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Introduction

The analysis of mathematical models for physical phenomena is part of the sub-
ject matter of mathematical physics. In all cases the mathematical problems which
arise lead to more general mathematical questions not associated with any par-
ticular model. Although these general questions are sometimes problems in pure
mathematics, they are usually classified as mathematical physics since they arise
from problems in physics.

Mathematical physics has traditionally been concerned with the mathematics
of classical physics, mechanics, fluid dynamics, acoustics, potential theory and
optics. The main mathematical tool for the study of these branches of physics
is the theory of ordinary and partial differential equations and related areas like
integral equations and the calculus of variations.

But in the theory of partial differential equations, an important problem is
the question concerning the existence of solutions when the values on the boundary
of the region are prescribed. “Has not every variational problem a solution, pro-
vided certain assumptions regarding given boundary conditions are satisfied and
provided also, if need be, that the notion of solution shall be suitably extended”?
These are the words of Hilbert used to conclude his question concerning the twen-
tieth problem stated in an address delivered before the International Congress of
Mathematicians in 1900.

Although there are still many open questions related to these problems of
Hilbert, a great deal of progress has been made, with some dazzling success.

One of the components necessary to establish regularity of certain variational
problems was the need to show that a weak solution of a linear (or nonlinear)
equation in divergence form is regular in some sense.

Potential theory, which grew out of the theory of the electrostatic or gravi-
tational potential, the Laplace equation, the Dirichlet problem, ..., played a fun-
damental role in the development of functional analysis and the theory of Hilbert
space. The connection between potential theory and the theory of Hilbert spaces
can be traced back to Gauss, who proved the existence of equilibrium potentials
by minimizing a quadratic integral, the energy. According to the classical Dirichlet
principle, one obtains the solution of Dirichlet’s problem for the Laplace equation
in a region by minimizing the Dirichlet integral, [, [Vu(z)|* dz, over a certain
class of functions taking given values on the boundary 0f). The natural explana-
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tion is that solutions of Laplace equation describe an equilibrium state, a state
attained when the energy carried by the system is at a minimum.

It turns out that potential theory is the main tool for the study of regularity
of weak solutions of linear (or nonlinear) equations in divergence form. For ex-
ample, the inspired result by Wiener characterizes continuity at the boundary for
harmonic functions. Serrin discovered that capacity was the appropriate measure-
ment for describing removable sets for weak solutions. Later, Maz’ya discovered
a Wiener-type expression involving capacity which provided a sufficient condition
for continuity at the boundary of weak solutions of equations whose structure is
similar to that of the p-Laplacian.

In particular, potential theory for Dirichlet forms, mainly due to Beurling
and Deny, has many probabilistic interpretations and is also connected with the
classical potential theroy based on Riesz kernels and logarithmic kernels, see [2],
[55] or [73]. This theory of Dirichlet forms is an axiomatic extension of the classical
Dirichlet integrals, see for example [2], [55], [69] or [84].

We will be concerned with Dirichlet forms associated with some realizations
of the Laplacian on L?(2) where Q is a region in RY. It turns out that Sobolev
spaces which have very interesting mathematical structures in their own right,
will play an important role here. The associated realizations of the Laplacian have
some properties which are consequences of the structure of Sobolev spaces which
themselves are related to the structure of the geometry of 2.

Since open subsets of RY may have a strange geometry, the method of
quadratic forms is the main tool to define realizations of the Laplacian with vari-
ous boundary conditions. For an arbitrary open set there is no problem to define
in the weak sense the Dirichlet Laplacian Ap and the Neumann Laplacian Ay on
L?(Q) and it is well-known that these operators generate holomorphic contractive
Cy-semigroups which interpolate on LP(Q) for 1 < p < oo (see [8], [16] or [39]).

Before 1998, the third type of boundary conditions called Robin boundary
conditions has been considered only in the case of regular open sets (for example
Lipschitz domains), see [16], [38] or [59]. The difficulty is to find an appropriate
measure on the boundary and the fact that there may exist functions in the first
order Sobolev space H'(£2) which have no trace in some appropriate Hilbert space
if 2 is “bad”.

Daners [34] found a way to give a weak formulation of Robin boundary con-
ditions on arbitrary bounded domains. First, he chose as measure the (N — 1)-
dimensional Hausdorff measure restricted to €2 which seemed to be the natural
candidate since this measure coincides with the usual Lebesgue surface measure if
Q has a Lipschitz boundary. After the choice of the measure, he proved that there
exists a natural subset S of 02 where Robin boundary conditions are realized and
one has Dirichlet boundary conditions on 90\ S. He conjectured that S is always
equal to 99 if 9N has finite (N — 1)-dimensional Hausdorff measure.

In this thesis we will be concerned with Robin boundary conditions, not only
on bounded domains, but on arbitrary open sets.



INTRODUCTION 9

The first part of this thesis is organized as follows.

In Chapter 2, we will introduce a new notion of capacity called relative ca-
pacity (relative to Q) and study the relationship between this relative capacity
and the well-known classical capacity considered by many authors (see [2], [15],
[19] [23], [43], [65] or [73]). It will be of particular interest to compare the relative
capacity and the s-dimensional Hausdorff measure for N — 1 < s < N. It is well-
konwn (see [2], [19] or [43]) that sets of zero capacity have also zero s-dimensional
Hausdorff measure. We will show by several examples that this statement is not
true for the relative capacity.

In Chapter 3 we will consider the bilinear symmetric form on L?({2) defined
by

a,(u,v) = [ VuVu dzx +/ uv dp
Q lo)

with domain
D(a,) ={ue€ H(Q)NC.(Q) : / lu|? dp < oo}
o

where p is a Borel measure on 9. If the form a, is closable then we can asso-
ciate with its closure a selfadjoint realization A, of the Laplacian on L?*(Q). The
operator A, is called the Laplacian with general Robin boundary conditions.

Therefore it is important to know when a,, is closable. This is similar to the
study of an abstract perturbation of Dirichlet forms by measures considered by
Fukushima, Oshima and Takeda in [55], Ma and Rockner in [69] or Stollmann and
Voigt in [89]. It turns out that a,, is closable if and only if ;# does not charge Borel
subsets of zero relative capacity of the part on which it is locally finite.

If a,, is not closable, the remarkable result of Reed and Simon [84] shows that
there exists a largest closable part smaller than a,, in some sense. Using the relative
capacity approach we will show that this largest closable part is in fact a,, where
1 18 the restriction of p to some maximal Borel subset S of 0€2. The selfadjoint
operator A, on L?*(Q) associated with the closure of this closable part satisfies
general Robin boundary conditions on S and Dirichlet boundary conditions on
o0\ S.

In both cases, A, generates a holomorphic submarkovian Cy-semigroup on
L?(Q)) which is sandwiched between the Dirichlet Laplacian and the Neumann
Laplacian semigroups. Conversely, we will also show that under a locality and a
regurality assumption, each sandwiched semigroup is given by a measure on 0f)
which does not charge Borel subsets of zero relative capacity of the part on which
it is locally finite.

Chapter 4 will concern to the study of the Laplacian with classical Robin
boundary conditions and of some properties of the Neumann Laplacian. The clas-
sical Robin boundary condition corresponds to the case where p = o is the re-
striction to 9 of the (N — 1)-dimensional Hausdorff measure or more generally
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1 absolutely continuous with respect to o. For simplicity we will consider only
the case y = 0. We will show by examples that Daners’ conjecture mentioned
above is not true. This follows by the geometry of Q. If Q has a very bad bound-
ary it can happen that o charges subsets of 02 of zero relative capacity. We
will illustrate this situation by several examples. Maz’ya [73] shows that for an
arbitary open set in R the space W3 ,(€,09) is continuously embedded into
L?N/N=1(Q). The non-closability of a, implies in particular that the continuous
embedding of Wy »(€2, 02) into L*N/N=1(Q) is not always injective. However, the
Laplacian with classical Robin boundary conditions has some interesting proper-
ties (p-independence of the spectrum, Gaussian estimates with modified exponent
of the associated semigroup, compactness of the resolvent on LP(Q), 1 < p < o0
if 2 has finite measure) which are direct consequences of the remarkable Maz’ya
inequality.

The Neumann Laplacian corresponds to the case where = 0. This operator
has some very strange properties (the spectrum may be p-dependent, the resolvent
is not always compact if 2 is bounded). However, we will show that the associated
semigroup is always an integral operator, but it is given by a singular kernel; i.e.
a kernel which is not bounded if €2 is irregular.

The second part of this thesis is concerned with the study of regularity of weak
solutions and the introduction of the fourth boundary conditions called Wentzell-
Robin boundary conditions.

As mentioned above, one of the component necessary to establish regularity
of certain variational problems is the need to show that a weak solution of a
linear equation in divergence form with bounded measurable coefficients is Holder
continuous. This result resisted many attempts, but finally in 1957, De Giorgi
and Nash, independently of each other, provided a proof of this crucial result.
The De Giorgi-Nash result stimulated a great number of related investigations,
one of most important being that of Moser who, by an entirely different method,
provided another proof of their result. A crucial component in Moser’s proof was
the discovery that the logarithm of the solution is a function of bounded mean
oscillation. He also proved the Harnack inequality which states that locally, the
supremum of the solution is bounded by its infimum.

In Chapter 5, we will consider the inhomogeneous Robin problem given for-
mally by

—Au=f in Q,
%—kﬁuzg on 02

where f € LP(Q) (p > 2), g € LI(0Q) (¢ > 2) and [ is a strictly positive bounded
measurable function on 92. Using the De Giorgi method developped by Murthy
and Stampacchia [77], we will show that a weak solution of the inhomogeneous
Robin problem is Holder continuous up to the boundary provided that p > NV,
g > N —1 and  is a bounded domain with Lipschitz boundary. This shows in
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particular that the operator A, defined in Chapter 4 has the strong Feller prop-
erty. Furthermore, we show that the part of A, in C(2) generates a holomorphic
contractive Cop-semigroup on C(€).

Most recently, Favini et al. [48] investigated the Laplacian with Wentzell-
Robin boundary conditions. They considered LP-spaces for bounded domains in
R but investigated explicitly the interval [0, 1]. They proved that the Wentzell-
Robin Laplacian generates a holomorphic Cy-semigroup on some LP-spaces. More-
over it generates a Cp-semigroup on C(Q) if  is regular (for example if Q is of
class C?). In Chapter 6, we will prove that the Cy-semigroup on C0, 1] generated

by the Wentzell-Robin Laplacian is also holomorphic .
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Chapter 1

Basic Notions of Functional
Analysis

This chapter contains some basic notions which will facilitate the understanding of
the following chapters. We will not give a proof of most of the results. We simply
give some references where one can find these results.

1.1 Measure Theory.

Throughout this section, X will denote a metric space with metric d and B(X) the
Borel g-algebra of subsets of X; i.e., the smallest o-algebra containing the open
subsets of X. The following presentation is based on the notions and results of
Evans-Gariepy [43].

Definition 1.1.1.  a) A mapping u: [A: A C X]| — [0,00] is called an outer
measure on X if the following two conditions are satisfied.

(i) u(®)=0;
(ii) p(U:2) Ai) < 32 q u(A;) whenever A; C X.

b) A set A C X is p-measurable if for each set B C X,
u(B) = p(BNA)+ u(B\ A).
Remark 1.1.2. If u is an outer measure on X and A C B C X, then pu(A) < p(B).

Definition 1.1.3. Let u be an outer measure on X.

a) We say that u is locally finite if for every x € X there exists r > 0 such that
w(B(z,r)) < 0o, where B(xz,r) :={y € X : d(x,y) <r}.
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b) We say that p is a Borel measure if all Borel sets are p-measurable.

¢) We say that p is a regular Borel measure if it is a Borel measure and if
for every A C X there exists a Borel set B C X such that A C B and

u(A) = p(B).
d) We say that i is o Radon measure if it is a Borel measure and

(i) w(K) < oo for compact sets K C X;
(ii) w(O) =sup{u(K): K C O is compact } for open sets O C X.
(111) p(A) =inf{u(0): AC O; O is open } for AC X.
Remark 1.1.4.  a) It follows from the definition that an outer measure p on X

is a Radon measure if and only if it is a reqular Borel measure and locally
finite.

b) Let p be a regular Borel measure on X. If A C X 1is a Borel set, then u
restricted to A denoted by p|a and defined by

ula(B) == uw(ANB) forall BCX

is a reqular Borel measure.

Example 1.1.5 (Hausdorff measure). Let U be a nonempty subset of RY. We define
the diameter of U as follows:

diam(U) :=sup{|lz —y|: z,y € U}.

Let 0 < § < oo and F C RY. If {U;} is a countable family of subsets of RY
such that F C (J;o, U; with 0 < diam(U;) < 6 for each i, then {U;} is called a
d-covering of F. Let F' C RM, 0<s < ooand 0 < § < oco. Define

H5(F) :=2"%a(s) inf {i (diam(U;))® : {U;} is a d-covering of F}

where a(s) := F(ﬂfifn and I'(s) := [;* e""2* ! dx is the usual gamma function.
2

Since Hi(F) < HI(F) if 0 < ¢ < § < o0, it follows that H3(F) approaches a limit
as 6 — 0. Define
H*(F) := lim H5(F) = sup Hj(F).
6—0 5>0
The limit exists for every F € RY and can be 0 or co. We call H* the s-dimensional
Hausdorff measure.

