Weighted Composition Operators on the Bloch Space on a Bounded Homogeneous Domain

Robert F. Allen* Flavia Colonna {rallen2, fcolonna}@gmu.edu

Department of Mathematical Sciences George Mason University

> IWOTA XIX July 25, 2008

Motivation

In their 2004 paper, Ohno & Zhao characterized the bounded and compact weighted composition operators

$$\mathcal{W}_{\psi,arphi}(f)=\psi(f\circarphi)$$

on the Bloch space and little Bloch space of the unit disk $\mathbb{D}.$

Theorem (Ohno & Zhao, 2004)

Let $\psi \in H(\mathbb{D}, \mathbb{C})$ and $\varphi \in H(\mathbb{D}, \mathbb{D})$. Then $W_{\psi,\varphi}$ is bounded on the Bloch space $\mathcal{B}(\mathbb{D})$ if and only if the following are satisfied:

(i)
$$\sup_{z\in\mathbb{D}} (1-|z|^2) \left|\psi'(z)\right| \log\left(\frac{2}{1-|\varphi(z)|^2}\right) <\infty;$$

(ii)
$$\sup_{z\in\mathbb{D}}\; rac{1-|z|^2}{1-|arphi(z)|^2} \left|\psi(z)\varphi'(z)\right| <\infty.$$

We are investigating multiplication, composition and weighted composition operators on the Bloch space on a class of domains in \mathbb{C}^n which include \mathbb{B}_n and \mathbb{D}^n .

In particular, we are trying to answer the fundamental questions:

- What symbols induce bounded operators?
- What are estimates on the norm of the bounded operators?
- What symbols induce compact operators?
- What symbols induce isometric operators?
- What are the spectra of the bounded operators?

$$egin{aligned} & M_\psi(f) = \psi f, \ & C_arphi(f) = f \circ arphi. \end{aligned}$$

$$egin{aligned} & \mathcal{M}_\psi(f) = \psi f, \ & \mathcal{C}_arphi(f) = f \circ arphi. \end{aligned}$$

 A domain D ⊆ Cⁿ is called homogeneous if Aut (D) acts transitively on D.

$$egin{aligned} &\mathcal{M}_\psi(f)=\psi f,\ &\mathcal{C}_arphi(f)=f\circarphi \end{aligned}$$

- A domain D ⊆ Cⁿ is called homogeneous if Aut (D) acts transitively on D.
- A domain D ⊆ Cⁿ is called symmetric if for every z₀ ∈ D, there exists an involution φ ∈ Aut (D) for which z₀ is an isolated fixed point.

$$egin{aligned} &\mathcal{M}_\psi(f)=\psi f,\ &\mathcal{C}_arphi(f)=f\circarphi \end{aligned}$$

- A domain D ⊆ Cⁿ is called homogeneous if Aut (D) acts transitively on D.
- A domain D ⊆ Cⁿ is called symmetric if for every z₀ ∈ D, there exists an involution φ ∈ Aut (D) for which z₀ is an isolated fixed point.
- Each bounded homogeneous domain has a canonical Möbius invariant metric, the Bergman metric, denoted by H_z(·, ·).

• The Bloch space on a bounded homogeneous domain D is defined as

$$\mathcal{B}(D) = \left\{ f \in H(D,\mathbb{C}) : \sup_{z \in D} Q_f(z) < \infty \right\},$$

where

$$Q_f(z) = \sup_{u \in \mathbb{C}^n \setminus \{0\}} \; rac{|(
abla f)(z) \cdot u|}{H_z(u, \overline{u})^{1/2}}.$$

• The Bloch space on a bounded homogeneous domain D is defined as

$$\mathfrak{B}(D) = \left\{ f \in H(D,\mathbb{C}) : \sup_{z \in D} Q_f(z) < \infty \right\},$$

where

$$Q_f(z) = \sup_{u \in \mathbb{C}^n \setminus \{0\}} \frac{|(\nabla f)(z) \cdot u|}{H_z(u, \overline{u})^{1/2}}.$$

• For a bounded symmetric domain D, the closure of the polynomials in $\mathcal{B}(D)$ is a subspace called the little Bloch space, denoted by $\mathcal{B}_0(D)$.

