On the Spectrum of an Isometric Composition Operator on the Bloch Space in the Polydisk

Robert F. Allen* Flavia Colonna {rallen2,fcolonna}@gmu.edu

Department of Mathematical Sciences George Mason University

> SEAM XXIII March 9, 2007

State of the Union

Research Goals

The goal of our research is to completely classify the symbols φ which induce isometric composition operators C_{φ} on the Bloch space of a bounded symmetric domain D. To this, we also look to classify the spectrum of such isometric composition operators.

Purpose of this Talk

I will discuss our classification of the spectrum of isometric composition operators on the Bloch space of the unit polydisk \mathbb{D}^n . I will also show how this classification implies the complete classification in the case of the unit disk.

- 2 One-Dimensional Case
- 3 Higher Dimensions
- 4 Further Direction / Open Questions

Factual Round-Up

Definition

 σ

Let X be a complex Banach space. A linear operator $T : X \to X$ is called an isometry if ||Tx|| = ||x|| for all $x \in X$.

The spectrum, point spectrum and approximate point spectrum of a bounded linear operator T on X are defined respectively as

$$\sigma(T) = \{\lambda \in \mathbb{C} : T - \lambda I \text{ is not invertible}\},\\ \sigma_p(T) = \{\lambda \in \mathbb{C} : T - \lambda I \text{ is not } 1\text{-}1\},\\ \tau_{ap}(T) = \{\lambda \in \mathbb{C} : T - \lambda I \text{ is } 1\text{-}1 \text{ but not bounded below}\}.$$

Proposition (Conway, 1990)

If T is a bounded linear operator on a complex Banach space X, then $\partial \sigma(T) \subseteq \sigma_{ap}(T)$.

The following is found as an exercise in A Course in Functional Analysis, John Conway, 1990.

Exercise

If X is a Banach space and $T : X \to X$ is an isometry, then either $\sigma(T) \subseteq \partial \mathbb{D}$ or $\sigma(T) = \overline{\mathbb{D}}$.

Sketch of Proof.

$$\sigma(T) \subseteq \overline{\mathbb{D}} \text{ since } ||T|| = 1.$$

Case 1: Suppose T is invertible.

- $0 \notin \sigma(T)$ and $z \mapsto z^{-1}$ is analytic in some $G \subset \sigma(T)$.
- $\sigma(T^{-1}) = \sigma(T)^{-1} = \{\lambda^{-1} \in \mathbb{C} : \lambda \in \sigma(T)\} \subseteq \overline{\mathbb{D}}.$

Case 2: Suppose T is not invertible.

- $0 \in \sigma(T)$.
- Since $\partial \sigma(T) \subseteq \sigma_{ap}(T) \subseteq \partial \mathbb{D}$ it follows that $\sigma(T) = \overline{\mathbb{D}}$.

Complete Classification for the Unit Disk

Theorem (Colonna, 2005)

The symbols φ of the isometric composition operator on the Bloch space of the unit disk are precisely

- functions of the form $\varphi(z) = \lambda z$ for $|\lambda| = 1$, and
- functions of the form $\varphi = gB$ where g is a nonvanishing analytic function from \mathbb{D} into $\overline{\mathbb{D}}$, and B is a Blaschke product whose zero set Z contains 0 and an infinite sequence $\{z_n\}$ such that $|g(z_n)| \to 1$ and

$$\lim_{n\to\infty}\prod_{\zeta\in Z,\zeta\neq z_n}\left|\frac{z_n-\zeta}{1-\overline{z_n}\zeta}\right|=1.$$

As a consequence of the previous Exercise and Theorem, we have a complete classification of the spectrum for the case of the unit disk.

Theorem (A. & Colonna)

Let φ be the symbol of an isometric composition operator on the Bloch space of the unit disk.

- If φ is not a rotation, then $\sigma(C_{\varphi}) = \overline{\mathbb{D}}$.
- If φ is a rotation with rotation angle $\theta \notin \pi \mathbb{Q}$, then $\sigma(C_{\varphi}) = \partial \mathbb{D}$.
- If φ is a rotation with rotation angle $\theta \in \pi \mathbb{Q}$, then $\sigma(C_{\varphi})$ is the set of m^{th} roots of unity, where m is the order of $e^{i\theta}$.

Bloch Space of the Polydisk

As we have seen, the Bloch space for a bounded symmetric domain D is a Banach space defined by

$$\mathcal{B}(D) = \{f \in H(D) : \beta_f < \infty\}$$

where

$$\beta_f = \sup_{z \in D} \sup_{u \in \mathbb{C}^n \setminus \{0\}} \frac{|(\nabla f)(z)u|}{H_z(u,\overline{u})^{1/2}}.$$

If D is taken to be the unit polydisk \mathbb{D}^n , then the Bergman metric becomes

$$H_z(u,\overline{v}) = \sum_{k=1}^n \frac{u_k \overline{v_k}}{(1-|z_k|^2)^2}.$$

Isometric Composition Operators

We have seen in the previous talk that any holomorphic map $\varphi : \mathbb{D}^n \to \mathbb{D}^n$ induces a bounded composition operator C_{φ} on $\mathcal{B}(\mathbb{D}^n)$.