For each subset F of RY and 0 < s < oo, by definition of H*(F), we see that
if H*(F) < oo then H'(F) = 0 for ¢t > s. Thus a graph of H*(F) shows that there
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is a critical value of s at which H*(F) “jumps” from oo to 0. This critical value is
called the Hausdorff dimension of F' and written dimg (F'). Clearly,

dimpy (F) =inf{s: H*(F) =0} =sup{s: H’(F) = oo}

so that
HE) = {Solfl f:><d?$f&(f;)
If s = dimy (F'), then H*(F) may be zero of infinite, or may satisfy
0 < H*(F) < o0.
Let © C RN be an open set and 0 be its boundary. Then
(N —1) < dimg(0Q) < N.

The following result is contained in [46, Section 2.1], [72, Theorem 4.2 and
Corollary 4.5] and [4, Proposition 2.49].

Theorem 1.1.6.  a) The s-dimensional Hausdorff measure on RN is a regular
Borel measure but not always a Radon measure.

b) The measure HN coincides with the Lebesgue measure on RY.

Next we give the following formula called area formula and contained in [4,
Theorem 2.71]

Theorem 1.1.7 (Area formula). Let f : R¥ — RY be a Lipschitz function with
N > k. Then for every Lebesque measurable set E C RF the multiplicity function
y— HY(EN f~1(y)) is H*-measurable on RN and

HEN W) aH (o) = [ J1() da.
RN E
where Jf is the Jacobian of f.

Remark 1.1.8.  a) The set f(E) is H¥-measurable, being the support of the mul-
tiplicity function. If f is injective, then

k = X X.
HA(f(E)) = /E Jf(x) d

b) Assume that g : RN=1 — R is Lipschitz and define f : RN71 — RN by
f(x) = (x,9(x)). Calculating, we obtain that (Jf)? = 1+ |Dg|?. For each
open set U C RN~1 define the graph of g over U,

G :=G(g,U) :={(z,g9(zx)): z €U} CRV.

Then
HY1(G) = 5(G) = / (1+|DgP?)2 da.
U
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c) It follows from b) that if Q@ C RY is an open set with Lipschitz boundary; i.e.,
the boundary is locally the graph of a Lipschitz function, then the restriction
to OQ of the (N — 1)-dimensional Hausdorff measure HN =1 coincides with
the usual Lebesgue surface measure on OS).

1.2 Banach Lattices.

For more information on the theory of Banach lattices, we refer to the monograph
Schaefer [86].

Definition 1.2.1. An ordered vector space E is called a vector lattice if any two
elements f,g € E have a supremum, which is denoted by fV g, and an infimum,
denoted by f A g.

Remark 1.2.2.  a) fV (—f) = |f]| is called the absolute value of f.
b) fV 0= fT is called the positive part of f.
¢) —(f N0O) = f~ is called the negative part of f.

Let E be a vector lattice. One of the following equivalent assertions is a
necessary and sufficient condition on a vector subspace G of E to be a vector
sublattice.

(i) he G=|h| € G.
(i) he G=h" €G.
(iii) he G=h" € G.
Definition 1.2.3. Let E be a vector lattice.

a) A linear subspace I of E is called an ideal if f € I and g € E such that
lg| < |f| imply g € I.

b) A subspace B of E is a band if B is an ideal of E and sup M is contained
in B whenever M is contained in B and has a supremum in E.

¢) A norm on E is called a lattice norm if it satisfies
If1 < lgl = lIfII < llgll- (1.1)

d) A Banach lattice is a Banach space E endowed with an ordering < such that
(E, <) is a vector lattice and the norm on E is a lattice norm.

The following result due to Schaefer (see [86, Example 2 p.157-158]) charac-
terizes the closed ideals in the Banach lattice LP(X, u) for some o-finite measure
pon X;ie., we can write X = [J;2, X; where X is g-measurable and u(X;) < oo
fori=1,2,....
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Theorem 1.2.4. Let p be a o-finite measure on X and 1 < p < oco. Let I be a
closed ideal of LP(X, ). Then there exists a measurable subset S of X such that

I={feLP(X,u): f=0p-ae on S}

1.3 Semigroups Generated by Dirichlet Forms.

Throughout this section, B will denote a Banach space.

Definition 1.3.1. We call Cy-semigroup on B any family T = (T(t))i>0 of
bounded operators on B such that:

a) T(t+s)=TW)T(s) t,seRy
b) T(0) =TI identity on B
¢) T(t)xr =z ast | 0 for all z € B.

The generator A of the semigroup T = (T'(t))i>0 is the operator defined on the
domain T
D(A) = {x €B: lim LT =7

exists in B}
t10

by
T(t)x —
Az = lim Ttz for all x € D(A).
t10 t
The notion of semigroups has been introduced for the study of the evolution
equation

(PO) {u’(t): Au(t), t>0

called Cauchy problem

Definition 1.3.2. Let 0 € (0,5]. A semigroup T on B is called holomorphic of
angle 0 if it has a holomorphic extension to Yo := {z € C\ {0} : |arg z| < 0} such
that

lin%) T(z)x =a« forall x € B.
In this case, T(z 4 2'") =T (2)T (') for all z,2" € Xy.

In this section, we will be concerned with semigroups given by Dirichlet
forms which we will define below. In our definition of forms, we shall consider
only symmetric forms. For a general theory, we refer to [65], [69] and [79] where
non-symmetric forms have been considered, too.

Let H be a fixed Hilbert space and D(a) — H. Let a : D(a) x D(a) — R be
a bilinear positive symmetric form. For u,v € D(a) we let

lull = alu,u) + |lullf; and a1 (u,v) = a(u,v) + (u,v)m
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where (, )y denotes the scalar product on H. The space D(a) is called the domain
of a.

Definition 1.3.3. The form (a, D(a)) is said to be closed on H if (D(a),|| - |la) %
a Hilbert space. More precisely, the symmetric form (a, D(a)) is said to be closed
on H if

Up € D(a), a1(tn — Um, Up — Upy) — 0 as n,m — oo
= Jue D(a): a1(up — u,up —u) — 0 as n — oo.

Let (a,D(a)) be a closed symmetric form on H. Then we can define a self-
adjoint operator A on H associated with a in the following way:

{D(A) ={ueD(a): FveH: (v,p)g =alu,p) V¢ € D(a)}
Au = —v.

The proof of the following result is contained in [35, Chap. XVII p.450].

Theorem 1.3.4. Assume that D(a) is dense in H. Then the operator A generates
a holomorphic Cy-semigroup T = (etA)tzo on H.

Next we give examples of closed forms. Let & C R be an open set. We
denote by H'(£2) the first order Sobolev space defined by

HY Q) ={uec L*Q): Vue L*(Q)"}

where Vu is defined in the weak sense. The norm on H'((Q) is given by

||u\|%,1(9) z/ |u|? dx—|—/ |Vul? d
Q Q

so that H'(Q) is a Hilbert space. Denote by H}(£2) the closure of D(2) (the space
of all infinitely differentiable functions with compact support in Q) in H(Q). If
Q = RY, or more generally if H}(Q2) = H'(RY), this is the case if and only if
RY \  is a polar set (see Theorem 2.4.4 below) then we will simply denote this
space by H'(RY).

Example 1.3.5.  a) Consider the form ay : H'(Q) x H'(2) — R defined by
an(u,v) == / VuVo dx.
Q

Then (ay, H*(Q)) is closed on L?(Q) and the selfadjoint operator associ-
ated with (ax, H'(Q)) is the classical Laplacian with Neumann boundary
conditions.



1.3. SEMIGROUPS GENERATED BY DIRICHLET FORMS. 19

b) Consider the form ap : H(Q) x H} () — R defined by

ap(u,v) = / VuVv dz.
Q

Then (ap, Hi(Q)) is closed on L?(2) and the selfadjoint operator associated
with (ap, H}()) which we denote by Ap is the Laplacian with Dirichlet
boundary conditions.

Next, let again H be a fixed Hilbert space, D(a) — H and a : D(a) x D(a) —

R be a bilinear positive symmetric form. Let D(a) be the abstract completion of

D(a) with respect to the norm ||-||o. Let j: D(a) — H be the continuous extension
of the embedding from D(a) into H.

Definition 1.3.6. The form (a, D(a)) is said to be closable on H if j is injective.

Remark 1.3.7.  a) The following criterion is useful to verify the closability of

a giwen form (a,D(a)) on H. The form (a,D(a)) is closable on H if and
only if for each sequence u, € D(a) converging to zero in H and such that
limy, ;oo @(Un, — U, Up, — Up,) = 0, one has limy,_, o0 a(tn, uy) = 0.

b) A necessary and sufficient condition for a symmetric form (a, D(a)) to pos-

sess a closed extension is that the symmetric form is closable. Then there
always exists a smallest closed extension a, that is a closed extension whose
domain is contained in the domain of all other closed extensions.

Next we give some examples of closable forms.

Example 1.3.8.  a) Consider the form ap defined above but now with domain

D(Q). Then it is easy to prove that (ap,D(£2)) is closable on L?(£2) and its
smallest closed extension is the form (ap, H}(Q)).

Let C.(2) denote the space of continuous functions with compact support
in Q. If Q is bounded then C.(Q) = C(Q). Let H'() be the closure of
HY(Q)NC.(Q) in H'(Q2). Consider the form ay with domain H!(2)NC.().
Then it is closable and its smallest closed extension is the form ay with do-
main H1(£2). We call the selfadjoint operator Ay associated with this closed
form (ay, H'()), the Laplacian with Neumann boundary conditions. If ) is
regular, for example if 2 is bounded and has a continuous boundary (see [75,
Theorem 1.4.2.1]), it coincides with the classical Neumann Laplacian. More
precisely this is the case if and only if H*(Q) N C.(Q2) is dense in H*(Q).

Let © be a bounded domain with Lipschitz boundary. Let ¢ be the usual
Lebesgue surface measure on 9€2. Then the trace application is linear contin-
uous from H(2) N C(Q) into L2(9Q, o) (see Chapter 4). Consider the form
as on L?(Q) with domain H'(Q) N C(Q) defined by

ay (U, v) == / VuVov dx+/ uv do.
Q 19}9)
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We show that a, is closable. Let u,, € H'(Q) N C() be such that u,, — 0
in L?(Q) and ay (s — Um, U — Up) converges to 0 as n,m — oo. Since u,,
converges to 0 in L?(Q2) and is a Cauchy sequence in H'((), it follows that wu,,
converges to 0 in H(Q). Now the continuity of the trace application implies
that u,|sq converges to 0 in L?(9€2, o) and the form a, is closable. By the
continuity of the trace application again, the completion of H(£2) N C(f)
with respect to the || - ||4,-norm is the space H*(£2) which coincides with
H(Q). The selfadjoint operator associated with the closed form (a,, H(9))
is called the Laplacian with Robin boundary condition.
We shall come back to the forms defined above in Chapters 3 and 4. In
particular, we shall prove that it is (always) possible to define the Laplacian with
Robin boundary conditions for an arbitrary open set 2.

We give some examples of forms which are not always closable. For more
details, see [55, Theorem 3.1.6].

Example 1.3.9. a) Let p be a Radon measure on R. We suppose that p is not
absolutely continuous with respect to the Lebesgue measure. Then the fol-
lowing form

a(u,v) = / o' (z)v' (z) p(dz) u,v € D(R)
R
is not closable on L?(R).
b) For a given Borel function b: R — [0, co] we let
t+e 1
R(b)::{teR:/ —— dy < oo for some 5>O}
t—e b(y)

and

S(b) =R\ R(b).
We say that b satisfies the Hamza condition if

b(x) =0 a.e. on S(b). (1.2)

Consider again the form defined in a). Then a is closable on L?(R) if and
only if p is absolutely continuous with respect to the Lebesgue measure and
its density function satisfies the condition (1.2).

Definition 1.3.10. Let (a, D(a)) and (b, D(b)) be two bilinear positive symmetric
forms on H. We say that a < b if and only if D(b) C D(a) and a(u,u) < b(u,u)
for allw € D(b).

Since each symmetric form is not closable as the last example shows, the
following result shows that each positive symmetric form as a closable part. The
proof given here is taken from [84, Theorem S.15 p.373]
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Theorem 1.3.11 (Reed-Simon). Let (a, D(a)) be a bilinear positive symmetric form
on a Hilbert space H. Then there exists a largest closable symmetric form a, that
is smaller than a. We call a, the closable part of a.

Proof. 1) If a is closable, then a, = a.

2) If a is not closable, then we denote by D(a) the abstract completion of
D(a) with respect to the norm |- ||o. Let i : D(a) — H be the continuous extension
of the injection D(a) — H. Let P be the orthogonal projection onto keri and let
Q =1— P. For ¢ € D(a), let j(¢) be its natural range in D(a) so that ioj = 1
and [5(¢)[12 = ll¢ll2. For ¢, € D(a) define

ar(@) w) = al(Q](@)a Qj(
as(e,v) = (Pj(p), Pj(¥)

We claim that a, is closable. Indeed,

(@r)1(p,¥) = ar(,¥) + (0, V) = a1 (Qii (), Qi (V)

for all p,¢ € D(a) = D(a,). The abstract completion of D(a) with respect to
the norm || - ||o. is Ran@ (range of @). Let 7 : Ran@ — H be the continuous
extension of the injection D(a) — H. One has 7 = i|gang. By construction,
Ran PN Ran @ = {0}, so that ker7 = {0} and 7 is injective and we obtain that a,
is closable.

3) Let us prove that a, > 0. Since Ran P C ker ¢, we have ioQ =i(1—P) =
and for all ¢ € D(a) we obtain

lellz = lli o d () = 1iQi(e)lIE = Q1) < 1Qi(P)IZ, -

Then a, (¢, @) > 0 for all ¢ € D(a).