• The Bloch space on a bounded homogeneous domain D is defined as

$$\mathfrak{B}(D) = \left\{ f \in H(D,\mathbb{C}) : \sup_{z \in D} Q_f(z) < \infty \right\},$$

where

$$Q_f(z) = \sup_{u \in \mathbb{C}^n \setminus \{0\}} \frac{|(\nabla f)(z) \cdot u|}{H_z(u, \overline{u})^{1/2}}.$$

- For a bounded symmetric domain D, the closure of the polynomials in $\mathcal{B}(D)$ is a subspace called the little Bloch space, denoted by $\mathcal{B}_0(D)$.
- The normalized unit ball of $\mathcal{B}(D)$ (or $\mathcal{B}_0(D)$) is defined as

$$\mathcal{B}_1(D) = \left\{ f \in \mathcal{B}(\text{or } \mathcal{B}_0) : f(0) = 0 \text{ and } ||f||_{\mathcal{B}} \leq 1 \right\}.$$

What is known about the multiplication operator on the Bloch space?

- 1. Characterization of bounded multiplication operators on the Bloch space of $\mathbb{D}.$
- 2. Characterization of bounded multiplication operators on the Bloch space of \mathbb{B}_n under an equivalent norm.
- 3. Characterization of compact multiplication operators on the Bloch space of $\mathbb{D}.$

What is known about the multiplication operator on the Bloch space?

- 1. Characterization of bounded multiplication operators on the Bloch space of $\mathbb{D}.$
- 2. Characterization of bounded multiplication operators on the Bloch space of \mathbb{B}_n under an equivalent norm.
- 3. Characterization of compact multiplication operators on the Bloch space of $\mathbb{D}.$

Theorem (Brown & Shields, 1990)

If $\psi \in H(\mathbb{D},\mathbb{C})$, then the following are equivalent:

- M_{ψ} is bounded on $\mathcal{B}(\mathbb{D})$;
- 2 M_{ψ} is bounded on $\mathcal{B}_0(\mathbb{D})$;
- (3) $\psi \in H^{\infty}(\mathbb{D})$ and

$$\left|\psi'(z)
ight|\leq O\left(rac{1}{(1-|z|)\lograc{1}{1-|z|}}
ight)$$

What is known about the multiplication operator on the Bloch space?

- 1. Characterization of bounded multiplication operators on the Bloch space of \mathbb{D} .
- 2. Characterization of bounded multiplication operators on the Bloch space of \mathbb{B}_n under an equivalent norm.
- 3. Characterization of compact multiplication operators on the Bloch space of $\mathbb{D}.$

Theorem (Zhu, 2004)

- If $\psi \in H(\mathbb{B}_n, \mathbb{C})$, then the following are equivalent:
 - M_{ψ} is bounded on $\mathcal{B}(\mathbb{B}_n)$.
 - **2** M_{ψ} is bounded on $\mathcal{B}_0(\mathbb{B}_n)$.
 - 3 $\psi \in H^{\infty}(\mathbb{B}_n)$ and

$$(1-|z|)^2 \left|
abla \psi(z)
ight| \log rac{1}{1-|z|^2} < \infty.$$

What is known about the multiplication operator on the Bloch space?

- 1. Characterization of bounded multiplication operators on the Bloch space of \mathbb{D} .
- 2. Characterization of bounded multiplication operators on the Bloch space of \mathbb{B}_n under an equivalent norm.
- 3. Characterization of compact multiplication operators on the Bloch space of $\mathbb{D}.$

Theorem (Ohno & Zhao, 2004)

If $\psi \in H(\mathbb{D},\mathbb{C})$, then the following are equivalent:

• M_{ψ} is a compact operator on $\mathcal{B}(\mathbb{D})$.

2
$$M_{\psi}$$
 is a compact operator on $\mathbb{B}_0(\mathbb{D})$.

$$0 \psi = 0.$$

Definition

Let D be a bounded homogeneous domain in \mathbb{C}^n . For $z \in D$, define

$$egin{aligned} &\omega(z) = \sup_{f\in \mathcal{B}_1} \left| f(z)
ight|, \ &\sigma_\psi = \sup_{z\in D} \left| \omega(z) Q_\psi(z)
ight|. \end{aligned}$$

Definition

Let D be a bounded homogeneous domain in \mathbb{C}^n . For $z \in D$, define

$$egin{aligned} &\omega(z) = \sup_{f\in \mathcal{B}_1} \left| f(z)
ight|, \ &\sigma_\psi = \sup_{z\in D} \left| \omega(z) Q_\psi(z)
ight|. \end{aligned}$$

Facts.

