Differential Topology Solution Set #2

Select Solutions

1. Show that X compact implies that any smooth map f : X — Y is proper. Recall that
a space is called compact if, for every cover {U } by open sets such that

X=ul

there is a finite subcover. This means that there is a finite subset U , of all the U
such that
X = Uielu i

and I is a finite set.

Alternatively, you may use the definition that X is compact if and only if it is closed
and bounded.

Let Z C Y be a compact set. We need to prove that f~1(Z) is compact. It is sufficient
to prove that f~*(Z) is closed and bounded. It is obviously bounded, since any
subset of a compact set X is bounded (since X is). We show it is closed.

Since Z is compact, it is closed. The map f : X — Y is continuous, and so the inverse
image of closed sets are closed. Therefore, f~(Z) must also be closed.

2. Chapter 1, Section 3, #2

3. Chapter 1, Section 3, #4 Construct a local diffeomorphism f : R? — R? that is not a
diffeomorphism onto its image.

Let f(x,u) = (e¥ cosx, e¥ sinx). We begin by simplifying our life and writing f(x, y)
in polar coordinates (r,0). We obtain:

flx,y) = (¢7,x).

This function is globally defined. Clearly f is smooth (it is infinitely differentiable in
all directions). We check that it is also locally invertible, with a smooth inverse.
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Choose a point (x,y). Let an open neighborhood be given by U = {(a,b) : x — 5 <
a<x+3yYy—1<b<y+ 1} Then clearly U contains (x,y). The image of U under
f consists of

e

V ={(s,t)such that ¥ ! < s < ¥t and x — 3

<t<x+7t}
i

In the neighborhood V, the inverse map is
f~1(s,t) = (t,Ins).

Note that t is the unique value mod 27t such that x — 5 <t < x + 5. Notice also that
In's is always well-defined, because s > 0 in the image (indeed, (0,0) is not in the
image of f at all). These observations imply the inverse map is well-defined. Also,
f~1 is infinitely differentiable in both directions as well — as long as s # 0, which it is
not. It follows that f is locally a diffeomorphism.

On the other hand, f is clearly not a diffeomorphism onto its image: in particular,
it is not 1-1 on its image since there are many values of (e¥,x) that are equivalent
if we do not restrict the domain of x. (Remember we’re in polar coordinates, so
(e¥,x) = (e¥,x + 2km) for any integer k € Z.)

. Chapter 1, Section 3, #7(a).
. Chapter 1, Section 4, #1
. Chapter 1, Section 4, #2(a)-(b)

(a) If X is compact and Y connected, show every submersion f : X — Y is surjective.

Suppose f is a submersion that is not surjective. Let yo = f(xo) be a point in the
image of X, and y; be a point not in f(X). Since Y is connected, let s(t) be a smooth
path in Y such that s(0) = yo and s(1) = y;. Since X is compact, the inverse image
f=1(s(t)) is closed in X (of course, f(f~(s(t))) # s(t) for all t since not all of s(t) lies
in f(X)).

Let g(t) be a curve in X such that f(g(t)) = s(t) for 0 < t < t/, where f~1(s(t’ + €))
is empty for small enough e. We let x’ = g(t’), and y’ = f(x’). Then for any
parametrization ¢ of Y around y’, (i.e. ¢ : U — V, where U C R' open and V an
open neighborhood of y’ in Y,) f o ¢~ is not surjective since ¢~ (s(t’ + €)) is not in
the image of f, but is in the parametrization neighborhood.

But this contradicts the local submersion theorem, which says that there exist local
coordinates around x’ and y’ such that f(xg,...,xx) = (x1,...,%1), the canonical
submersion, where k > 1 are the dimensions of X and Y, respectively.
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10.

(b) Show that there exist no submersions of compact manifolds into Euclidean spaces.

If there were, then by part (a) there would be a surjective map from a compact set
onto R" for some n. Consider the projection 7t : R" — R?! to the first coordinate.
Then o f : X — R!is a smooth surjective function. Every smooth function on
a compact set X has a maximum and a minimum, so 7 o f cannot be surjective, a
contradiction.

Chapter 1, Section 4, #3

. Chapter 1, Section 5, #1

Chapter 1, Section 5, #2
Chapter 1, Section 5, #4
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Additional problems for graduate students, or undergraduate extra credit

Chapter 1, Section 3, 7(b)
Chapter 1, Section 3, #10
Chapter 1, Section 4, #7

Chapter 1, Section 4, #12

Suppose that X is given by
et 0
X:{< ol 2 > such that 0; € R}.

Show that the subset i
r € 0
X' = {( 0 e—i ) )e € R}

is a submanifold of X. Do this by finding a smooth map f : X — C and showing that
there is a regular value y of f such that X = f~1(y).

Hint. Think about determinants.

Let f : X — C be the determinant map. In other words,

eil O R
f(( 0 eiz)):€|(1+2).

Then f is a smooth map. Its image is the circle S* C C given by the set of e’ (ele-
ments of unit length in C). Furthermore, e'( 2* 2 = 1 if and only if i(6; + 6,) = 0 or
2kim for some k € Z. In other words, 0, + 0, = 2k, or 8, = 2k7t— 04. But then since
e — 1 =¢~ 1 we find that (1) = X".

We need only show that 1 is a regular value for f. For any matrix A € X', we
calculate the derivative dfa : Ta(X) — TgetaS* = RL.

Note that Ta(X) is isomorphic to R?, since the parameters 0; and 0, are real numbers.
(You can also check this with any local parametrization of X at some point A € X'.)
Just to be explicit, I will find two curves c1(t) and c(t) in X whose derivatives at
t = 0 will form a basis for the tangent space at some A € X'. For the sake of clarity,
write an element of X as (e' t, e' 2) instead of the matrix form. Let

ca(t) = (', el ) cp(t) = ('), /7)),
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Notice that ¢4 (t) and c;(t) are in X for all time. At t = 0, they pass through the point
A = (e' ,e™" ) € X/, as desired. We differentiate at 0, and find that

In particular, the (real) linear span of these two vectors is any real linear combination
of these two linearly independent vectors. Now any element B in Ta(X) is of the
form

B = aci(0) + bey(0),

where a and b are real numbers. To be even more explicit,

3 ol
B=((a+b)ie,(a—ble )= ( (a +(l)))1e o Sﬁe_i ) .
Now that we have identified Ta(X) with a copy of R?, it makes sense to take the
derivative dfa(B) in the usual way. Note that f is defined on the set of all 2 x 2
matrices with complex entries, so we can evaluate expressions such as f(A + tB),
even if A + tB does not live in the copy of R? that we just identified. The sum is
occurring in the space C* identified with M(2, C), in which both A and B live.

For any B € Ta(X),

dfa(B) = lim \ATBI =FA) _ detA+1B) —T
t¥o t t¥0 t

We calculate the determinant of A + tB directly, where A = (e' ,e™' ). We obtain

f(A+1tB) =f((e' +t(a+Db)ie' ;e +tla—Db)ie "))
B e +t(a+Db)ie 0
—det( 0 e’ +tla—Db)ie! )
=14+t(a+b)i+tla—Db)i+t*(a®—b?).

We now finish the calculation:

1+tla+b)i+tla—b)i+t?(a?—b?) -1

" =(a+b)i+(a—Db)i = 2ai.

dfa(B) =lim
t1o

This is clearly nonzero if a # 0. Since the target space is one-dimension, this implies
that dfa is surjective for all points A € X'. It follows that 1 is a regular value, and
that X' is therefore a submanifold of X.