4) Now we prove that a, is the largest closable part. Let h be closable such
that b < a and D(h) = D(a). Since h is closable, there exists a unique operator
A on D(a) such that hy(¢,v) = (j(p), Aj(¥)). Let ¢ € Ran P C D(a). There
esists a sequence 1, € D(a) such that j(n,) = ¢, — ¢ as n — oo. Since i is
continuous, we have i(p,) = 1, — i(p) as n — oco. Since ¢ € Ran P C keri, it
follows that i(¢) = 0. Moreover, since ¢, is a Cauchy sequence in D(a), 1, is a
Cauchy sequence relatively to the norm || - ||5. Since h is closable, h(¢n, ¢n) — 0;
i.e., (¢, Ap) = 0. It follows that

h(p,p) = h(Qp, Q) < a,(Qp, Qp)

so that h < a,.. Thus a, is the largest closable symmetric form smaller than a. [

V) = (o, ¥)u
).

By the Reed-Simon construction, the closable part of (a, D(a)) is obtained
by conserving the form domain D(a) and changing a to a smaller form a, in the
sense that a,(u,u) < a(u,u) for all u € D(a).
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Throughout the rest of this chapter, we shall make the topological assumption
that

X is a locally compact separable metric space (1.3)
m is a Radon measure on X such that supp[m|= X. '

Throughout this chapter and the following chapters for 1 < p < oo and
u € LP(X,m), we denote by

1/p
fulli= ([ 1 am)
X

and ||ul|s for the supremum norm of v € L (X, m). We let
L*(X,m)y :={u € L*(X,m): u>0m-ae}
and F, = F N L3(X,m), if F is a subspace of L?(X,m).

Next, let (a, D(a)) be a positive symmetric closed form on L?(X,m) where
D(a) — L?*(X,m) is assumed to be dense in L?(X,m). Let T := (e'4);>¢ be the
Co-semigroup on L?(X,m) associated with the operator A given by the form a.
We introduce the Beurling-Deny criteria which are contained in [39, Theorems
1.3.2 and 1.3.3]. For the non-symmetric case, these criteria have been established
by Ouhabaz (see [79, Théorémes 1.2.2 and 1.2.5]).

Definition 1.3.12. Let B € L(LP(X,m)) where 1 < p < oo.

a) The operator B is called positive and we write B > 0 if By > 0 m-a.e. for
all p € LP(X,m) with ¢ > 0 m-a.e.

b) The operator B is called L*°-contractive if
1Belloo < lllloo

for all p € LP(X,m) N L™ (X, m).

Theorem 1.3.13 (Beurling-Deny 1). The following assertions are equivalent.
(i) et >0 for every t > 0.
(i1) u € D(a) = ut € D(a) and a(ut,u™) <0.

Theorem 1.3.14 (Beurling-Deny 2). Assume that e!* > 0. Then the following
assertions are equivalent.

(i) e*4 is L°-contractive for everyt > 0.

(1)) w € D(a)+ = uAl€ D(a)y and a(uNl,unl) <alu,u).
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Definition 1.3.15.  a) A Co-semigroup T = (T(t))i>0 on L*(X,m) is called sub-
markovian if T(t) is positive and L -contractive for every t > 0.

b) A form (a,D(a)) is called a Dirichlet form if (a,D(a)) is closed and the
associated semigroup is submarkovian.

Let (a, D(a)) be a Dirichlet form on L?*(X,m) and let
Co(X):={ue C(X): support of u is a compact set}.
Definition 1.3.16. The form (a, D(a)) is called a regular Dirichlet form on
L?(X,m) (or on X) if D(a)NC.(X) is dense in (D(a), |- ||a) and uniformly dense
in Co(X).

The following result contained in [39, Theorem 1.4.1] is a direct consequence
of the submarkovian property.

Theorem 1.3.17. If T = (etA)tzo is a symmetric submarkovian semigroup on
L*(X,m) then L'(X,m) N L>(X,m) is invariant under e**, and e** may be
extended from L'(X,m) N L>(X,m) to a positive contraction semigroup Tp(t)

on LP(X,m) for all 1 < p < oo. These semigroups are strongly continuous if
1 <p < oo, and are consistent in the sense that

Tp(t)u = Ty(t)u

if u e LP(X,m) N LY(X,m). They are selfadjoint in the sense that

if1§p<ooand%+%:1.
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Chapter 2

Classical and Relative
Capacities

In this chapter, we will define two notions of capacities. The first one which we
call classical capacity is well-known and has been considered by many authors.
The second one which we call relative capacity is new and is the correct one for
studying the fine regularity of functions in some subspace of the first Sobolev space
H'(Q) for some open set € in RY. Throughout this chapter the underlying field
is R.

2.1 Classical Capacity.

Consider the closed form (a, H*(RY)) defined by
a(u,v) :/ VuVo dz.
RN

Since D(RY) is dense in H*(RY) and uniformly dense in C.(R"), the symmetric
form (a, H'(RY)) is a regular Dirichlet form on L?(R%). Thus we can define a
notion of capacity with some regularity properties.

Definition 2.1.1.  a) The classical capacity which we denote by Cap is defined
on subsets of RV by: for A C RN open we set:

Cap(A) := inf{||u|\%p(RN) cu€ H'RY): u>1ae on A}
For arbitrary A C RN we set:
Cap(A) := inf{Cap(B) : B open : AC B C RV}.

b) A set N CRY is called polar if Cap(N) = 0.
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The classical capacity is an outer measure; i.e. it has the following properties.
e Cap(0)) = 0.

e If A, is an arbitrary sequence of subsets of RY, then

Cap( U A,) < Z Cap(4,).

n>1 n>1

However, Cap is not a Borel measure.

Theorem 2.1.2. The classical capacity is a Choquet capacity; i.e. it has the fol-
lowing properties.

a) AC B = Cap(A) < Cap(B).

b) If (K,) is a decreasing sequence of compact subsets of RN, then

Cap( ﬂ K,)= irﬁf Cap(K,,).

n>1
c¢) If (Ay) is an increasing sequence of arbitrary subsets of RN, then

Cap(|_J An) = sup Cap(A,).

n>1
It holds that for every Borel set A ¢ RY
Cap(A) = sup{Cap(K) : K compact , K C A}. (2.1)

Let A be a subset of RY. A statement depending on = € A is said to hold
quasi-everywhere (q.e.) on A if there exists a polar set N C A such that the
statement is true for every z € A\ N.

We call a function u quasi-continuous (q.c.) if for every & > 0 there exists an
open set G C RY such that Cap(G) < € and ulg~\¢ is continuous.

Theorem 2.1.3.  a) Everyu € H*(RY) admits a quasi-continuous version @ such
that @ = u a.e. on RV,

b) Iflim, . u, = u in HY(RY), then there exist a subsequence (uy, ) such that
limg 00 Un, () = t(x) g.e.

¢) Let O C RN be an open set and u be quasi-continuous. If u > 0 a.e. on O,
then u > 0 q.e. on O.

Remark 2.1.4. For u € Hl(RN) the quasi-continuous version U of u is unique

g.e. Moreover @ can be chosen Borel measurable (see the proof of [23, Proposition
8.2.1]).
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By definition of the classical capacity, it is clear that |A| < Cap(A) for every
A C RY where | - | denotes the Lebesgue measure. Therefore every polar set has
zero Lebesgue measure. The following result says that every polar set has zero
s-dimensional Hausdorff measure for all s > N — 2. In particular every polar set
has zero (N — 1)-dimensional Hausdorff measure.

Theorem 2.1.5. Let A € B(RY). If Cap(A) = 0, then H*(A) =0 for all s > N —2.

Proof. 1) Assume that Cap(A) = 0. Then for all n > 1 there exists u,, €
H'(RV) such that A C {u,, > 1}° and HunH?{l(RN) < 3. By Theorem 2.1.3 a),

. . o0
we may assume that the u,, are quasi-continuous. Let v := )" | u,. Then

oo
vl 1 vy < Z l[wn || 51 @y < oo

n=1

Thus v € HY(RY) and is quasi-continuous.

2) Note A C {v > m}’ for all m > 1. Fix any a € A. Then for r small enough
such that B(a,r) C {v > m}°, (v)q, > m, therefore (v)y, — o0 as r — 0 where

1
V)gr = m5—— v(z) de.
®er = Bam Jaen

We claim that for each a € A,

r—0 T

1
lim sup —s/ |Vo|? do = oco.
B(a,r)
In fact, let a € A and suppose

1
lim sup —s/ |Vo|? do < oo.
B(a,r)

r—0 T

Then there exists a constant M < oo such that

1

— |Vo|? de < M

™ JB(ar)
for all 0 < r < 1. For 0 < r < 1, the Poincaré inequality on balls (see [43, Theorem
2, p.141)) gives

1
v — (v)a,T\2 dx < er?

I —_ |Vo|? dz < crf
|B(a,r)| B(a,r) |B(a?T)| B(a,r)
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where § = s — (N — 2). Thus

1
(@~ Wl = Gt [ 0= @) do
/2 1B(a,7/2)] /(a2
1
< N __— v — (V)| dz
|B(a,r)| B(a,r)
1 1/2
< N[ —— \v—(v)a,T\de
<|B(G,T) B(a,r)
< crg.

Hence if k& > j,

k
Z ‘(U)a,l/Ql - (’U)a,l/Ql_l‘

|(U)a,1/2k - (U)a,l/QJ" <
I=j+1
k 9
1 2
< o> (5)
1=j+1

This last sum is the tail of a geometric series and so {(U)a,l/gk }211 is a Cauchy
sequence. Thus (v)4,1/2¢ /* 00, a contradiction and the claim is proved.
3) Consequently,

r—0 T

1
A c {aeR" :limsup —s/ Vo|? dz = +oo}
B(a,r)

1
c {a R :limsup —g/ |Vo|? dz > 0}.
r—0 1" JB(a,r)

But since |Vul? is integrable, by [43, Theorem 3, p.77], H*(A) = 0. O

2.2 Relative Capacity.

Throughout this section,  will denote an open set in RY and H L(Q) the closure
of HY(Q) N C.() in H*(Q). To define a Choquet capacity with some regularity
properties, we need a regular Dirichlet form. If 2 is a set such that the Lebesgue
measure of its boundary £V (9€2) := |9£2| > 0, then we shall consider the measure
m with support Q defined by: for A € B(Q) we let m(A) := |AN Q|. With this
consideration, L2(Q) = L2(£2,m). Moreover, by Stone-Weierstrass’ Theorem the
space H'(Q) N C.(€) is uniformly dense in C,(€2). Therefore the form (ay, H'(2))
is a regular Dirichlet form on L2(€2,m) (or on Q). Thus, throughout the following,
a.e. will mean m-a.e.
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Definition 2.2.1. c_z) The relative capacity which we denote by Capg is defined
on subsets of ) by: for A C ) relatively open (i.e. open with respect to the
topology of Q) we set:

Capg(4) = inf{HuH%Il(Q) cue H'(Q): u>1ae. on A}
For arbitrary A C Q we set:
Capg(A) := inf{Capq(B) : B relatively open : A C B C Q}.

b) A set N C Q) is called relatively polar if Capg(N) = 0.

The relative capacity is also an outer measure (but not a Borel measure) and
a Choquet capacity. Then the properties in Theorem 2.1.2 are satisfied for Capg
in place of Cap and  in place of RV.

Similarly to the classical capacity, a statement depending on z € A C  is
said to hold relatively quasi-everywhere (r.q.e.) on A if there exists a relatively
polar set N C A such that the statement is true for every z € A\ N.

Now we may consider functions in H*(£2) as defined on €. We call a function
u: Q — R relatively quasi-continuous (r.q.c.) if for every ¢ > 0 there exists a
relatively open set G C  such that Capg(G) < ¢ and u|g\ ¢ 1s continuous.

In Theorem 2.1.3, replacing Cap by Capg and RY by Q, all the properties
are satisfied.

For B C Q, we let

Lp:={ue ﬁl(Q) :@>1 r.q.e on B}

where @ denote the relatively quasi-continuous version of u. By Theorem 2.1.3 ¢)
applied to the relative capacity, if B is relatively open, then

Lp={ueHY(Q): @>1 ac. on B}.

The following properties of the relative capacity are properties of a Choquet
capacity. The proof we give here is an adaptation of the proof contained in [55,
Theorem 2.1.5] for a general abstract Choquet capacity.

Lemma 2.2.2. Fiz an arbitrary set B C Q.

a) If Lg # 0, then there exists a unique element ep € Lp minimizing the norm
of HY(Q) and ep satisfies

Capg(B) = ||€B\|12Hl(sz)~ (2.2)
b) ep is a unique element of ﬁl(Q) satisfying
0<eg<1 ae and eg=1 r.ge on B (2.3)

and
ar(ep,v) >0 Yve H(Q), 5> 0 r.qe on B. (2.4)
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Proof. a) First case. Assume that B is relatively open. Then Lg is a closed
convex subset of H'(). Since for all u,v € H'(Q),

2 2

U+ v
2

u—v

2

_|_
HY(Q)

12 1 e
=3 l[ull 1 () + B [0l @) » (2.5)

H()

we have that any minimizing sequence (lim,, s ||Un||%{1(9) = Capg(B)) is conver-
gent to an element ep € Lp satisfying HeBH%-Il(Q) = Capg(B) and that such ep is
unique.

Second case. Assume that B is arbitrary. If £p is nonempty, it is a closed
convex subset of H!(2) on account of properties in Theorem 2.1.3 for the relative
capacity. As in the first case, we find a unique element eg € L such that

lesl3 ) < lul?iq YueLs.

