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Motivation

Interpolation Problem

Can we build a bounded analytic function on the entire disk from
knowing the values on a discrete set of points in the disk?

Is the function on the disk unique?
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Motivation

Interpolation Problem

Can we build a bounded analytic function on the entire disk from
knowing the values on a discrete set of points in the disk?

Is the function on the disk unique?

Possible Areas for Undergraduate Research

Discrete structures simplify computations such as integration.
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Trees

vu v1

v2

v3v4

v5

A Tree is an acyclic, connected graph.
A tree is said to be homogeneous if
every vertex has the same number of
edges, denoted by d . The number d is
called the degree of the tree.

Vertices u and v are associate, u ∼ v ,
if there is an edge connecting them.

A path is a sequence of vertices
[v1, v2, v3, v4, v5, . . . ] where vi ∼ vi+1

and vi 6= vi+2.

Define dT (u, v) to be the length of
the path connecting u and v . Then
dT is a metric on T .

A tree isomorphism is an isometry
with respect to dT .
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Topological Structure of Trees
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Let ∼= be the equivalence relation
on the set of infinite paths
generated by
[v0, v1, . . . ] ∼= [v1, v2, . . . ].

An end of T is an equivalence class
under ∼=. The set of ends of T is
denoted by Ω.

We can define a topology on Ω for
which it is Hausdorff, compact and
totally disconnected.

If we define T ∗ = T ∪ Ω, then T ∗

is sequentially compact, which
implies T ∗ is compact.
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Algebraic Structure of Trees

Trees as Cayley Graphs
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Let X = {x1, x2} and FX be the free
group with generators X .

FX is made up of “words” comprised of
the letters {x1, x2, x

−1
1 , x−1

2 }. We call e

the empty word.

Since FX is free, then the Cayley Graph is
a rooted tree of degree 4 with root e.

We say that the tree T is generated by
{x1, x2}.

NB! The trees discussed in this talk are of even degree. Trees of odd
degree can be constructed with some technical changes, but all results will
be the same.
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Actions on Trees

Translation to the Root

Let h ∈ FX . We can define the map λh : T → T as follows:

λh(v) = hv .

This map makes sense when we think of the vertices of T as being
elements in FX . The map λh is a left group action of FX on T . The effect
of λh is to translate the vertex h to the root of T
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More Actions on Trees

Rotation about the Root

Consider the tree T generated by {x1, x2}. The set of generators and
inverses is thus {x1, x2, x

−1
1 , x−1

2 }. If we think of this as a cycle

x2

x3 = x−1
1 x1

x4 = x−1
2

then we can define the map ψ(xj) = xj+1. We can extend the map ψ to a
left action on T by defining ψ(xixj) = xi+1xj+1.

The map ψ is called the rotation action about the root.
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Example of Rotation about the Root

Let us consider the tree T generated by {x1, x2} as shown below.
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Then applying ψ to T , we have the following rotated tree
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Hyperbolic Geometry of the Disk

In order to “fit” an infinite tree inside the unit disk, we must use a
geometry other than Euclidean. For this job, the hyperbolic geometry on
the disk is ideal.

0 z3

z1

z2

The hyperbolic metric on the unit
disk is given by

ρ(z1, z2) = 2 tanh−1

∣

∣

∣

∣

z1 − z2

1 − z1z2

∣

∣

∣

∣

ρ(0, z2) = 2 tanh−1 |z2| .

The shortest distance between two
points z1 and z2 is the arc of the
circle passing through z1 and z2

that is orthogonal to the unit circle.
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Embeddings of Trees into the Disk

Let Φ : T → D be a map which sends vertices of T to points in D. This
map is an embedding of T into D if it satisfies the following rules:

The root of T is mapped to 0.

The edges of T are mapped to geodesics in D under the hyperbolic
metric.

Each edge is to have equal (hyperbolic) length, denoted by r .

No infinite paths intersect excepts at the origin in D.
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Let Φ : T → D be a map which sends vertices of T to points in D. This
map is an embedding of T into D if it satisfies the following rules:

The root of T is mapped to 0.

The edges of T are mapped to geodesics in D under the hyperbolic
metric.

Each edge is to have equal (hyperbolic) length, denoted by r .