• $\omega(z) \le \rho(0, z)$ for all $z \in D$ where ρ is the Bergman distance function.

Definition

Let D be a bounded homogeneous domain in \mathbb{C}^n . For $z \in D$, define

$$egin{aligned} &\omega(z) = \sup_{f\in \mathcal{B}_1} \left| f(z)
ight|, \ &\sigma_\psi = \sup_{z\in D} \left| \omega(z) \mathcal{Q}_\psi(z)
ight|. \end{aligned}$$

Facts.

• $\omega(z) \le \rho(0, z)$ for all $z \in D$ where ρ is the Bergman distance function.

• $\omega(z) = \sup_{f \in \mathcal{E}} |f(z)|$ where \mathcal{E} is the set of extreme points of $\mathcal{B}_1(D)$.

Definition

Let D be a bounded homogeneous domain in \mathbb{C}^n . For $z \in D$, define

$$egin{aligned} &\omega(z) = \sup_{f\in \mathcal{B}_1} \left| f(z)
ight|, \ &\sigma_\psi = \sup_{z\in D} \left| \omega(z) \mathcal{Q}_\psi(z)
ight|. \end{aligned}$$

Facts.

- $\omega(z) \le \rho(0, z)$ for all $z \in D$ where ρ is the Bergman distance function.
- $\omega(z) = \sup_{f \in \mathcal{E}} |f(z)|$ where \mathcal{E} is the set of extreme points of $\mathcal{B}_1(D)$.
- If $D = \mathbb{B}_n$, then $\omega(z) = \rho(0, z) = \frac{1}{2} \log \frac{1 + ||z||}{1 ||z||}$ for all $z \in \mathbb{B}_n$.

Results for Multiplication Operators on Bounded Homogeneous Domains

- If D is a bounded homogeneous domain in \mathbb{C}^n and $\psi \in H(D,\mathbb{C})$, then
 - M_{ψ} is bounded on $\mathcal{B}(D)$ if and only if $\psi \in H^{\infty}(D)$ and $\sigma_{\psi} < \infty$.
 - $@ \ \max\{ ||\psi||_{\mathcal{B}}, ||\psi||_{\infty}\} \leq ||\mathcal{M}_{\psi}|| \leq \max\{ ||\psi||_{\mathcal{B}}, ||\psi||_{\infty} + \sigma_{\psi} \}.$

Results for Multiplication Operators on Bounded Homogeneous Domains

- If D is a bounded homogeneous domain in \mathbb{C}^n and $\psi \in H(D,\mathbb{C})$, then
 - M_{ψ} is bounded on $\mathcal{B}(D)$ if and only if $\psi \in H^{\infty}(D)$ and $\sigma_{\psi} < \infty$.
 - $\label{eq:max} \textup{@} \ \max\{||\psi||_{\mathcal{B}}, ||\psi||_{\infty}\} \leq ||\textit{M}_{\psi}|| \leq \max\{||\psi||_{\mathcal{B}}, ||\psi||_{\infty} + \sigma_{\psi}\}.$

- If D is a bounded symmetric domain in \mathbb{C}^n and $\psi \in H(D,\mathbb{C})$, then
 - M_{ψ} is bounded on $\mathcal{B}_0(D)$ if and only if $\psi \in H^{\infty}(D)$ and $\sigma_{\psi} < \infty$.
 - M_{\u03c0} is an isometry on B(D) if and only if \u03c0 is a constant function of modulus 1.