For every £ > 0, there exists A C € relatively open such that B C A and
Capg(A) < Capg(B) + €. Since e4 € Lp, we have that

Capg(A) = [leallF) > lesl gy

Thus
el q) < Capg(B).
To prove the converse inequality, fix a r.q.c. version €p of eg. For every ¢ > 0,
choose a relatively open set A. such that Capg(A:) < &, €B|g\ 4, 18 continuous
and € > 1 on BN (Q\ A.). Now the set
G. ={xeQ\A.: €3 >1—E}UAE

is relatively open and B C G.. Moreover, eg +e4_. > 1 — € a.e. on G,. Therefore

Capg(B) < Capg(Ge) < (1—¢)*|lep +ea.lq)
2
< (-9 (leslu @ + lealln )
2
< (1-2)?(leslur@ +Ve)™ .

By letting € | 0, we obtain that
Capg(B) < llesllin o

and the proof of a) is complete.
b) By the submarkovian property of the form (ay, H(Q2)), u := (0Vep)Al €
Lp and

lull 3 ) < llesllin ) = Capa(B).
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Thus u = e which proves (2.3). To prove (2.4), if v has the stated property, then
eg+ev e Lpand |eg+ €v||%11(9) > HeBH%Il(Q) for every € > 0. Then
le + vl ) = lesllin ) + 0l ) + 2ea1(en, v) > [lesllin ()

and we obtain that
ay(eg,v) > 0.

Conversely, suppose that u € H'(€2) satisfies (2.4). Then u € Lp and @ — @ > 0
r.q.e. on B for every w € Lp since u is minimal. Hence

||w|\12ql(9) = flu+ (w— U)H?{l(g) 2 ||U||%{1(Q)
for every w € Lp proving that u = ep. O

It follows from the preceding lemma that for every B C (,
Capg(B) = inf{|ull3p o) : v € Lz}
_ The next two results give an equivalent definition of Capg, for compact subsets
of Q.
Proposition 2.2.3. Let K C Q be a compact set. Then
Capg(K) = inf{||u\|%{1(9) cu € HY(Q)NCAQ) : u(x)>1Va e K.
Proof. Let
M:={uec H(Q)NCAQ): u(z) >1VrecK}

Consider a sequence u,, € M minimizing the norm of H(Q) . By virtue of (2.5),
u, converges to some uy € H(). In view of Lemma 2.2.2, it is sufficient to
prove that ug = ex by checking the conditions (2.3) and (2.4) for ug. By [55,
Lemma 2.2.6], for (2.4), it is sufficient to verify the inequality for all functions
v € HY(Q) N C.(Q) satisfying v > 0 on K. Let v satisfy this condition. For every
e >0,

lun + vl () = lluoll o),

and we see that ug satisfies
a1 (ug,v) >0 Yo € HY(Q)NC(Q), v>0 on K,

by letting n — oo and € | 0. Thus ug satisfies (2.4). Noting that v, := (0Vu,)Al €
M is also a minimizing sequence, we obtain (2.3) and the proof is complete. [

Theorem 2.2.4. Let K C Q be a compact set and
N:={ueH'Q)NC:(V:u=10nK,0<u<1}.

Then
Capg(K) = inf{HuH%Il(Q) :u€ N} (2.6)
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Proof. Let
M:={ue H'(Q)NCAQ):u>1on K}.
By Proposition 2.2.3,
Capg (K) = inf{[lul|3(q) s u € M}. (2.7)

Set
Ca(K) = inf{||u| 1) : u € N}.

It suffices to prove that Ca(K) = Capg(K) where Capg(K) is given by (2.7).
Since N C M, it suffices to prove that Ca(K) < Capg(K). Let € € (0,1) and
u € M be such that

ullf () < Capg (k) +e.

Let (M) be a sequence of functions in C°°(R) such that

Since A, ou € N, it follows that

Ca(K)

IN

/Q[(>\'m(1t(9ﬂ)))2|VU|2 + [Am (u()) ] da
(1 + nlz) /Q [IVul® + [ul?] da.

Passing to the limit as m — oo, we obtain

IN

Ca(K) < ||u||§{1(9) < Capgq(K) +¢.
Passing to the limit as € | 0 we conclude that Ca(K) < Capg(K). O

The following two results give some inequalities which are a consequence of
the definition of the relative capacity.

Proposition 2.2.5. Assume that Q is bounded. Let u € H*(Q) N C(Q) and
Ey:i={zeQ:|u(z) >t}.

Then there exists a constant ¢ > 0 such that

/0 Capg(Ey) d(t2) < clull?n ). (2.9)
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Proof. Let u € H'(2) N C.(Q) and j € Z. Since Capg(E;) is a decreasing
function of ¢, it suffices to prove that

+oo
> 2% Capg(By) < cllull3 q)-

Jj=—00
Note that for j 7, F,; is a compact subset of Q and Ey = @ for j large

S
enough. Let € € (0,1) and A; be as in (2.8). Set u;(x) := Az (2'77|u(z)| — 1). Then
u; € H'(2) N C(£2). Moreover, u; = 1 on Fy;,0 < u < 1 and supplu;] C Egj-1.

Thus
S< Z 22J/ |VUj‘2+‘Uj|2] dx

j=—00
We obtain
Z 22]/ [V ? + |uy[?] da = Z 22]/ [V |* do +
j=—o00 Eyj—1 j=—o00 25—1\Faj
LY
j=—o00

Since Vu; = AL (2! |u(z)| — 1) 2!/ Vu(z) sgn u, we have

+
25 |12 — ~ 2j92-2j
22 Vu,[>dz = Y 292772

j=—o00 21 1\E2J j=—00

/ . (A2 u(@)] — 1))?|Vuf? de

+oo
< 2(1+¢)? Z/ |Vu|? da.

j=—o00 / Ezi- 1\Ey;

Setting A; := Fyj-1 \ Fa;, we have Aj N A; = 0 for i # j and UJ* oAy = .
Then
3 o [ vuPde<204e? [ Vue)p de
Jj=—o0 Byi—1\Eyj ¢
Moreover,
Z 22]/ 1 de = 22j|Ezf| < C/ || d(t?)
- — 0
j=—o0 7_ °
<

c/Q|u(1')\2 dzx.
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Thus oo
/ Capg (Br) d(t?) < 2(1+ €)?|[Vull3 + cl|ul3.
0
Letting ¢ — 0 we obtain (2.9). O

Proposition 2.2.6. Assume that Q is bounded. Let p be a finite Borel measure on
00 and p > 2. Then the following assertions are equivalent.

(i) There exists a constant ¢ > 0 such that
W(E)P/P < ¢ Capg (K) (2.10)
for every compact set K C 0f).
(i) There exists a constant ¢; > 0 such that
[ull e (o92.0) < crllullmr ) (2.11)
for allu € HY(Q) N C(Q).
The proof uses the following lemma whose is taken from [33, Lemma 7.2.6].

Lemma 2.2.7. Suppose that p > 1 and g is a nonnegative nonincreasing function

on (0,00). Then y
([ ttor aw) pgzmm@da (2.12)

Proof. To prove (2.12), observe that

sg(s) = /Osg(s) dt < /OS g(t) dt

where we use that g is nonnegative and nonincreasing. Moreover, the function
defined by s +— fos g(t) dt is absolutely continuous and hence

p([fmwdQP1M$(i<[fmwde

for almost all s > 0. Therefore,

oo

[sg(s)]P""g(s) ds

/0 1
[ ([ o) o as
|

~ o) dt)p

[ asn =
0

(

IN
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proving (2.12). O

Proof of Proposition 2.2.6. (i)= (ii). Let p > 2, u € H(Q2) N C(Q) and
E; :={z € 090 : |u(z)| > t}. Then E; is a compact subset of 92 and by (2.10),
1(E)?P < cCapgq(E;). Using Lemma 2.2.7 and Proposition 2.2.5, we obtain the
following estimates:

(f Qu<x>|pdu)2/p - ([ e d(tp>)2/p

= / T (B de?)

IA

0

c/ Capg(Et) d(t2)
0

< Alullin -

(ii) = (i). Assume that (2.11) holds and let K C 02 be a compact set. Let
u € HY(Q)NC(Q) be such that u > 1 on K. Minimizing the inequality (2.11) over
such u, we obtain (2.10). O

2.3 Relation Between the two Notions of Capacity.
By definition of the two capacities, we have

Capg(A) < Cap(A) (2.13)
for every A C . Indeed, let A C Q and set

M = {uc H'RY): u>1 ae. in a neighborhood of A}
N = {ueH'(Q): u>1 ae. in a relatively neighborhood of A}.

We claim that M C N. In fact, let U € M. Since U € H'(RY), there exists a
sequence U, € D(RY) such that U, converges to U in Hl(ﬂgN) as n — 00. Let
Up, = Uplq and u := Ul|q. Then u,, € C2°(Q) C H(Q) N C.(Q) and

[un = ullmr @) < [Un = Ul @y

which converges to 0 as n — oo and thus u € H(Q). Since U > 1 ae. in a
neighborhood of A, there exists an open set O C RY such that A C O and U > 1
a.e. on O. Finally we obtain that © > 1 a.e. on ONQ and A C O N which is a
relatively neighborhood of A and thus v € N.

Since M C N, it follows that

inf{||ul| 3 (q) 0 u € N} < inf{|jul}q) : ue M} (2.14)
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Since for every u € M we have ||u g1 () < [|ull g1 gy, it follows that
inf{HuH%{l(Q) tueMEL inf{||uH%,1(RN) :u€ M} (2.15)

Now (2.14) and (2.15) give (2.13). As a consequence, if A C Q and Cap(A) = 0
then Capg(A) = 0. We prove in this section that the converse is always true for
subsets of , but if Q is irregular there may exist relatively polar subsets of 9
which are not polar.

Proposition 2.3.1. Let A C Q. Then Capg(A) = 0 if and only if Cap(A) = 0.

Proof. We show that if Capg(A) = 0 then Cap(A) = 0 for every A C Q.

First case. Assume that there exists an open bounded set w such that A C
@ C Q. Since Capg(A) = 0 there exist open sets O C R™, ug(z) > 1 on O, NQ
and Huk||§{1(ﬂ) < 1. Let ¢ € D(R™) be such that supply] C © and ¢ = 1 on w.
Let v, = puy on Q and vy = 0 on R™\ Q. Then vy, € HY(R"), v, = 1 on O Nw
and [[vg || g1 (gny — 0 as k — co. Thus Cap(4) = 0.

Second case. Assume that A C € is arbitrary. Take open bounded sets wy
such that wr C wr41 C Q and UkeN w = §). It follows from the first case that
Cap(A Nwy) = 0. Hence Cap(A4) = limg_,o Cap(A Nwy) = 0 by the property c)
of Theorem 2.1.2 for the relative capacity. O

Definition 2.3.2.  a) We say that ﬁl(Q) has the extension property if for each
u € HY(Q) there exists U € HY(RN) such that Ulg = u.

b) We say that ﬁl(Q) has the continuous extension property if for each u €
HY(Q) N C.(Q) there exists U € HY(RN) N C(RYN) such that Ulg = u and
Ul 1y < cllull gy for some constant ¢ > 0 independent of u.

Notice that in the preceding definition the existence of U € H'(RY) in a)
such that Ulo = v implies automatically that ||U]| g1 gyy < cfjullg1(q) for some
constant ¢ > 0 independent of u.

In fact, let T : H'(RY) — H(Q) be defined by TU := Ulq. It is clear
that T|keryr = (ker T)*: — f]l(ﬂ) is an isomorphism and hence (T|(kerT)i)’1
H'Y(Q) — (ker T)* ¢ HY(RV) is defined by (T|(err)2 ) 'u = U. Therefore

U] vy = H(T|(kerT)i)_1u”H1(]RN) < cllull g (a)

where ¢ = [[(T(xery2) -
O

Remark 2.3.3. If Fll(ﬂ) has the extension property in the sense of the preceding
definition, then it does not mean that H*(2) has the extension property. For ex-
ample, if @ = (0,1) U (1,2) then H*(Q) = H(0,2) has the extension property but
HY(Q) has not since it contains no continuous functions. Let Q be the unit disk D
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centered at the origine slit along (—1,0] x {0} in R2. Then H'()) = H*(D) has
the extension property; whereas H(Q) does not (see [28, Example 2.1]).

Note that the converse is always true, since the extension property for H*(£2)
implies that H* () = H(Q).

Notice that for the preceding two open sets ﬁl(Q) also has the continous
extension property.

Proposition 2.3.4. Assume that H Q) has the continuous extension property.
Then Cap(A) = 0 if and only if Capg(A) =0 for every A C L.

Proof. We show that if Capg(A) = 0 then Cap(A) = 0 for every A C Q.

First case. Assume that A is a compact set. Let ¢ > 0. By Proposition 2.2.3
there exists u € HY(Q) N C.(Q) = HY(Q) N C.(Q) such that u > 1 on A and
Hu||§11(9) < e. Since H'() has the continuous extension property there exists
U € HY(RY) N C(RY) such that Ulg = u and 103 vy < ellullq)- This
implies that U > 1 on A and we obtain that

Cap(A) < U1} gy < cllullfng) < ce.

Since £ was arbitrary we conclude that Cap(A) = 0.

Second case. Assume that A is a Borel set. By the property (2.1) for the
relative capacity, we have that Capg(K) = 0 for every compact set K C A. By
the first case Cap(K) = 0 for every compact set K C A and by the property (2.1)
again we obtain that Cap(A) = 0.