No infinite paths intersect excepts at the origin in D.

Figures from [2].
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Examples of Non-Optimal Embeddings

An embedding Φ is called optimal if it satisfies the additional rule:

The boundary of the disk must be filled up.

Figure from [2].
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The Optimal Embedding

Theorem ([2] Theorem 3)

Let Φ : T → D be a mapping of T which sends neighbors to points in D

of hyperbolic distance r and r1 = cos
( π

2t

)

. Then

1 If 0 < r < r1, then Φ is not an embedding.

2 If r1 ≤ r < 1, then Φ is an embedding and the set L of limit points of
Φ(T ) is contained in ∂D.

1 If r1 < r < 1, then L is a set of measure 0.

2 If r = r1, then L = ∂D.
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Interpolation Problem

Definition

A sequence {zn} ⊂ D is said to be interpolating if for every bounded
sequence {wn} ⊂ C there exists a function f analytic in D such that
f (zn) = wn.

In particular, if wn = 0 for all n, does there exist a non-zero analytic
function f : D → C such that f (zn) = 0? For this to occur, the Blaschke
condition must hold, that is

∑

n

(1 − |zn|) <∞.

If T is a homogeneous tree optimally embedded in D, and the set of
vertices is thought of as an interpolating sequence, then the only function
for which f is zero on the vertices is the zero function.

Theorem

The restriction function from the set of bounded analytic functions on D

to bounded functions on T is a monomorphism.
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Laplacian Operator on Trees

Definition

If u(x , y) is twice-differentiable on some Ω ⊂ R2, then the Laplacian of u

is

∆u =
∂2u

∂x2
+
∂2u

∂y2
.

The function u is called harmonic if ∆u = 0 on Ω.
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∂2u

∂x2
+
∂2u

∂y2
.

The function u is called harmonic if ∆u = 0 on Ω.

If T is a homogeneous tree of degree d , then a function f : T → C is
called harmonic if for every vertex v ,

f (v) =
1

d

∑

w∼v

f (w).

If we define a Laplacian on T , then it should be 0 on all harmonic
functions on T . To do this, we can define ∆ on T by

∆f (v) =
1

d

∑

w∼v

f (w) − f (v).
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Bloch Functions on Trees

Definition

A function f : T → C is called Bloch if

βf = sup
v∼w

|f (v) − f (w)| <∞.

The quantity βf is called the Bloch constant of f . The set of Bloch
functions on a tree T is denoted by B(T ).
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Bloch Functions on Trees

Definition

A function f : T → C is called Bloch if

βf = sup
v∼w

|f (v) − f (w)| <∞.

The quantity βf is called the Bloch constant of f . The set of Bloch
functions on a tree T is denoted by B(T ).

We can define a norm on B(T ) by

||f || = |f (e)| + βf .

Under this norm, B(T ) is a complex Banach space.

This is analogous to the continuous case on the unit disk.
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Analogies Between B(T ) and B(D)

Let v0 ∈ T be a fixed vertex. Then f : T → C is Bloch if and only if
the family {f ◦ S − f (S(v0)) : S ∈ Aut (T )} is normal.

f : D → C is Bloch if and only if the family
{f ◦ S − f (S(0)) : S ∈ Aut (D)} is normal.
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The little Bloch space B0(T ) is defined to be the set of functions
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{(un, vn)} approaching the boundary ∂T , we have

lim
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∣
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f ∈ B(T ) such that for any sequence of pairs of neighboring vertices
{(un, vn)} approaching the boundary ∂T , we have

lim
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|f (vn) − f (un)| = 0.

f ∈ B0(D) if and only if lim
|z |→1−

(1 − |z |2)
∣

∣f ′(z)
∣

∣ = 0.

B0
∗∗ ∼= B.
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What Have We Learned Today?

1 Complex Analysis is at the center of the mathematical universe.
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What Have We Learned Today?

1 Complex Analysis is at the center of the mathematical universe.

2 If we have a function defined on a tree embedded optimally in the
unit disk, we can interpolate to a unique bounded analytic function
on the entire unit disk.

3 Harmonic Analysis can be performed on discrete structures such as
Trees.

4 Robert can not give a Graduate Seminar talk without discussing the
Bloch Space.
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