Differential Topology Problem Set #4

Due: Tuesday, April 5

1. Consider the map

 $V \times W \to V \oplus W$, $v \times w \to v \oplus w$.

Is this map bilinear?

2. Suppose $v_1, \ldots, v_p \in V$ are linearly dependent vectors. Show that

 $T(\nu_1,\ldots,\nu_p)=0$

for all $T \in \Lambda^{p}(V^{*})$. Is this true for all $T \in \mathcal{J}^{p}(V^{*})$? If so, prove it, and if not, find a counterexample.

- 3. Chapter 10, Section 2, #3.
- 4. Chapter 10, Section 2, #10 (a) and (b).
- 5. Chapter 10, Section 3, Exercise on p. 165.

The Tensor Product of Vector Spaces. Let V and W be vector spaces over a field (you may assume they are real vector spaces). The tensor product $V \otimes W$ is a vector space equipped with a bilinear map

$$V \times W \longrightarrow V \otimes W, \qquad v \times w \rightarrow v \otimes w$$

(for every $v \in V, w \in W$) which is *universal* in the following sense. For any bilinear map

 $b:V\times W\longrightarrow U$

where U is a vector space (over the same field), there is a unique linear map

$$L: V \otimes W \longrightarrow U$$

such that $L(v \otimes w) = b(v, w)$. In other words, any linear map $b : V \times W \longrightarrow U$ factors through the tensor product $V \otimes W$. Another way of saying this is that the diagram

commutes for every vector space U and for every bilinear map b.

6. Find a basis of $V \otimes W$ (given a basis of V and of W). Find the dimension of $V \otimes W$.

Additional problems for graduate students, or undergraduate extra credit

The n*th exterior power* of a vector space V is a vector space AltⁿV, equipped with an alternating multilinear map

$$V \times \cdots \times V \to Alt^n V, \quad v_1 \times \cdots \times v_n \to v_1 \odot \cdots \odot v_n,$$

that is universal in the following sense. For any alternating multilinear map $b: V \times \cdots \times V \rightarrow U$ (where U is a vector space), there is a unique linear map $L: Alt^n V \rightarrow U$ which takes $v_1 \odot \cdots \odot v_n$ to $b(v_1, \ldots, v_n)$.

- 7. Show that $\Lambda^n(V^*) \cong Alt^n V^*$, where V^* is the dual to V (and $\Lambda^n(V^*)$ is the same as we defined in class). *Hint*. Show that $\Lambda^n(V^*)$ has the universality property, or use the universality property of $Alt^n V^*$ to construct a map between the two spaces and then prove it's an isomorphism.
- 8. Show that $\Lambda^n(V)$ can be constructed as a quotient of $V \otimes V \otimes \cdots \otimes V$ (n times). In other words, there is a surjective map

$$\mathsf{L}: \mathsf{V}^{\otimes \mathfrak{n}} \longrightarrow \Lambda^{\mathfrak{n}}(\mathsf{V}).$$

Write down the map, show it's surjective, and find its kernel.

NOTE: The product \odot is written \land because it is in fact the same product as the one we use in class!