Third case. Assume that A is arbitrary. Then by definition of the relative
capacity there exists a decreasing sequence of relatively open sets O, verify-
ing A C O, for every n > 1 and lim,,_,o Capg(O,) = 0. This implies that
Capg((),,>1 On) = 0. Since (,,~; Oy is a Borel set, by the second case
Cap(),,>1 On) = 0. Since A C [, On it follows that Cap(A) = 0 and the proof
is complete. O

Next we give some sufficient conditions on € for H* (Q) to have the continuous
extension property. Before we introduce the following class of domain called Jones
domains (see [63]).

Definition 2.3.5. Let ¢ € (0,00) and & € (0,00]. A domain D C RY is called an
(e, 0)-domain if whenever x,y € D and |x —y| < 0, there is a rectifiable arc v C D
satisfying

1
[ < Z|p —
() <zl -l
and
elr — 2| [y — 2|

dist(z,0D) <
e P

Vzenr,

where [(vy) is the length of 7.
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Remark 2.3.6. a) If Q is an open subset of R and f[l(Q) has the extension
property then it has the continuous extension property. This follows from the
fact that every function U € H(R) is continuous on R.

b) e Assume that Q C RY is an (g,8)-domain for some ¢ € (0,00) and
§ € (0,00], then H(Q) = H*(Q) and by the proof of [63, Theorem 1]
H(Q) has the continuous extension property.

o If Q C R? has the eatension property (in the sense of H(S)) then
HY(Q) = HY(Q) and by [63, Theorem 4] X is an (¢, 8)-domain for some
e € (0,00) and § € (0,00]. Thus H*(Q) has the continuous extension
property.

e Let Q be an open subset of R2. If there exists a domain D C R? sat-
isfying @ C D, Q = D, HY(Q) = HY(D) and H'(Q) has the exten-
sion property, then by [63, Theorem 4] D is an (e,d)-domain for some
£ € (0,00) and & € (0,00] and therefore H () has the continuous ex-

tension property. This is the case of the two domains given in Remark

c¢) In particular, if @ C RN is a bounded Lipschitz domain, then I:Tl(ﬂ) has the
continuous extension property (see the proof of [87, Theorem 5’ p.184-188]).

The following examples show that if 2 is irregular, there may exist relatively
polar subsets of 92 which are not polar.

First, we note that in the one-dimensional case a set N C R is polar if and
only if it is empty. This follows from the fact that each function u € H*(R) is
continuous on R.

Example 2.3.7. Let 0 < ap41 < bpt1 < an < 1 (n € N) be such that lim,,_, a, =
0, and © = (0,1) \ U,,enl@n,bn]. Then 0 € 0Q and Capg({0}) = 0 whereas
Cap({0}) > 0. In fact, the characteristic function u, = 1jg4,] of [0,a,] is in

H(€) and u/, = 0. Since u, (z) > 1 on (0, a,) one has

Capg({0}) < lunlF@) = lunlZz(q)

= unllZz(0,0,) =0 (n— 0)
and therefore Capg({0}) = 0. O

Next we modify the 1-dimensional example in order to produce a connected,
bounded open set {2 in R? and a closed subset of Q which is relatively polar but
not polar.

Note that by [19, Corollary 5.8.9 p.155], if E is a polar subset of R?, then E
is totally disconnected; that is, every component of E is a singleton.
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Example 2.3.8. Let (ax) and (by) be two nonincreasing sequences of real numbers
satisfying ag,bg € (0,1] and ag, by — 0 as k — oo and 0 < ap41 < b1 < ag < 1.
Define the following subsets of R?:

1
A, = {(x,y):ak<x<bk,§§y<1}ak20
1
D = {(x,y):0<:£<1,0<y<§}

Let Q := Ug>o (Ax U D). Let f € C*[0,1] be such that

Ft) = {1 if t >

0 ift<

Wl WIN

Let the sequence of functions uj be defined by:

fly) ifx<bg
0 elsewhere .

ug(z,y) == {

Then u;, € HY(Q)NC(Q), up =1 on F := {0} x [2,1] and 0 < uy, < 1. Moreover,

||uk||§{1(9) = Z (b — am)/ <|f(y)|2 + |f'(y)|2) dy — 0 as k — oo.

1
m>k 1/3
This implies that Capg(F) = 0 but Cap(F) > 0 since H*(F) = 1/3. O

The domains of Examples 2.3.7 and 2.3.8 have the property that ¥ ~1(9Q) =
. Next we give examples where HY ~1(9€) < co. In the following two examples
o1 denotes the 1-dimensional and oo the 2-dimensional Hausdorff measure.

Example 2.3.9. Let QN (0,1) = {q1, g2, ...} where Q denotes the set of rational
numbers. It is clear that QN (0, 1) is dense in [0, 1]. Consider the following Figure
2.1.

Let Q := ;2 @, where Q,, = [JI_, Q,; as in the Figure 2.1. We assume
that the breadth of each rectangle Q, ; is 2727 Then § is an open bounded
subset of R? but it is not connected. Since Q N (0,1) is dense in [0,1], we have
E :={0} x [0,1] C 9Q and

o) C UyL,0Q, UE.

n=1

Thus 01(9Q) <1477, 61(9€,). Since the 1-dimensional Hausdorff measure of
a segment is its length, we have

0'1(5Qn) < n(Q*(nfl) + 27(2n71)).

Hence

o0
01(0Q) <14+ n(2 7 427G ) < oo,
n=1
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(0,1) Qs Qs 0, (1,1)
Q3.9
Q99 L 42
E o Q33 1
E — : — 43

v Qo ! Q1,1 — 1

Figure 2.1: Fractal type set

Let p € C*°[0,00) be such that

We define the sequence of functions u,, on €2 by setting u,(z,y) := p(2"x). Then
up, € HY(Q) N C(Q) and 0 < uy,(z,y) < 1. Since u,(0,y) = p(0) = 1, this implies
that u,, = 1 on E. Moreover,

lim u,(z,y) = lim p(2"z) = 0.

n—oo n—oo

Since |un(z,y)] = |p(2"x)| < 1, Lebesgue’s Dominated Convergence Theorem

implies that the sequence u, converges to 0 in L?(2). Furthermore, supp|[Vu,] C



2.4. ANOTHER CHARACTERIZATION OF H}(Q). 43

{X: 27" 1 <z <27} and

/Q|Vun|2 dxdy 22"/Q|p’(2"a:)|2 dxdy (2.16)

2—71,
< 22n(n+1)272(n+1)/ |pl(2nx)|2 dx

2—(n+1)
1

= (n+1)2_("+2)/ o' (r)|? dr
1/2

— 0 as n — oo.

This implies that Capg(E) = 0 but clearly, o1 (F) = 1. Thus Cap(FE) > 0. O

Next we modify Example 2.3.9 to obtain a bounded connected open subset
of R? and a relatively polar subset of the boundary which is not polar.

Example 2.3.10. Let D C R3 be given by D := Q x (0,1) | JU, P,, where  is the
set of Example 2.3.9 and P, is a tube of radius r,, = 72" connecting the walls
(2=(+1) 277) % {0} x (0,1) and (2= (D 277) x {1} x (0,1). Thus D is an open,
connected, bounded subset of R3. Since the 2-dimensional Hausdorff measure of a
rectangle in R? is its surface, we have

UQ(@D) < 0'2(89 X [0, ID + iUg(@Pn)
n=1

< 01(09) + Z 227" < 0.

n=1

Let u,(z,y,2) = p(2"z). Then wu,, converges to 0 in L?(£2) as n — oo. Moreover,
since supp[Vu,] C {z: 27771 <z < 27"}, by (2.16) we have,

/ \Vu, | dedydz < ei(n+1)27 () 4 22”/ |p/ (2"x)|? dadydz
D

Ppya
< e+ 1270 4 112 122 )

n

— 0 as n — oo.
Thus lim,, oo %, = 0 in H*(D). Since u,, € HY(D)NC(D),0 < u, < 1land u, =1

on E := {0} x [0,1] x [0,1] € 0D, it follows that Capg(E) = 0 but oy(E) = 1.
Thus Cap(FE) > 0. O

2.4 Another Characterization of H}(2).

Let © C RY be an open set. It is well-known (see [15, Theorem 1.1] or [55, Example
2.3.1]) that
HY(Q)={uec H'(RY): 2 =0 qe. on RV \Q}. (2.17)
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The following result gives a characterization of HJ (£2) in term of the relative
capacity.

Theorem 2.4.1. Let Q C RY be an open set. Then
HY Q) ={ueH'(Q): =0 r.qe on 00}

To prove the theorem, we need the following abstract result which is contained
in [55, Theorem 4.4.3].

Theorem 2.4.2. Let (a, D(a)) be a reqular Dirichlet form on L?(X,m) where X
and m satisfy (1.3). For each Borel set B C X, the space

D(a)p :={u€ D(a): &=0 g.e. on B}

is a closed subspace of (D(a), ||-||a), where the capacity is taken with respect to the
reqular form (a, D(a)).

If B is closed then the restriction of the form a to the domain D(a)p is a
regular Dirichlet form on L?(X \ B,m). In particular, the space

Cp(X):={ue D(a)NC.(X) : supplu] C X \ B}
is dense in D(a)p.
Proof of Theorem 2.4.1. Let
HY Q) :={ue H(Q): @=0 r.qe. on 00}

Let u € H}(Q). Then u € HY(RY) and @ = 0 q.e. on RY \ Q (where @ denotes
the q.c. version of w). Since for every A C Q, Capg(A4) < Cap(A), it follows that
we HY(Q), @ is r.q.c. and @ = 0 r.q.e. on d. This implies that u € fNI&(Q) and
thus HL(Q) C H ().

To prove the converse inclusion, let

D:={uc H(Q)NC.Q): ulga = 0}.

Then D C IA{TI(Q) Since 01 is relatively closed in 2, by Theorem 2.4.2, the closure
of D in H() is ﬁé (). Since H}(Q) contains D (see the proof of Proposition
3.2.1 below) and is a closed subspace of H'(Q), it follows that H} () c HL(Q)
which completes the proof. O

Next we ask the following question. Is it possible that for an open set (2
we have H'(Q) = H{(Q)? The following results say that this is not possible for
bounded sets, but is well possible for unbounded sets.

Proposition 2.4.3. Let Q@ C RN be a bounded open set. Then Capg(0€) > 0.
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Proof. Assume that Capg (9€2) = 0. Then, by Theorem 2.4.1, the space H} ()
is equal to H Q). Since Q is bounded, it follows that the constant function
1 € H(Q) N C(9) and we obtain that 1 € H*(Q). But 1 ¢ HL(Q) which is a
contradiction and thus Capg(9€2) > 0. O

Theorem 2.4.4. Let 2 C RN be an open set. Then the following assertions are
equivalent.

(i) Capg(0€2) = 0.
(ii) Q@ =RYN and Cap(02) = 0.
(iii) HL(Q) = H'(RN).

Proof. (i) = (ii). Assume that Capg(0Q2) = 0. Then by Theorem 2.4.1,
H(Q) = HY(Q) and thus H* () has the extension property (since HZ () has the
extension property by [41, p.252]). By Theorem 2.3.4, this implies that Cap(92) =
0. Next, since Cap(9Q) = 0 and RY \ 9Q is an open subset of RY, it follows from
[7, Proposition 3.10] that RY \ 9Q is connected and thus = RY.

(ii) = (iii). Assume that Q = RY and Cap(9€2) = 0. Then RM\ Q =Q\Q =
09 and this implies that Cap(R™ \ Q) = 0. By the characterization of Hg (£2) given
by (2.17), this implies that H(Q) = HY(RY).

(iii) = (i). Since we assume that HE(Q) = HY(RY), it follows that Cap(R™ \
Q) =0. As Q CRY and 90 := Q\ Q C RV \ ©, we obtain that Cap(9€) = 0 and
therefore by (2.13) Capg(9€2) = 0 which completes the proof. O

2.5 Comments.

Section 2.1.

The classical capacity has been introduced in [2], [23], [43], [53], [55], [69], [73],
[75] and of course many other authors. We can find a proof of Theorems 2.1.2 and
2.1.3 in [2], [43], [53] and [55]. The proof of Theorem 2.1.5 given here is taken from
[43, Theorem 4 p.156].

Section 2.2. ~
We have defined the relative capacity with the Sobolev space H!(2). Here we have
used the form (ax, H'(Q)) defined by

an(u,v) = / VuVou dx
Q

which is a regular Dirichlet form on Q.

In general, without any geometric condition on €2, the form (ay, H*()) is
not a regular Dirichlet form on Q since H'(Q)NC.(Q) is not always dense in H*(Q2).
The domain 2 of Remark 2.3.3 is an example, but for this domain, 9 # 09Q. For
domains in RY where 0Q = 9Q and H' () # H*(Q) we refer to [73, Section 1.1.6].
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Chen [29] has proved that there exists a regularizing space Q containing )
as a dense open subset such that (ay, H'(Q)) is a regular Dirichlet form on €.
Such € is obtained by compactification. Moreover, each domain 2 may have many
regularizing spaces and if Q is regular (for example Lipschitz) then one may take
Q to be Q. Note that the regularizing space Q is not always a subset of RV,

It is possible to define a notion of capacity with respect to every Dirichlet
form. We have used regular Dirichlet forms because we need some kind of regularity
of functions in the Dirichlet space. For example the fact that every function has
a quasi-continuous version (Theorem 2.1.3) is true if the capacity is defined with
respect to a regular Dirichlet form or (weaker) a quasi-regular Dirichlet form (see
[69]). The notion of regular measures with respect to a given capacity which we
will introduce in Chapter 3, is also true for a capacity defined with respect to a
regular Dirichlet form or (weaker) a quasi-regular Dirichlet form.

The notion of relative capacity will be used to obtain a necessary and suffi-
cient condition for the closability of a class of bilinear forms which we will define
in Chapter 3.

