
Problem Set Mash 1

Section 1.2

15. Find a set of generators and relations for Z/nZ.

h1̄|1̄n = 0̄i = Z/nZ.

Section 1.4

10. Let G =

⇢✓
a b
0 c

◆ ���a, b, c 2 R, a 6= 0, c 6= 0

�
.

(a) Compute the product of
✓

a1 b1
0 c1

◆
and

✓
a2 b2
0 c2

◆
to show that G is closed under matrix

multiplication.

✓
a1 b1
0 c1

◆✓
a2 b2
0 c2

◆
=

✓
a1a2 + 0b2 a1b2 + b1c2
0a2 + c10 0b2 + c1c2

◆
=

✓
a1a2 a1b2 + b1c2
0 c1c2

◆

(b) Find the matrix inverse of
✓

a b
0 c

◆
and deduce that G is closed under inverses.

✓
a b
0 c

◆✓
a�1 �b

ac

0 c�1

◆
=

✓
1 0
0 1

◆

(c) Deduce that G is a subgroup of GL2(R).

Since G is closed under the group operation and inverses, for any x, y 2 G, xy�1 2 G and by
the subgroup criterion, G is a subgroup of GL2(R).

(d) Prove that the set of elements of G whose two diagonal entrees are equal is also a subgroup of
GL2(R).

Let
✓

a b
b a

◆
,

✓
c d
d c

◆
2 GL2(R)

✓
a b
b a

◆✓
c d
d c

◆
=

✓
ac+ bd ad+ bc
bc+ ad bd+ ac

◆

Thus the set of matrices with equal diagonal entrees is closed under matrix multiplication.

✓
a b
b a

◆ 
a

a

2�b

2
�b

a

2�b

2

�b

a

2�b

2
a

a

2�b

2

!
=

✓
1 0
0 1

◆

Thus
✓

a b
b a

◆
has an inverse in the set and the set of matrices with equal diagonal entrees is

closed under inverses. Therefore it is a subgroup.



Section 1.6

9. Prove that D24 and S4 are not isomorphic.

We first prove that the order of an element in S4 is at most 4. Let � be a permutation in S4. Suppose
� is a cycle. Since � is a permutation on a four element set, it can be at most a 4-cycle. Thus, if �
is a cycle, it has order at most four. Suppose � is not a cycle, then either � is the identity or is the
product of two disjoint 2-cycles. The product of two disjoint 2-cycles has order 2 and the identity
has order 1. Thus, all elements of S4 have at most order 4.

For all D2n, the element r has order n. Thus, the element r 2 D24 has order 12. Suppose there
exists an isomorphism � : D24 ! S4, then for all x 2 D24, |x| = |�(x)| but there exists an element
of D24 with order greater than four, thus leading to a contradiction. Therefore D24 � S4.

18. Let G be a group. Prove that the mapping from G to itself defined by g 7! g2 is a homomorphism if
and only if G is abelian.

Let � : G ! G denote the aforementioned map.

Suppose G is abelian, and let a, b be arbitrary elements in G. Then

�(ab) = (ab)2 = (ab)(ab) = a(ba)b = a(ab)b = (aa)(bb) = a2b2 = �(a)�(b).

Since a and b are arbitrary, � preserves the group operation for all elements of G and is thus a
homomorphism.

Now suppose that � is a homomorphism and again let a, b be arbitrary elements of G. Then �(ab) =
�(a)�(b) and so (ab)(ab) = (aa)(bb). Multiplication on the left by a�1 and on the right by b�1 to
both sides of the equation gives:

a�1(abab)b�1 = a�1(aabb)b�1

(a�1a)(ba)(bb�1) = (a�1a)(ab)(bb�1)

1(ba)1 = 1(ab)1

ba = ab.

Thus for all a, b 2 G, ab = ba and G is abelian.

Section 1.7

4. Let G be a group acting on a set A and fix some a 2 A. Show that the following sets are subgroups
of G.

(a) The kernel of the action.

