Differential Topology Problem Set #1

Due Thursday, Feb. 3

- 1. Prove that $S^n = \{x \in \mathbb{R}^{n+1} : |x| = 1\}$ is an n-dimensional manifold.
- 2. Section 1, #2
- 3. Section 1, #3
- 4. Section 1, #5
- 5. Suppose that U is an open set in \mathbb{R}^n . Prove that if $L : U \to \mathbb{R}^m$ is a linear map, then $dL_x = L$ for all $x \in U$. *Hint*. Suppose $0 \in U$ and try to prove the statement first at x = 0.
- 6. Section 2, #1
- 7. Section 2, #4
- 8. Section 2, #12
- 9. Let $f : \mathbb{R}^2 \to \mathbb{R}^3$ be the function

$$f(x, y) = (x^2 - y, x + y, 5).$$

Write out df in matrix form.

10. Prove that if $\phi : U \to V$ is a diffeomorphism of open sets in \mathbb{R}^n , then

$$(\mathbf{d}\boldsymbol{\varphi})^{-1} = \mathbf{d}(\boldsymbol{\varphi}^{-1})$$

Additional problems for graduate students, or undergraduate extra credit

- 11. Section 1, #10
- 12. Section 1, #16
- 13. Section 2, #9(a-d)
- 14. Section 2, #10