Section 2.3. N

By Proposition 2.3.4 and Theorem 2.1.5, if H(2) has the continuous extension
property, then the restriction o of HN~! to Q2 does not charge relatively polar
sets in B(0N). Examples 2.3.8, 2.3.9 and 2.3.10 say that the measure o charges
sometimes relatively polar Borel subsets of 0f). In particular, this says that rel-
atively polar subsets of 92 are not always polar. We shall see in Chapter 4 that
for some subsets Q of RV as in Examples 2.3.9 and 2.3.10, we can find some se-
quence of functions u,, € H'(Q) N C(Q) such that u,, converges to zero in H'(£2),
unloq is a Cauchy sequence in L?(9€,0) but u,|sq converges to some function
h € L?(09, o) which is not zero o a.e.

_ Example 2.3.8 will also be used in Chapter 4 to prove that the embedding
H'(Q) — L*(Q) is not always compact.

Section 2.4.

Another proof of Theorem 2.4.1 is contained in [17]. Since H} () can be character-
ized in terms of the relative capacity, it is also possible to give a characterization in
terms of the Hausdorff measure for some regular sets. If Q is regular (for example
Lipschitz), since each function u € H*(Q) = H(Q) has a trace u|pq € L2(99,0)
it is easy to see that u € H(Q) if and and only if u € H*(Q) and u|pq = 0 o-a.c.
on 0N). Therefore, in that case, assuming that w is r.q.c., we have that u = 0 r.q.e.
on 0N is equivalent to u|spn = 0 o-a.e. on ON.



Chapter 3

General Boundary Conditions
for the Laplacian

Let © C RY be an open set. We will define a realization of the Laplacian on L%(Q)
with boundary conditions containing the cases Dirichlet, Neumann and Robin.
Throughout this chapter the underlying field is R.

3.1 Presentation of the Problem.

Let u be a Borel measure on 02 and let

E:={uc H(Q)NC.(Q) : /89 |u|? du < oo}

Define the bilinear symmetric form a, with domain E on L?(£2) by

ay(u,v) ::/Vqudx+/ uv dps. (3.1)
Q 19]9)

It is natural to ask when (a,, E) is closable on L?()? Let u,, € E be such that
U, — 01in L*(Q) as n — oo and limy, ;,—c0 @y (Un — U, Up, —Up,) = 0. Since u,, — 0
in L2(Q) and is a Cauchy sequence in H*(f2), it follows that u, — 0 in H(Q) as
n — o00. The following example shows that u,|sq does not always converge to zero
in L2(0%, p).

Example 3.1.1. Let Q be a bounded domain in RY where N > 2. Suppose that
HY ()N C(Q) is dense in HY(Q). Fix z € 9Q and let p := §, the Dirac measure
at z. Since H1(Q) N C(Q) is dense in H!(R), there exists u,, € H'(Q) N C(Q) such
that u, — 0in H*(Q) as n — oo and u,(z) = 1 for all n > 1. For a such sequence,
we have limy, 1,00 @y (Un — U, Up — Up,) = 0 but lim,, oo @y, (un, u,) = 1 and thus
a,, is not closable.
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Since (a,, F) is a symmetric bilinear positive form, by Theorem 1.3.11, there
exists a largest closable form ((a,),, F) which is smaller than (a,, E). Using Theo-
rem 1.3.11 and the characterization of closed ideals in LP-spaces given in Theorem
1.2.4, we will construct the closure of the largest closable part of (a,, E) and we
will denote its domain by V. Since this closed form ((a,), V') is symmetric and
densely defined, we can then associate with it a selfadjoint operator A, on L?()

with domain D(Ai/Q) = V. We will obtain that A, = Ap (the Laplacian with
Dirichlet boundary conditions) if y is locally infinite everywhere on 9Q. If u = 0 or
if 1 is concentrated on a subset B of 02 such that Capg(B) = 0, then A, = Ay
(the Laplacian with Neumann boundary conditions). The case y = o (the re-
striction to 99 of the (N — 1)-dimensional Hausdorff measure) or more generally,
the case where pu is absolutely continuous with respect to o corresponds to Ag
(the Laplacian with Robin boundary conditions) which we will study in detail in
Chapter 4.

We will also show that in all cases, the operator A, generates a holomorphic
submarkovian Cy-semigroup on L?(Q) which is sandwiched between (e!2?);>¢ and
(€"2%)i>0.

The relative capacity defined in Chapter 2 will play an important role here.
We shall prove that we always have the following situation:

1. If p is locally infinite everywhere, then (a,, F) is always closable on L?().

2. If u is a Radon measure, then (a,, E) is closable on L?((2) if and only if
the measure p does not charge relatively polar Borel subsets of 0€; i.e., u is
absolutely continuous with respect to the relative capacity.

It follows from 1. and 2. that if p is locally finite on a part of 09, then (a,, F)
is closable on L2(2) if and only if the restriction of x to the part on which it is
locally finite does not charge relatively polar Borel subsets of this part.

3.2 Closable Part by Reed-Simon’s Method.

This section is devoted to the construction of the closable part of the form (a,, E)
defined in Section 3.1. This method of construction has been used by Daners [34]
for the case where y = 0. Throughout this section 2 will denote an open subset
of RV,

Proposition 3.2.1. Let u be a Borel measure on 02 and assume that p is locally
infinite everywhere on 09); i.e.,

Ve € IQ and r >0 p(B(z,r)NoN) = . (3.2)

Then the form a,, is closable and its closure which we denote by a~ is given by

Goo (U, V) = / VuVv dx
Q
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with domain Hg(S2).

Proof. Let u € E. Since u is continuous on Q, it follows from (3.2) that
ulog = 0 and thus E = {u € HY(Q) N C.(Q) : ulspa = 0}. One obtains that for all
u,v € F,

oo (U, V) == a,(u,v) = / VuVo dx.
Q

It is clear that (@, E) is closable on L?(€2).

Next we prove that £ C H}(2). Let u € F and fix a function G € C*(R)
such that
0 i <1

Gt)| <|t|VteR and G(t) :=
GO <14 ¥t € R and G(t {t o

Set u,, := LG(nu). Then |u,(z)| < L |nu(z)| = |u(z)| € L*(Q). Similarly,
| Diun (2)| < |G (nu(@))| |Diu| < |Diul € L*(9).

Thus u,, € H*(Q). It follows from the Lebesgue Dominated Convergence Theorem
that u,, — w in H*(2). Moreover supplu,] C {z € Q: |u(z)| > 2} which is a
compact subset of Q. Then u, € Hg(2) and we obtain that u € HE (). Since
E C H}(Q) and it contains D(R), it is dense in H}(Q) and it follows that the
closure of (aw, E) is given by

(oo (U, v) = / VuVv dx
Q
with domain H} () which corresponds to the form of the Laplacian with Dirichlet
boundary conditions. O
Example 3.2.2. Assume that the measure g = 0. Then E = H'(Q) N C.(Q). Thus
the closure of (ag, E) is given by
ap(u,v) = / VuVu dx
Q
with domain H* (Q) which corresponds to the form of the Laplacian with Neumann
boundary conditions.

It is also possible to have a measure p which is locally finite only on a subset
of 0. In this case, we set

I :={z€00: u(B(z,r)NON) =ocoVr >0}

Note that I's, is a relatively closed subset of 9. As above, u|p, = 0 for each
function u € E. Since T' := 9Q \ T'w, is a locally compact metric space, it follows
from [85, Theorem 2.18 p.48] that p|r (the restriction of p to I') is automatically
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a regular Borel measure. Therefore p is a Radon measure on I'. Without any
restriction we may assume that if p is not locally infinite everywhere on 0f2, then
it is Radon measure on 0f); i.e. I' = 01).

In the following, we proceed as in the construction of the closable part in
Theorem 1.3.11. Let L : H*(Q) — L?(Q) ® L?(Q)" be defined by L(u) := (u, Vu).
It is clear that L is an isometry. We then identify the first order Sobolev space
H(Q) with L2(Q) @ L2(Q2)N by the isometry L. Let

Ey := {(u, Vu,ulpq) 1 u € E} C L*(Q) @ L* ()N @ L*(99, p).
Let V be the closure of Ey in the Hilbert space L2(Q)@&L2(Q)N G L2 (9, ). Then V
is a Hilbert space and for (u,v,h) € V, we have u € H(Q) and Vu = v. Let i be the
natural embedding from E into L?(Q2) and j : V — L?(Q) its continuous extension.
We know that (u,v,h) € V if and only if there exists u,, € E C H'(2) N C.(Q)

satisfying: u,, — uin H'(Q), Vu = v and u,|pq — h in L2(0Q, u). Since (u, v, h) €
V if and only if u € H(Q) and Vu = v, it follows that ker j = {(0,0,h) € V'}. Let

F:={heL*0Qpu): (0,0,h) € V}.
Proposition 3.2.3. There exists a measurable set S C 02 such that
F={heL*0Qu): h=0p-a.e on S} (3.3)
The proof uses the following two lemmas. Let

Co(00) :={be C(0Q): lim b(z) =0}.

Lemma 3.2.4. We have Co(ON)F C F.

Proof. 1) Let ¢ € C}(RY), then ¢|asoh € F for every h € F. In fact, let
h € F. Then there exists u, € H'(Q) N C.(Q) such that u, — 0 in H'(Q) and
unlog — h in L2(0Q, u). It is clear that yu, € HY(Q) N C.(Q). Moreover,
[bunlliney = IYual3 + 1V @un)l3
< 1l o) + IV 113 lluall3
— 0asn — oo.

We also have

|(Yun)lo — Ylaahllzoo < [Yloallslltn — hllL2 00,
— 0asn— oo.

Thus QME)Qh € F.
2) By the Stone-Weierstrass Theorem, the space {¥]gsq, ¥ € CHRYN)} is
dense in Cy(02). We obtain the lemma by passing to the limit. O
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Lemma 3.2.5. Let G be a closed subspace of L*(0Q, i) such that Co(0Q)G C G.
Then L™ (0Q, 1)G C G.

Proof. Let b € L*>®°(9Q, ) and v € G. We want to prove that bv € G. For
ke N*:=N\ {0} let

Ap = {z € 00 - \v(x)\Z%}and A= {z €09 : [v(@)] £ 0}

Then, Ay = U, Ak. As v € L?(0Q, p), it follows that p(Ay) < co. By Lusin’s
Theorem ([43, Theorem 1, p.15]), for every k € N* there exists a compact set
Ck C Ag such that u(Ag \ Ck) < % and b|¢, is continuous. By Tietze’s Theorem
[43, Theorem 1 p.13], there exists g, € Cp(92) such that gi|c, = b and

191 lloe < [1B]]co- (3.4)

We can suppose that Cy C Ci11 (since Ay C Ag11). Now we prove that g — b p
a.e. on Ag. Let

1
By, :={x € Ao : |gr(z) — b(x)] < — for almost all k}
n

(for “almost all k 7 signifies for all k except a finite number of k). Then B,,11 C By,
and (,en Bn = {z € A : limp_c gu(x) = b(z)}. Suppose that ([, cy- Bn) =
Unen- By, is of positive measure. Then there exists n € N* such that u(By,) > 0.
Set ¢ = 1, then

n

C:=B; ={x € Ay: |gr(x) — b(x)| > € for an infinite number of k}

satisfies u(C) > 0. As Ay, T Ay, there exist kg € N*, 6 > 0 such that u(CNAg,) > 9.
For all k£ > ky we have

p(C1 A) = (€ N C) + (O N (A \ Cr)) < p(CNCe) + 1

which implies that for all k£ > kg,

1 1
n(C'NCy) ZH(CﬁAk)—E 25—E
and therefore

uw(CNCy) >0

for k large enough. Since b = g on C} this is a contradiction. It follows that
gr — b pa.e. on 09. Since by Lemma 3.2.4 Cy(00Q)G C G, it follows that gxv €
G. Using the inequality (3.4) we obtain that |gxv|> < ||b]|ec|v|?. It follows from
Lebesgue’s Dominated Convergence Theorem that grv — bv in L2(9€, i). Since
G is closed in L?(0Q, i), we have that bv € G. a
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Proof of Proposition 3.2.3. It follows from Lemma 3.2.5 that F' is a closed
ideal of L?(0€, ). In fact, let u € F and v € L?(99Q, u) satisfying

0 < |vf < ful. (3.5)

We have to show that v € F. The inequality (3.5) implies that 2 € L°°(9, u).
Since v = Zu and by hypothesis ¥ € L> (9, u1), this implies that v € F'.

u
Finally, since p is a Radon measure which is o-finite, the result is a conse-
quence of Theorem 1.2.4. O

Next we define the following subspace of H'(Q)
Vi={ue H'(Q):3he L*S,u): (u,Vu,h) eV}

where
L*(S, ) == {h € L*(09%, p1) : h = 0 p-a.e. on S°}.

It is clear that H}(Q) C V, and thus V is a dense subspace of L?(Q). It is also a
Hilbert space for the norm

1/2
lully == (nunip(m + /S h|2du) .

Proposition 3.2.6. For u € V, the function h € L*(S, 1) is unique.

Proof. Let hy,hy € L2(S, 1) be such that (u, Va, hy), (u, Vu, hy) € V. Then
(0,0, h1 — he) € V which implies that h; — hy € F' and thus (h; — h2)|s = 0 p a.e.
But h1 = ho =0 p a.e. on S¢ and therefore h; = ho p a.e. O

Definition 3.2.7. We call h the trace of u and we note u|g := h.

Lemma 3.2.8. The following assertions are satisfied.
a) Ifu €V then ut € V and the mapping u—— ut : V — V is continuous.

b) If u € Vi then (u—1)" € Vi and the mapping u — (u— 1) : Vi — V4
18 continuous.