Let b 2 A be an arbitrary element of A. We first note that 1b = b by definition, and since
b is arbitrary, the identity of G is in the kernel and thus the kernel is nonempty. Next, let
x 2 G be an element of the kernel. Then xb = b and since 1 = x�1x in G, we have
b = 1b = (x�1x)b = x�1(xb) = x�1b. Since b is arbitrary, x�1 is in the kernel and since



x is arbitrary, the kernel is closed under inverses. Suppose x, y are elements of the kernel,
then (xy)b = x(yb) = xb = b. Again, since b is arbitrary, xy is in the kernel and thus
the kernel is nonempty, closed under the group operation of G, and closed with respect to
inverses. Therefore the kernel is a subgroup of G.

(b) {g 2 G : ga = a}.

The set above is commonly called the stabilizer of a in G. By definition, 1a = a and so the
identity element of G is in the stabilizer of a. Let g 2 G be an element of the stabilizer of a in
G. Then ga = a and since 1 = g�1g in G, we have a = 1a = (g�1g)a = g�1(ga) = g�1a.
Thus g�1 is in the stabilizer and the stabilizer of a is closed under inverses. Let g, h be elements
of the stabilizer of a. Then (gh)a = g(ha) = ga = a and so the stabilizer is closed under the
group operation. Thus, the stabilizer is nonempty, closed with respect to the group operation,
and closed with respect to inverses and therefore the stabilizer of a is a subgroup of G.

Section 2.1

10. (a) Prove that if H and K are subgroups of G, then their intersection H \K is a subgroup of G.

The identity element of G is in both H and K and thus H \K is nonempty. Let x 2 H \K,
then x is an element of both H and K. Since H and K are both closed under inverses, x�1 is
in both H and K and thus is in H \K. Suppose x, y 2 H \K. Then x and y are in both H
and K. Since both H and K are closed with respect to the group operation, xy is in both H
and K and thus xy is in H \K. Thus H \K is nonempty, closed under inverses, and closed
under group operation in G so H \K is a subgroup.

(b) Prove that the intersection of an arbitrary nonempty collection of subgroups of G is again a
subgroup of G.

Let H =
T

i2I Gi

denote the intersection of a collection of subgroups G
i

indexed by a set I .
For every i 2 I , the subgroup G

i

contains the identity element in G. Thus 1 2 H and so H is
nonempty. Suppose x 2 H . Then x is an element of G

i

for every i 2 I . For each i 2 I , G
i

is
closed under inverses, and thus x�1 2 G

i

for each i 2 I . Thus, x�1 is in H . Suppose x, y are
elements of H . Then for each i 2 I , both x and y are in G

i

. Since each G
i

is closed under the
group operation, for each i 2 I , xy 2 G

i

. Therefore xy 2 H and H is closed under the group
operation. Thus H is a subgroup of G.

Section 2.2

6. Let H be a subgroup of G.

(a) Show that H  N
G

(H) Give an example to show that this is not necessarily true if H is not a
subgroup.

Since H is a subgroup of G, it is already closed under inverses, we need only show that it is
closed under the group operation with respect to N

G

(H). To do this, it is sufficient to show
that H ✓ N

G

(H).



Let h be a fixed, arbitrary element of H and let g be an arbitrary element of H . By closure of
H under inverses and the group operation, hgh�1 2 H . Since g is arbitrary, hgh�1 2 H for
any g 2 H . Therefore h 2 N

G

(H). Since h is arbitrary, for each h 2 H, h 2 N
G

(H) and
thus H ✓ N

G

(H).
Let G = Z/2Z. Let A = {1̄}. Then 0̄1̄0̄ = 1̄ and 1̄1̄1̄ = 1̄ so N

G

(A) = {0̄, 1̄}. The subset
does not contain the identity element and thus cannot be a subgroup of N

G

(A).

(b) Show that H  C
G

(H) if and only if H is abelian.

If H  C
G

(H), then H is abelian because C
G

(H) is abelian and any subgroup of an abelian
group is abelian. Suppose H is abelian, since all elements of H commute with one another,
H ✓ C

G

(H). Since H is a subgroup of G, we have that G is closed under the group op-
eration with respect to C

G

(H) and closed under inverses with respect to C
G

(H). Hence,
H  C

G

(H).