Composition Operators on Bounded Homogeneous Domains

Definition

For $z \in D$, $\varphi \in H(D, D)$, and $J\varphi$ the Jacobian matrix of φ ,

$$B_{\varphi}(z) = \sup_{u \in \mathbb{C}^n \setminus \{0\}} \frac{H_{\varphi(z)} \left(J\varphi(z)u, \overline{J\varphi(z)u} \right)^{1/2}}{H_z(u, \overline{u})^{1/2}},$$

$$B_{\varphi} = \sup_{z \in D} B_{\varphi}(z).$$

Composition Operators on Bounded Homogeneous Domains

Definition

For $z \in D$, $\varphi \in H(D, D)$, and $J\varphi$ the Jacobian matrix of φ ,

$$B_{\varphi}(z) = \sup_{u \in \mathbb{C}^n \setminus \{0\}} \frac{H_{\varphi(z)} \left(J\varphi(z)u, \overline{J\varphi(z)u} \right)^{1/2}}{H_z(u, \overline{u})^{1/2}},$$

$$B_{\varphi} = \sup_{z \in D} B_{\varphi}(z).$$

Theorem

If D is a bounded homogeneous domain in \mathbb{C}^n and $\varphi \in H(D, D)$, then C_{φ} is bounded on $\mathbb{B}(D)$ and

$$\max\{1,\omega(arphi(\mathsf{0}))\} \leq ||\mathcal{C}_arphi|| \leq \max\{1,\omega(arphi(\mathsf{0}))+\mathcal{B}_arphi\}.$$

Weighted Composition Operators on Bounded Homogeneous Domains

As was the case on the unit disk, we wish to characterize the bounded weighted composition operators on the Bloch space of a bounded homogeneous domain in terms of the following two quantities:

$$\sigma_{\psi, \varphi} = \sup_{z \in D} \omega(\varphi(z)) Q_{\psi}(z)$$

 $au_{\psi, \varphi} = \sup_{z \in D} |\psi(z)| B_{\varphi}(z).$

Weighted Composition Operators on Bounded Homogeneous Domains

As was the case on the unit disk, we wish to characterize the bounded weighted composition operators on the Bloch space of a bounded homogeneous domain in terms of the following two quantities:

$$\sigma_{\psi,\varphi} = \sup_{z \in D} \omega(\varphi(z))Q_{\psi}(z)$$

$$\tau_{\psi,\varphi} = \sup_{z \in D} |\psi(z)| B_{\varphi}(z).$$

Conjecture

Let D be a bounded homogeneous domain. If $\psi \in H(D, \mathbb{C})$ and $\varphi \in H(D, D)$, then $W_{\psi,\varphi}$ is bounded on $\mathcal{B}(D)$ if and only if $\psi \in \mathcal{B}(D)$ and both $\sigma_{\psi,\varphi}$ and $\tau_{\psi,\varphi}$ are finite.

Let D be a bounded homogeneous domain, $\psi \in H(D, \mathbb{C})$ and $\varphi \in H(D, D)$. If $\psi \in \mathcal{B}(D)$ and both $\sigma_{\psi,\varphi}$ and $\tau_{\psi,\varphi}$ are finite, then $W_{\psi,\varphi}$ is bounded on $\mathcal{B}(D)$.

Let D be a bounded homogeneous domain, $\psi \in H(D, \mathbb{C})$ and $\varphi \in H(D, D)$. If $\psi \in \mathcal{B}(D)$ and both $\sigma_{\psi,\varphi}$ and $\tau_{\psi,\varphi}$ are finite, then $W_{\psi,\varphi}$ is bounded on $\mathcal{B}(D)$.

Theorem

Let D be a bounded homogeneous domain, $\psi \in H(D, \mathbb{C})$ and $\varphi \in H(D, D)$. If $W_{\psi,\varphi}$ is bounded on $\mathcal{B}(D)$, then $\psi \in \mathcal{B}(D)$ and $\sigma_{\psi,\varphi}$ is finite if and only if $\tau_{\psi,\varphi}$ is finite.

Let D be a bounded homogeneous domain, $\psi \in H(D, \mathbb{C})$ and $\varphi \in H(D, D)$. If $\psi \in \mathcal{B}(D)$ and both $\sigma_{\psi,\varphi}$ and $\tau_{\psi,\varphi}$ are finite, then $W_{\psi,\varphi}$ is bounded on $\mathcal{B}(D)$.

