei(�1+�2).

Then f is a smooth map. Its image is the circle S1 ⊂ C given by the set of ei� (ele-
ments of unit length in C). Furthermore, ei(�1+�2) = 1 if and only if i(θ1 + θ2) = 0 or
2kiπ for some k ∈ Z. In other words, θ1+θ2 = 2kπ, or θ2 = 2kπ−θ1. But then since
e2k�-�1 = e-�1, we find that f-1(1) = X ′.

We need only show that 1 is a regular value for f. For any matrix A ∈ X ′, we
calculate the derivative dfA : TA(X) → TdetAS1 = R1.
Note that TA(X) is isomorphic toR2, since the parameters θ1 and θ2 are real numbers.
(You can also check this with any local parametrization of X at some point A ∈ X ′.)
Just to be explicit, I will find two curves c1(t) and c2(t) in X whose derivatives at
t = 0 will form a basis for the tangent space at some A ∈ X ′. For the sake of clarity,
write an element of X as (ei�1, ei�2) instead of the matrix form. Let

c1(t) = (ei(t+�), ei(t-�)), c2(t) = (ei(t+�), ei(-t-�)).
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Notice that c1(t) and c2(t) are in X for all time. At t = 0, they pass through the point
A = (ei�, e-i�) ∈ X ′, as desired. We differentiate at 0, and find that

c ′1(0) = (iei�, ie-i�) c ′2(0) = (iei�, −ie-i�).

In particular, the (real) linear span of these two vectors is any real linear combination
of these two linearly independent vectors. Now any element B in TA(X) is of the
form

B = ac ′1(0) + bc ′2(0),

where a and b are real numbers. To be even more explicit,

B = ((a + b)iei�, (a − b)ie-i�) =

(
(a + b)iei� 0

0 (a − b)ie-i�

)
.

Now that we have identified TA(X) with a copy of R2, it makes sense to take the
derivative dfA(B) in the usual way. Note that f is defined on the set of all 2 × 2

matrices with complex entries, so we can evaluate expressions such as f(A + tB),
even if A + tB does not live in the copy of R2 that we just identified. The sum is
occurring in the space C4 identified with M(2,C), in which both A and B live.

For any B ∈ TA(X),

dfA(B) = lim
t!0

f(A + tB) − f(A)

t
= lim
t!0

det(A + tB) − 1

t
.

We calculate the determinant of A + tB directly, where A = (ei�, e-i�). We obtain

f(A + tB) = f((ei� + t(a + b)iei�, e-i� + t(a − b)ie-i�))

= det
(

ei� + t(a + b)iei� 0

0 e-i� + t(a − b)ie-i�

)

= 1 + t(a + b)i + t(a − b)i + t2(a2 − b2).

We now finish the calculation:

dfA(B) = lim
t!0

1 + t(a + b)i + t(a − b)i + t2(a2 − b2) − 1

t
= (a+b)i+(a−b)i = 2ai.

This is clearly nonzero if a 6= 0. Since the target space is one-dimension, this implies
that dfA is surjective for all points A ∈ X ′. It follows that 1 is a regular value, and
that X ′ is therefore a submanifold of X.
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