¢) IfueV then ut|s = (u|s)™.
d) If ue Vy then (u—1)"|s = (u|ls — 1)T.

Proof. The Sobolev space H'(f2) is a lattice and satisfies the properties a)
and b) (see Comments). The space E is also a sublattice of H'(Q) and is dense in
V' and satisfies the properties ¢) and d). We obtain the lemma by passing to the
limit. O
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Next, let the bilinear form which we denote by ((a,), V) be defined by

(ap)r(u,v) = / VuVv da:+/uv dp.
Q S

It is clear that ((a,),, V) is closed on L?(2). We will denote by A, the selfadjoint
operator on L?(§2) associated with ((a,)., V); i.e.,

{D(AM) ={ueV:IveL2Q): (a)r(u,p) = (v,0) Ve V} (36)

Apu = —v.

Since for each u € D(A,,) we have

/Vthp dx—|—/u<p duz/w dx (3.7)
Q s Q

for all p € V, if we choose ¢ € D(R), the equality (3.7) can be written

<_Au7 <P> = <U7 QO>

where (,) denotes the duality between D(£2)" and D(f2). Since ¢ € D(Q) is arbi-
trary, it follows that

—Au=v in D(Q).
Thus A, is a realization of the Laplacian on L?({2). By the Reed-Simon construc-
tion (Theorem 1.3.11), ((a,)r,V) is the closure of the closable part of (a,, E).
Since  is arbitrary (without any regularity assumption), we need some further

results to characterize the notion of trace given in Definition 3.2.7. We shall give
this characterization in Section 3.3.

3.3 Relative Capacity and Closability.

Let Q C RY be an open set. By the results of Section 3.2, we know that if y is
locally infinite everywhere on 942, then (a,, F) is always closable on L?(f2) and its
closure is the form of the Laplacian with Dirichlet boundary conditions. We can
have a problem of closability of (a,, E) if p is locally finite on 02 or locally finite
only on a part I' C 99. Let

Mo = {p: Borel measure on 9Q: Capg(N)=0= u(N)=0V N € B(0Q)}.

Theorem 3.3.1. Let u be a Radon measure on 02. Then the following assertions
are equivalent.

(i) The form (a,, E) is closable on L*(9).
(i1) pe M,.
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Proof. (ii) = (i). The condition that y is locally finite is not necessary for this
part. Let u, € E be such that uy, — 0in L*(Q) and limy, ;00 @y (tn—uk, tp—ug) =
0. It is clear that uy — 0 in H'(2). By Theorem 2.1.3 applied to the relative
capacity, the sequence (uy) contains a subsequence (wy) which converges to zero
r.q.e. on €. Since u € Moy, it follows that wi|ag — 0 p a.e. Without lost the
generality, we may assume that ux|spo — 0 p a.e. Since uy is a Cauchy sequence
in L?(0Q, ), it follows that up, — 0 in L*(99, p) and thus the form (a,, E) is
closable on L?((2).

(i) = (ii). Assume that there exists a Borel set K C 92 such that
Capg(K) = 0 and p(K) > 0. We may assume that K is a compact set. Since
Capgq(K) = 0, by Theorem 2.2.4, there exists a sequence uy, € H'(2)NC.(Q) such
that

0<up <1, up=1o0n K and |lug|[g10) — 0 as k — ooc.

Let (A;) be a sequence of relatively open sets with compact closure satisfying

K CAiy1 CA; COQ, ﬂE:K and pu(A;) — p(K) as i — oo.

There then exists a sequence v; € D(RY) such that supp[v;] C A;, v; =1 on K
and 0 < v; < 1. Clearly, vilo € H' () N Ce(Q) and |lupv;|| (o) — 0 as k — oo.
For all i > 1 we have uzv; € H'(Q) N C.(Q). Moreover, for all i,k, 0 < upv; < 1
and ugv; = 1 on K. For all 4 > 1, we choose k; € N such that [|ug,vi|| g1 (o) < %
Let w; = ug,v;. Then w; — 0 in HY(Q) asi — 00, 0 <w; <1 and w; = 1 on K.
Moreover w; — Xk pointwise since supplw;] C A;. We choose I large enough such
that for i > I we have |w;(z)|> < ¢ for all z € 90\ K. Then for 4,5 > I we obtain

/ |wi —wy|* dp / |wi — w;|? du+/ |wi —wy|* dp
a0 K OONK

= / |wi —wy|* dp
90\ K

< 2e.

Thus w; is a Cauchy sequence in L2(9Q, 11). Since w; = 1 on K it follows that
[will72 (a0, = #(K) > 0.
The existence of a such sequence contradicts the closability of a,,. O
Corollary 3.3.2. Let p be a Borel measure on 02 and let
Fi={z€0Q: 3r>0: u(B(z,r)NON) < co}

be the relatively open subset of 02 on which w is locally finite. Then the following
assertions are equivalent.

(i) The form (a,, E) is closable on L*().
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(i) The measure p does not charge relatively polar Borel subsets of T.

It follows from the preceding corollary that the class My can be defined

My = {p: Borel measure on 9Q: Capg(N)=0= pu(N)=0V N € BI)}
where I' denotes the relatively open subset of 92 on which p is locally finite.
Example 3.3.3.  a) Consider the form (a,, E) defined in Example 3.1.1 by

a,(u,v) = /QVUV’U dx + u(z)v(z), z € 09.

We have shown that this form is not closable on L?(£2). Since Capg ({z}) = 0
and p({z}) > 0, it follows that © ¢ Mg and by Theorem 3.3.1, (a,, E) is not
closable on L?(Q2).

b) Assume that Q@ C R is a bounded domain; i.e., Q = (a,b). Then for every
x € [a,b], we have Capg({z}) > 0. This follows from the fact that H'(a,b) =
H*'(a,b) = Cl[a,b]. We consider the form (a,,, E) defined by

a,(u,v) = /ab u'v" dx + u(a)v(a)

with E = H'(a,b)NCla,b] = H'(a,b). Since 1 € My, it follows that (a,, F)
is closable on L*(Q).

Let 1 be a Borel measure on 0f) in My. By definition, the domain V of the
closure of the form (a,, E) is the completion of E with respect to the a,-norm.
The following result gives a characterization of V. Before, note that, throughout
the following, for u € H'(f2), we will always choose the r.q.c. version @& which is
Borel measurable.

Proposition 3.3.4. Let pu be a Borel measure on 082 in Mg. Then
V={ueHYQ): @e L*00Nu} (3.8)
where U denotes the r.q.c. version of u.

Proof. Let B
W={ue H(Q): @€ L0 u)}.

Recall that

E={uec H(Q)NC.Q): / lu|? dp < oo}
oQ
It suffices to prove that E is a,-dense in W. Let I', be the relatively closed subset
of 9Q on which p is locally infinite. Set I" := 02\ TI'oc and X := QUT. Then X is
relatively open and

H(Q)NC(X)CEC{ueH(Q): =0 rqe on I'y}:=FE
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where
Co(X) :={uecC(Q): supp[u] C X}.
Note that, in general, C.(X) is defined differently. If x is a Radon measure on 02
then I'se = 0. Notice that E is a closed subspace of H!() (see Theorem 2.4.2).
a) We claim that W is dense in E. Indeed, since X is relatively open, it follows
from Theorem 2.4.2 that H*(Q) N Co(X) is dense in E. Since H'(2) N C,(X) C

W C E, the claim is proved.

b) Let I, be an increasing sequence of relatively open subsets of I' such that
T) cT and Up T =T and let X}, := QUT. Then X}, is relatively open for each
k € N. Let

Ey = {u€eE: a=0 rqe on I'\I}}
= {ueﬁl(Q): @=0 r.qe on IN\Tx}.

Since H'(2) N C(X) C Uy Ej, it follows that U E} is dense in E. Since X}, is
relatively open, by Theorem 2.4.2, the space

HY Q)N C.(Xp) :={uec HY(Q) NC(Q) : supplu] C Xi}
is dense in Ek. Let

E' = {ucEy: ae L}y, p)}
= {ueﬁl(Q): =0 r.qe on OQ\Ty: @€ L*(Ty,p)}

be equipped with the a,-norm. We claim that H'(Q) N C.(Xy) is a,-dense in E,‘:
Indeed, let u € E,’j . Without restriction, we assume that u is r.q.c. By considering
u" and u~ separetely and making truncations if necessary, we may assume that
0 < u < v for some constant . Since u € FEj, it follows from the above that
there exists a sequence u,, € H'() N C.(Xk) such that u, — u in Ex (i.e. in
H()). Put uy = (0 V uy) Ay for each n. Clearly u) e HY(Q) N Co(Xy)
and it converges to w in ﬁl(Q) as n — oo. By Theorem 2.1.3 applied to the
relative capacity, there exists a subsequence which we also denote by u%y) such
that v — wu r.q.e. and in particular x a.e. (since 1 € My). Since u(T'y) < oo,

we have that uﬁf’) — wu in L?(Ty, ) by the Lebesgue Dominated Convergence

Theorem proving that ) — u in E! and the claim is proved.
c) Let
Wiy == {ueW: 4=0 r.qe on 9Q\T';}

= {ueHY(Q): =0 rqe on I\Ty: @€ LTk, p)}.

It is clear that for each & € N we have W, = E,’: We claim that (J, Wi = U, E,‘;
is dense in W. Indeed, let u € W and suppose v > 0 a.e. so that u > 0 r.q.e.
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Let uy, € U, E}, be a sequence which converges to u in E. Let v, = (u A uy) V0.
Then v, — u in E. Taking a subsequence we may assume that v, — u r.q.e. Thus
Up, — @ p-a.e. and also 0 < ¥, < @ p-a.e. so that ¥, — @ in L*(T,u) by the
Lebesgue Dominated Convergence Theorem. Since v,, already converges to u in E ,
we have that v,, — u in W. Moreover, v,, = 0 whenever u,, = 0 and so v, € Wy
for some k € N. For arbitrary u € W, we apply this argument separetely to the
positive and negative parts, u*, u~ which completes the proof of the claim.

d) Now, since H'(Q)NC.(X) = U, H'(Q2)NCe(X) and W), = EV, it follows
from b) and c) that H'(Q) N C.(X) is dense in W and therefore E is dense in W
and the proof is complete. O

It follows from the preceding proposition that for a given Borel measure on
0 in My, the closed form (a,, V) is given by

a,(u,v) = / VuVv d:z:+/ U dy,
Q o

where V' is given by (3.8).

Next we give the following decomposition of Radon measures.
Lemma 3.3.5. Let R be the set of all Radon measures on 0. For each u € R there
exists a unique pair (fr, frs) of measures on (02, B(OSY)) such that
a) p= pr + fs.
b) pr(A) =0 for every A € B(0S) with Capg(A) = 0.
¢) ps = xnp for some N € B(9Q) with Capg(N) = 0.

Proof. 1) We prove the uniqueness of the decomposition. Assume that there
exist fi, and fi, such that p = fi, + i, with fi, = x gp for some relatively polar
Borel set N. Then Wy — flp = s — ps. Let M := N U N. Then M is a relatively
polar Borel set. By definition, for every A € B(92), we have that

(1 — ir) (A) = (i — 1)(A) = (is — ) (AN M) = (st — i) (A1 M) = 0.

Thus p,(A) = fi-(A) and ps(A) = fis(A) for every A € B(92) with completes the
proof of the uniqueness.

2) We see the existence of u, and fs.

(i) Let K C 0N be a compact set. We show that there exists S C K such
that ysu € Mo and Capg (K \ S) = 0. Since pu(K) < oo, it follows that

a:=sup{u(4): A € B(0N),A C K and Capg(A) =0} < oc.

Take an increasing sequence A4,, € B(92) with A4,, C K such that Capg(4,) =0
for all n and lim,_,oo p(Ar) = a. Let N := U2, A,. Then N € B(0Q2), N C K,

Capg(N) < ) Capg(An) = 0= Capg(N) =0

n=1
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and
p(N) = (U An) = lim pu(An) = a.

We show that u(B\ N) = 0 if B C K is a Borel set such that Capg(B) = 0.
Assume that (B \ N) > 0. Let A = BUN. Then Capg(A4) = 0 but u(A) =
w(B\ N)+ p(N) > a contradicting the definition of a. Now let S = K \ N. Then
Xsp € Mgy and Capg (K \ S) = 0.

(ii) Let K, C K,41 be compact sets such that K,, C K, 1 and |J,cy Kn =
0. By (i) there exist sets S, C K, such that xgs, p € Mo and Capg (K, \S,) = 0.
Let S := U, ey Sn and N := 00\ S. Then

#(A\ N) =0 for every A € B(0Q2) with Capg(A4) = 0. (3.9)
We then define p,., s by

pr 2= xsp and g = XNp-

Obviously, (ur, 1s) enjoys the properties a) and c¢). Moreover, (3.9) implies that
b) is satisfied. O

Definition 3.3.6. We call the measure .. the regular part of u with respect to the
relative capacity.

Remark 3.3.7. If u is not a Radon measure on 0X), since its restriction to the
part T' on which it is locally finite is a Radon measure, we can also decompose

ulr = pr + ps as in Lemma 3.3.5. For simplicity, we assume throughout the
following that T' = 09.

Proposition 3.3.8. Let pu be a Radon measure on 00 and u = p, + us be its
decomposition as in Lemma 3.3.5. Then the closure (a,, ,V) of the closable part
of (au, E) is given by

ay, (u,v) = /QVqu dx + /{m U dy, (3.10)

/Vqu da:+/116 dp
Q s

V={ueH(Q): aeL*0 u)}

with domain

where S := 00\ N.