Section 2.3

16. Assume |x| = n and |y| = m. Suppose that x and y commute. Prove that |xy| divides the least
common multiple of m and n. Need this be true if x and y does not commute? Give an example of
commuting elements that the order of xy is not equal to the least common multiple of |x| and |y|.
We first show that if x and y commute, then for all k 2 N, (xy)k = xkyk. We proceed by induction.
For k = 1, we have (xy)1 = x1y1. Suppose that the result holds true for all numbers less than or
equal to k. Then (xy)k+1 = (xy)k(xy) = (xy)k(yx) = (xkyk+1x) = xkxyk+1 = xk+1yk+1. By
induction, xkyk = (xy)k for all k 2 N.

Since lcm(m,n) is a multiple of m and n, xlcm(m,n) = 1 and ylcm(m,n) = 1. Therefore (xy)lcm(m,n) =
xlcm(m,n)ylcm(m,n) = 1 by the previous result.

Suppose |xy| = l does not divide lcm(m,n), then there exists k, r 2 N with 0 < r < l such

that lcm(m,n) = kl + r. Then (xy)lcm(m,n) = (xy)kl+r = (xy)kl(xy)r =
⇣
(xy)l

⌘
k

(xy)r =

1k(xy)r = (xy)r. Since r is nonzero and less than l = |xy|, (xy)r is not equal to the iden-
tity. Therefore (xy)lcm(m,n) 6= 1 which contradicts the previous result. Therefore |xy| must divide
lcm(m,n).

This result need not be true if the elements do not commute. In S3, consider the elements (1 2) and
(2 3). Both elements have order two, so the least common multiple of them is two. The product
(1 2) � (2 3) = (1 2 3) so the order of their product is three, which does not divide two.

Any two elements of a group with order two or higher that are inverses of one another commute,
and the order of their product is one.

Section 2.4

7. Prove that the subgroup of S4 generated by (1 2) and (1 3)(2 4) is isomorphic to the dihedral group
of order 8.

We have that (1 2)2 = ((1 3)(2 4))2 = 1 and (1 2) � (1 3)(2 4) = (1 3 2 4). The element
(1 3 2 4) = b has order 4 with b2 = (1 2)(3 4), b3 = (1 4 2 3). The inverse of (1 3 2 4) is (1 4 2 3)
and (1 2) � (1 3 2 4) = (1 3)(2 4) = (1 4 2 3) � (1 2).
Thus, there is an element (1 2) = a with a2 = 1 and an element (1 3 2 4) = b such that b4 = 1.
The relation ab = b�1a is satisfied and thus the relations of D8 are satisfied. Thus, there exists a



homomorphism from � : D8 ! ha, bi defined by �(rxsy) = bx � ay. Since the powers of b are
unique for 1, 2, and 3, this homomorphism is injective. Hence, the subgroup generated by a and b is
isomorphic to D8.

11. Show that SL2(F3) and S4 are two nonisomorphic groups of order 24.

We show that SL2(F3) contains an element that commutes with all other elements of SL2(F3).

Consider the element A =

✓
2 0
0 2

◆
. This matrix is in SL2(F3) since the determinant is equal to

1 in F3. We have that for arbitrary element
✓

a b
c d

◆
2 SL2(F3),

✓
a b
c d

◆✓
2 0
0 2

◆
=

✓
2a 2b
2c 2d

◆

✓
2 0
0 2

◆✓
a b
c d

◆
=

✓
2a 2b
2c 2d

◆

Thus A is is a nontrival element of SL2(F3 that commutes with all elements of SL2(F3.

Consider S4. Let � 2 S4 be a permutation not equal to the identity. Then there exists an element
a in the set {1, 2, 3, 4} such that �(a) 6= a. Let b = �(a) and let c be an element in {1, 2, 3, 4}
not equal to a or b. Consider the element �0 = (b c). We have �0 � �(a) = �0(b) = c and
� � �0(a) = �(a) = b. Thus �0 � �(a) 6= � � �0(a) and �0 does not commute with �. Since � is
arbitrary, for any nontrivial element in S4, there exists an element of S4 which does not commute
with that element.

Suppose there exists an isomorphism � : S4 ! SL2(F3). Let � 2 S4 be such that �(�) =✓
2 0
0 2

◆
= A and let �0 be an element of S4 that does not commute with �. Let �(�0) = B.

Then �(�0 � �) = AB = BA = �(� � �0). Since � is injective, this implies that � � �0 = �0 � �,
which is a contradiction.