Theorem

Let D be a bounded homogeneous domain, $\psi \in H(D, \mathbb{C})$ and $\varphi \in H(D, D)$. If $W_{\psi,\varphi}$ is bounded on $\mathcal{B}(D)$, then $\psi \in \mathcal{B}(D)$ and $\sigma_{\psi,\varphi}$ is finite if and only if $\tau_{\psi,\varphi}$ is finite.

We feel that more investigation into the quantities $\omega(z)$ and/or $B_{\varphi}(z)$ will allow for the conjecture to be proved.

Weighted Composition Operators on \mathbb{B}_n

Theorem

If $\psi \in H(\mathbb{B}_n, \mathbb{C})$ and $\varphi \in H(\mathbb{B}_n, \mathbb{B}_n)$, then $W_{\psi,\varphi}$ is bounded on $\mathcal{B}(\mathbb{B}_n)$ if and only if $\psi \in \mathcal{B}(\mathbb{B}_n)$ and both $\sigma_{\psi,\varphi}$ and $\tau_{\psi,\varphi}$ are finite.

If $\psi \in H(\mathbb{B}_n, \mathbb{C})$ and $\varphi \in H(\mathbb{B}_n, \mathbb{B}_n)$, then $W_{\psi,\varphi}$ is bounded on $\mathcal{B}(\mathbb{B}_n)$ if and only if $\psi \in \mathcal{B}(\mathbb{B}_n)$ and both $\sigma_{\psi,\varphi}$ and $\tau_{\psi,\varphi}$ are finite.

Theorem

If $\psi \in H(\mathbb{B}_n, \mathbb{C})$ and $\varphi \in H(\mathbb{B}_n, \mathbb{B}_n)$, then $W_{\psi,\varphi}$ is bounded on $\mathbb{B}_0(\mathbb{B}_n)$ if and only if the following conditions are satisfied:

•
$$\psi \in \mathcal{B}_0(\mathbb{B}_n);$$

2)
$$\sigma_{\psi,arphi}$$
 and $au_{\psi,arphi}$ are finite;

If $\psi \in H(\mathbb{B}_n, \mathbb{C})$ and $\varphi \in H(\mathbb{B}_n, \mathbb{B}_n)$, then $W_{\psi,\varphi}$ is bounded on $\mathcal{B}(\mathbb{B}_n)$ if and only if $\psi \in \mathcal{B}(\mathbb{B}_n)$ and both $\sigma_{\psi,\varphi}$ and $\tau_{\psi,\varphi}$ are finite.

Theorem

If $\psi \in H(\mathbb{B}_n, \mathbb{C})$ and $\varphi \in H(\mathbb{B}_n, \mathbb{B}_n)$, then $W_{\psi,\varphi}$ is bounded on $\mathbb{B}_0(\mathbb{B}_n)$ if and only if the following conditions are satisfied:

•
$$\psi \in \mathcal{B}_0(\mathbb{B}_n);$$

2
$$\sigma_{\psi, arphi}$$
 and $au_{\psi, arphi}$ are finite;

For n = 1, this was obtained by Ohno & Zhao.

Robert F. Allen (GMU

Weighted Composition Operators on $\mathfrak{B}(D)$

Let D be a bounded homogeneous domain in \mathbb{C}^n . If $\psi \in \mathcal{B}(D)$, $\varphi \in H(D, D)$, and both $\sigma_{\psi,\varphi}$ and $\tau_{\psi,\varphi}$ are finite, then $||W_{\psi,\varphi}||$ is

- bounded above by max { $||\psi||_{\mathcal{B}}, |\psi(0)| \omega(\varphi(0)) + \sigma_{\psi,\varphi} + \tau_{\psi,\varphi}$ };
- Solution below by $\max\{||\psi||_{\mathcal{B}}, |\psi(0)|\omega(\varphi(0))\}.$

Let D be a bounded homogeneous domain in \mathbb{C}^n . If $\psi \in \mathcal{B}(D)$, $\varphi \in H(D, D)$, and both $\sigma_{\psi,\varphi}$ and $\tau_{\psi,\varphi}$ are finite, then $||W_{\psi,\varphi}||$ is

- bounded above by max { $||\psi||_{\mathcal{B}}, |\psi(0)| \omega(\varphi(0)) + \sigma_{\psi,\varphi} + \tau_{\psi,\varphi}$ };
- Solution below by $\max\{||\psi||_{\mathcal{B}}, |\psi(0)|\omega(\varphi(0))\}.$