Theorem (Cohen & Colonna)

Let $\varphi(z) = (h_1(z_1), h_2(z_2), \dots, h_n(z_n))$ where $h_j \in H(\mathbb{D}, \mathbb{D})$ such that $h_j(0) = 0$ and $\beta_{h_j} = 1$ for all $j = 1, \dots, n$. Then C_{φ} is an isometry on $\mathcal{B}(\mathbb{D}^n)$.

We will consider the spectrum of the composition operators induced by such symbols.

Symbols with Non-Rotation Component

Let $\varphi = (h_1(z_1), \ldots, h_n(z_n))$ where $h_j \in H(\mathbb{D}, \mathbb{D})$ such that $h_j(0) = 0$ and $\beta_{h_j} = 1$ for all $j = 1, \ldots, n$. Suppose that h_j is not a rotation for some $j = 1, \ldots, n$.

Suppose C_{φ} is surjective and let $1 \leq j \leq n$ be the component defined as $h_j(z_j) = g(z_j)B(z_j)$ with $\{a_k\}_{k \in \mathbb{N}} \subset \mathbb{D}$ the zeros of the Blaschke product B.

Since $\pi_j(z) = z_j$ is Bloch, there exists a Bloch function f such that $f \circ \varphi = \pi_j$. Thus for any $k \in \mathbb{N}$, and $z_j = 0$, for $j \neq k$,

$$a_k = f(\varphi(z_1,\ldots,z_{j-1},a_k,z_j,\ldots,z_n) = f(0).$$

Since the set of such a_k is infinite, we obtain a contradiction. Therefore, C_{φ} is not invertible and $\sigma(C_{\varphi}) = \overline{\mathbb{D}}$.

Symbols with Rotation Components

Recall that the automorphisms of \mathbb{D}^n that fix 0 are of the form $(z_1, \ldots, z_n) \mapsto (\lambda_1 z_{\tau(1)}, \ldots, \lambda_n z_{\tau(n)})$, with $|\lambda_j| = 1, j = 1, \ldots, n$, and $\tau \in S_n$.

Let $\varphi : \mathbb{D}^n \to \mathbb{D}^n$ be defined by $\varphi(z) = (\lambda_1 z_{\tau(1)}, \dots, \lambda_n z_{\tau(n)})$ where $|\lambda_j| = 1$ for $j = 1, \dots, n$ and $\tau \in S_n$.

The induced C_{φ} is invertible. So, $\sigma(C_{\varphi}) \subseteq \partial \mathbb{D}$.

For all $k_1, \ldots, k_n \in \mathbb{Z}_+ \cup \{0\}$, the function $f(z) = z_{\tau(1)}^{k_1} \cdots z_{\tau(n)}^{k_n}$ is Bloch and is an eigenfunction of C_{φ} with eigenvalue $\lambda_1^{k_1} \cdots \lambda_n^{k_n}$.

Consider the group G generated by $\lambda_1, \ldots, \lambda_n$ and the m_{τ}^{th} roots of unity for $m_{\tau} = \operatorname{ord}(\tau)$. Then

 $\overline{G} \subseteq \sigma(C_{\varphi}).$

Exploring the Set G

Case 1: Infinite Order

Suppose $\arg(\lambda_j)$ is not a rational multiple of π for some j = 1, ..., n.

Then G is dense in $\partial \mathbb{D}$. So $\overline{G} = \partial \mathbb{D}$. Thus $\sigma(C_{\varphi}) = \partial \mathbb{D}$.

Case 2: Finite Order

Suppose $\arg(\lambda_j)$ is a rational multiple of π for all j = 1, ..., n. Let $m_1, ..., m_n$ be the orders of $\lambda_1, ..., \lambda_n$ respectively.

The group G has finite order $lcm(m_1, \ldots, m_n, m_\tau)$.

The Spectrum in the Finite Order Case

We now show that for $\mu \in \partial \mathbb{D}$, $C_{\varphi} - \mu I$ is invertible if and only if $\mu \notin G$. The invertibility of $C_{\varphi} - \mu I$ is equivalent to showing that for all $g \in \mathcal{B}(\mathbb{D}^n)$ there exists a unique $f \in \mathcal{B}(\mathbb{D}^n)$ such that $C_{\varphi}(f) - \mu f = g$.