Conjecture

Let D be a bounded homogeneous domain in \mathbb{C}^n . If $W_{\psi,\varphi}$ is bounded on $\mathcal{B}(D)$, then $||W_{\psi,\varphi}||$ is

- bounded above by $\max \{ ||\psi||_{\mathcal{B}}, |\psi(0)| \omega(\varphi(0)) + \sigma_{\psi,\varphi} + \tau_{\psi,\varphi} \};$
- Solution below by $\max \{ ||\psi||_{\mathcal{B}}, |\psi(0)|\omega(\varphi(0)) \}.$

Let D be a bounded homogeneous domain in \mathbb{C}^n . If $\psi \in \mathcal{B}(D)$, $\varphi \in H(D, D)$, and both $\sigma_{\psi,\varphi}$ and $\tau_{\psi,\varphi}$ are finite, then $||W_{\psi,\varphi}||$ is

- bounded above by max { $||\psi||_{\mathcal{B}}, |\psi(0)| \omega(\varphi(0)) + \sigma_{\psi,\varphi} + \tau_{\psi,\varphi}$ };
- Solution below by $\max\{||\psi||_{\mathcal{B}}, |\psi(0)|\omega(\varphi(0))\}.$

Conjecture

Let D be a bounded homogeneous domain in \mathbb{C}^n . If $W_{\psi,\varphi}$ is bounded on $\mathcal{B}(D)$, then $||W_{\psi,\varphi}||$ is

- bounded above by $\max \{ ||\psi||_{\mathcal{B}}, |\psi(0)| \omega(\varphi(0)) + \sigma_{\psi,\varphi} + \tau_{\psi,\varphi} \};$
- Solution below by $\max\{||\psi||_{\mathcal{B}}, |\psi(0)|\omega(\varphi(0))\}.$

This conjecture is true for $D = \mathbb{B}_n$.

• Characterize compact weighted composition operators on $\mathcal{B}(\mathbb{B}_n)$.

- Characterize compact weighted composition operators on $\mathcal{B}(\mathbb{B}_n)$.
- Characterize isometric weighted composition operators on $\mathcal{B}(\mathbb{B}_n)$.

- Characterize compact weighted composition operators on $\mathcal{B}(\mathbb{B}_n)$.
- Characterize isometric weighted composition operators on $\mathcal{B}(\mathbb{B}_n)$.
- Establish spectrum of weighted composition operators on $\mathcal{B}(\mathbb{B}_n)$.

- Characterize compact weighted composition operators on $\mathcal{B}(\mathbb{B}_n)$.
- Characterize isometric weighted composition operators on $\mathcal{B}(\mathbb{B}_n)$.
- Establish spectrum of weighted composition operators on $\mathcal{B}(\mathbb{B}_n)$.
- Investigate the quantities $\omega(z)$ and $B_{\varphi}(z)$ on bounded homogeneous domains.

- Characterize compact weighted composition operators on $\mathcal{B}(\mathbb{B}_n)$.
- Characterize isometric weighted composition operators on $\mathcal{B}(\mathbb{B}_n)$.
- Establish spectrum of weighted composition operators on $\mathcal{B}(\mathbb{B}_n)$.
- Investigate the quantities $\omega(z)$ and $B_{\varphi}(z)$ on bounded homogeneous domains.
- Prove boundedness conjecture for $D = \mathbb{D}^n$.

References

- R. Allen & F. Colonna, *On the Isometric Composition Operators on the Bloch Space in* ℂⁿ, in submission.
- R. Allen & F. Colonna, Characterization of Isometries and Spectra of Multiplication Operators on the Bloch Space, in submission.
- L. Brown & A. L. Shields, *Multipliers and Cyclic Vectors in the Bloch Space*, Michigan Math. J. **38**, 1991.
- S. Ohno & R. Zhao, *Weighted Composition Operators on the Bloch Space*, Bull. Austral. Math. Soc **63**, 2001.
- R. Timoney, Bloch Functions in Several Complex Variables, I, Bull. London Math. Soc 12, 1980.
 - K. Zhu, *Spaces of Holomorphic Functions in the Unit Ball*, Springer-Verlag, 2004.