Let $\alpha = \text{lcm}(m_1, \ldots, m_n, m_{\tau})$. So $C_{\varphi} - \mu I$ is invertible if and only if for every $g \in \mathcal{B}(\mathbb{D}^n)$ the following system has a unique solution $f \in \mathcal{B}(\mathbb{D}^n)$:

$$\begin{array}{rcl} f(\varphi(z)) & - & \mu f(z) & = & g(z) \\ f(\varphi^2(z)) & - & \mu f(\varphi(z)) & = & g(\varphi(z)) \\ & \vdots & & \vdots \\ f(z) & - & \mu f(\varphi^{\alpha-1}(z)) & = & g(\varphi^{\alpha-1}(z)). \end{array}$$

So, the system of equations has a unique solution if and only if the matrix A in the following system is non-singular:

$$\begin{bmatrix} -\mu & 1 & 0 & 0 & \cdots & 0 \\ 0 & -\mu & 1 & 0 & \cdots & 0 \\ \vdots & & \ddots & \ddots & \vdots \\ \vdots & & & \ddots & \ddots & \vdots \\ 0 & & & \ddots & 1 \\ 1 & 0 & \cdots & \cdots & -\mu \end{bmatrix} \begin{bmatrix} f(z) \\ f(\varphi(z)) \\ \vdots \\ f(\varphi^{\alpha-2}(z)) \\ f(\varphi^{\alpha-1}(z)) \end{bmatrix} = \begin{bmatrix} g(z) \\ g(\varphi(z)) \\ \vdots \\ \vdots \\ g(\varphi^{\alpha-2}(z)) \\ g(\varphi^{\alpha-1}(z)) \end{bmatrix}$$

The determinant of A is easily calculated as $|A| = (-1)^{\alpha}(\mu^{\alpha} - 1)$. Thus the solution exists and is unique if and only if $\mu^{\alpha} \neq 1$, i.e. $\mu \notin G$.

Thus, for every $g \in \mathcal{B}(\mathbb{D}^n)$, the unique solution $f(z) = \sum_{j=1}^{\alpha} a_j g(\varphi^{j-1}(z))$, such that $C_{\varphi}(f) - \mu f = g$, is Bloch since each $g \circ \varphi^k$ is Bloch.

Classification of Isometric Composition Operators

Our current classification can be summarized as follows:

Proposition (A. & Colonna)

Let $\varphi(z) = (h_1(z_1), \ldots, h_n(z_n))$ be a holomorphic map such that $h_j(0) = 0$ and $\beta_{h_j} = 1$ for all $j = 1, \ldots, n$, and C_{φ} be the induced composition operator on $\mathbb{B}(\mathbb{D}^n)$.

- If h_j is not a rotation of the identity for some j = 1,..., n, then σ(C_φ) = D.
- If h_j(z_j) = λ_jz_{τ(j)} for all j = 1,..., n and some τ ∈ S_n such that λ_k has infinite order for some k = 1,..., n, then σ(C_φ) = ∂D.
- If $h_j(z_j) = \lambda_j z_{\tau(j)}$ for all j = 1, ..., n and some $\tau \in S_n$ such that λ_k has finite order for all k = 1, ..., n, then $\sigma(C_{\varphi})$ is the finite group generated by $\{\lambda_1, ..., \lambda_n, \zeta\}$ where ζ is a primitive m_{τ}^{th} root of unity, $m_{\tau} = \operatorname{ord}(\tau)$.

Preliminaries

Further Direction and Open Questions

- Are there other holomorphic maps φ which induce an isometric composition operator on the Bloch space of the polydisk besides the ones whose components are defined in terms of isometries on D?
- It can be easily shown that if C_{\varphi} is an isometry and \varphi is not 1-1, then 0 ∈ \sigma(C_{\varphi}), so that \sigma(C_{\varphi}) = \overline{\mathbb{D}}. Are there any isometric composition operators whose symbols are not onto?

A negative answer to this question would give us a complete classification of the spectrum.

- When a composition operator on the Bloch space is invertible, is the inverse a composition operator?
- What is the classification of the spectrum on B(B_n) for n > 1? on a general bounded symmetric domain?

References

- R. Allen & F. Colonna, On the Isometric Composition Operators on the Bloch Space of a Bounded Symmetric Domain, in preparation.
- J. Cohen & F. Colonna, *Isometric Composition Operators on the Bloch Space in the Polydisk*, preprint, 2007.
- F. Colonna, Characterisation of the Isometric Composition Operators on the Bloch Space, Bull. Austral. Math. Soc., 72(2005), 283-290.
- J. Conway, *A Course in Functional Analysis*, Springer-Verlag, 1990.
- C. Cowen & B. Maccluer, Composition Operators on Spaces of Analytic Functions, CRC-Press, 1995.
- R. Timoney, Bloch Functions in Several Complex Variables, I, Bull. London Math. Soc., 12(1980), 241-267.