Proof. a) We show that the form (a,,,V) is closed on L?(Q). It suffices to
prove that (V| - ||a, ) is a Hilbert space. Let u, € V be a a,, -Cauchy sequence.
We assume that the u,, are relatively quasi-continuous. Then

m  f|up — um|m@) + Um flun — unllz260,4,) = 0.
n,m—00 n,Mm— 00
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Since u,, is a Cauchy sequence in 1’?1(9)7 it converges to an element u € fII(Q)
By Theorem 2.1.3 b), after taking a subsequence if necessary, we may assume that
w is r.q.c. and u, converges to u r.q.e. on €. Since pu, € My, this implies that
Un|on converges to ulgpq pr-a.e. Since uy,|gq is a Cauchy sequence in L2(99, ),
it converges to an element h € L%(0%Q, u,.). After a subsequence, we may assume
that u,|aq converges to h p-a.e. Now the uniqueness of the limit implies that
h = ul|pq pr-a.e. Therefore u|pg € L2(9Q, p,) and thus (V]| - lla,, ) is complete.

b) Let (ar, D(a,)) be the closure of the closable part of a,,. We have to prove
that a, = a,,.. Since q,,, is closed (by a)) and a,, < a,, it follows that a,, < a,.
Let us prove that a, < a, . Since ps := xn - p is a regular Borel measure, there
exists an increasing sequence of compact sets K, C N such that ps(N\U,K,) = 0.
Since N is relatively polar, it follows that Capg(K,) = 0 and as K, is a compact
set, there exists a sequence 9, € H*(Q) N C.(Q2) such that:

0<v, <1, ¢, =1o0nK,, ¥, —0in H(Q) as n — oo.

(1) We show that a,(¢,¢) < a,. (v, @) for every ¢ € E which is dense in V
and in D(a,). Let ¢ € E and ¢, = (1 — 9, )¢. We claim that ¢,, — ¢ in H(Q).

In fact,
/I%—s@lem = /\wwnl2 dx
Q Q

< ||so||§o/9|wn|2dwo (n — 00).

A

Thus ¢, — ¢ in L*(Q). Moreover, it is clear that Djp, = (1 — ¥,)Djp —
(Djon)p — Dje (n — o0) in L*(Q) since ¥, — 0 a.e. in Q and Dj, — 0
in L?(Q). We have shown that ¢, — ¢ in H'(Q). By Theorem 2.1.3 b), the se-
quence ¢, contains a subsequence which we also denote by ¢, which converges
r.q.e. on Q. Since p, € My, we have that v, |sa — @laa pr a.e. Since |@,| < |0,
it follows from Lebesgue’s Dominated Convergence Theorem that ¢,|aa — ¢|oa
in L2(9%, u,-). By construction ¢, |sn — 0 ps a.e. and by Lebesgue’s Dominated
Convergence Theorem again,

/leonlzduHOasnﬂoo. (3.11)
Thus we obtain that
wdim au(en = m, on = Pm) = 0.
Using the fact that the form a, is closed and (3.11) we obtain that

ar(@v 90) = nlgr;o ar(@na Qon) < nlggo au(cpna Qon) = nlggo Ap,. (<pna Qon) = Ay, (Qoa (,0),

where in the last equality, we use the fact that a,, is closed.
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(i) We show that a, < a,,; ie., V C D(a,) and ar(¢,¢) < au, (@, @) for
every ¢ € V. Let ¢ € V. There then exists a sequence ¢,, € E such that ¢, — ¢
in V. It follows from (i) that a,(¢n — @m,¥n — ©m) < u, (Pn — Cm, Pn — Om)
and this implies that ¢,, is a Cauchy sequence in D(a,) and then converges to an
element ¢ € D(a,). Since ¢, — ¢ in L*(Q), the uniqueness of the limit implies
that ¢ = ¢ € D(a,) and thus V' C D(a,). Finally, since a,(¢n, ¢n) < apu, (@n, ©n),

taking the limit as n — co we obtain that a, (¢, ¢) < a,, (¢, ¢) for all ¢ € V. Thus
a, < a,, which completes the proof. O

Remark 3.3.9. Since the closed form ((a,)r, V) constructed in Section 3.2 is by
construction the closure of the closable part of the form (a,, E), it follows from
the preceding proposition that ((ay)r, Vi) = (ap,., V) and therefore the set S C OS2
of Lemma 3.2.5 is exactly 00\ N. In fact, recall that

V,={uecHYQ): 3hec L*S,pu): (u,Vu,h) eV}

where
L3S, ) :=={h € L*(0Q, 1) : h=0p a.e. on OQ\ S},

and V is defined in Section 3.2. Proof. Let u € V. There then exists a sequence
u, € FE such that wu, converges to u in Hl(Q) and wuy,|gq converges to @ in
L2(09, p,-) where @ denotes the relatively quasi-continuous version of u. As in the
proof of Proposition 3.3.8, the sequence u,, can be chosen such that fasz\s [un|? du

converges to zero as n — oo. Now let h := iixs. Then h € L*(S,p) and uy,|s0
converges to h in L?(9€, p). We have shown that V C V.

To prove the converse inclusion, let u € V,.. By definition, there exists h €
L3(S, ) such that (u, Vu, h) € V. This means that, there exists a sequence u,, € E
such that u,, — u in H*(Q) and u,|sq — h in L?(99, ). Since

/\unfhﬁdy:/\unfm?dw/ 2 di;
a0 s a0\ S

which converges to zero as n — o0, it follows that

/ [, — h|* dp = / |ty — R|* dpsy
S [5}9]

converges to zero as n — 00. Proceeding as the proof of the preceding proposition
we obtain that u,|aq — @|aq pr-a.e. and the uniqueness of the limit implies that
h = 1lgq pr-a.e. We have shown that V. C V. O

It then follows that for every u € V, the trace h of u defined in Definition
3.2.7 is in fact xsu.

Example 3.3.10. Let Q C RY (N > 2) be a bounded domain and let

[:={z, €00: neN}, z, # 2, forn#mandﬂi—z *125%
n
neN
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where we assume that I' is dense in 02 and ¢, denotes the Dirac measure at z.
Since N > 2, for each n € N we have Capg({z,}) = 0 and thus Capg(T") = 0.
But p({z,}) > 0. We obtain that the regular part p, of p is the measure 0 and ag
defined by

ap(u,v) = / VuVu dx
Q

with domain H'(f) is the closure of the closable part of (au, E).

Now, let A,, be the selfadjoint operator on L?(§2) associated with the closure
(au, V') of the closable part of (a,, E) as defined in (3.6). It follows from Theorem
1.3.4 that the operator A, generates a holomorphic Cy-semigroup 7}, = (em“)tzo
on L%(9) . In the following sections, we shall give some properties of this semigroup
T

e

3.4 Some Properties of T,.

Throughout this section, (e!A2);>q (resp. (e!A¥);>0) will denote the submarkovian
semigroups on L2(f2) generated by Ap (resp. Ay). We shall prove in this section
that e*®# is sandwiched between e/~ and e*2P. Moreover, under some additional
conditions, each symmetric semigroup sandwiched between e*? and e!2~ is of
the form et®n.

Theorem 3.4.1. Let jv be a Borel measure on 08) in Mo and A, be the closed
operator on L*(Q) associated with the closure of the form (a,, E). Then

0 S etAD S etA“ S etAN

for allt > 0 in the sense of positive operators.

To prove this result, we need the following result characterizing domination
of positive semigroups due to Ouhabaz and contained in [79, Théoréme 3.1.7].

Theorem 3.4.2 (Ouhabaz). Let T and S be two positive symmetric Cy-semigroups
on L?(Q). Let (a,D(a)) be the closed form associated with T and (b, D(b)) the
closed form associated with S. Then the following assertions are equivalent.

(i) T(t) < S(t) for all t > 0 in the sense of positive operators.
(i) D(a) is an ideal of D(b) and b(u,v) < a(u,v) for all u,v € D(a)+.

Proof of Theorem 3.4.1. 1) We prove the inequality e!2P < e*®#. Recall that
the forms associated to Ap and A, are given respectively by

aD(u,v):/Vqu d, u,v € H}(Q)
Q
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and
a,(u,v) :/VUVU da:+/ v, u,v €V
Q a0

where _

V={uecH'(Q): deL*0n)}
By Theorem 3.4.2, it suffices to prove that Hg () is an ideal of V and a,,(u,v) <
ap(u,v) for all u,v € H}(Q)+. We may assume that each u € H() is r.q.c.

a) We claim that H}(Q) is an ideal of V. In fact, let u € H3(Q2) and v € V
be such that 0 < |v] < |u|. Since Q is relatively open, it follows from Theorem
2.1.3 ¢) that 0 < |v| < |u| r.q.e. on Q. Using the characterization of H}(Q) given
by Theorem 2.4.1, we obtain that u = 0 r.q.e. on 92 and thus v = 0 r.q.e. on 2.
Therefore v € H{ () which proves the claim.

b) Let u,v € Hi(2),. By the characterization of H} (), we have that u =
v = 0 r.q.e. on 0. Since u € M, it follows that u = v = 0 p a.e. on 9. We
finally obtain that

au(u,v) = /QVqu da:—&—/aﬂuv du

/ VuVu dzx
Q

= ap(u,v)

and the proof of this part is complete.
2) The proof of the inequality e+ < 2~ is a simple modification of the
first part. O

More generally, we have the following result.

Proposition 3.4.3. Let p,v be two Borel measures on 092 in Mgy. Assume that
v < p in the sense that v(A) < pu(A) for all A € B(OSY). Let A, and A, denote
the selfadjoint operators on L*(Q) associated respectively with the closure of the
forms (a,, E) and (a,,E). Then

0< etAD < etA“ < etA,, < etAN
for allt > 0 in the sense of positive operators.

Proof. 1) We show that e*®+ < e*®v for all t > 0 in the sense of positive
operator. Let

E,:={uc H'(Q)NC.(Q): /BQ lul? dv < oo}

and
E,:={ue H(Q)NC.(Q): / lul? du < 0o}
oN
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Recall that V,, (resp. V},) is the completion of E, (resp. E,) with respect to the
a,-norm (resp. a,-norm) and by Proposition 3.3.4, they are given by

V,:={ue H'(Q): @< L*09,v)}
and _
V,={ue H (Q): @€ L*00,u)}.

Since v < p, it is clear that V), is continuously embedded into V.
a) We claim that V), is an ideal of V,,. Let u € V,, and v € V,, be such that
0 < |v| < |u|. We have to show that v € V},. We may assume that u and v are r.q.c.

It is clear that v € H'(Q). Since 0 < |v] < |u| a.e., it follows that 0 < |v| < |ul
r.q.e. and therefore p, v a.e. (since pu, v € My). It then follows that

/ lv|? du < / lul? dp < oo
o9 a0

and therefore v € L?(9, p) which proves the claim. )
b) Let 0 < uw,v € V,,. We have that 0 < u,v r.q.e. on {2 and thus p a.e. on
0f). Therefore

ay(u,v) = /VUVU dz+/ v dv
Q

a0
< /Vquder/ v dp
Q a0
= au(u7 U)
which completes the proof.
2) The other inequalities follow from Theorem 3.4.1. O

Remark 3.4.4. Theorem 3.4.1 implies that (em“)fzo 18 a submarkovian semigroup
on L?(2). Then, by Theorem 1.8.17, it induces consistent positive contractive semi-
groups on LP(Q2), 1 < p < oo which are strongly continuous for 1 < p < oco.

Next we ask the following question. Let u be a Borel measure on 92 in M.
Is the closed form (a,, V) always regular on 2?7

Proposition 3.4.5. Let p be a Borel measure on 02 in Mgy and let (a,,V) be the
closure of the form (a,, E). Then the following assertions are equivalent.

(i) (a,,V) is regular on Q.
(i) w is a Radon measure.

Proof. (i) = (ii). Assume that (a,, V') is regular on Q. Then we can define a
Choquet capacity Cap% on Q with respect to the form (a,, V') as we have defined
the relative capacity. Since (a,, V) is regular on Q, by a well-known result (see [55,
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p.6]), for every compact set K C Q and every relatively open set O C Q) satisfying

K C O C Q, there exists a function u € V N C,(Q) such that u =1 on K, u =0

nQ\O and 0 < u < 1. This implies that Capf(K) < oo for every compact set
K C Q. Let K C 99 be an arbitrary compact set. Since for all u € V N C.(Q) we
have

el 200, <l
taking the infimum over all functions u € V N C.(Q) satisfying v > 1 on K, we
obtain that
p(K) < Capp(K) < o0
and thus p is a Radon measure on 0.
(ii) = (i). Assume that x is a Radon measure. Since E = H' () N C.(Q) C

VN C.(2) and is dense in V, it follows that V' NC.(€2) is dense in V' and uniformly
dense in C.(2). O

Corollary 3.4.6. Assume that Q is a bounded open set. Let pu be a Borel measure
on 082 in Mg and let (a,, V') be the closure of the form (a,, E). Then the following
assertions are equivalent.

(i) 1eV.
(i) w is a finite Borel measure.
(iii) (au, V) is reqular on €.
(iv) V is dense in H ().
Proof. (i) = (ii). Assume that 1 € V. Since
V={ue HYQ): @€ L*dQ,p)},

it follows that u(9Q) < co and therefore 4 is a finite Borel measure.

(ii) = (i). Assume that y is a finite Borel measure. Then 1 € E = H'(Q) N
cQ)cv.

(i) < (iii). This part follows from Proposition 3.4.5.

(ii) = (iv). Assume that p is finite Borel measure. Then £ = HY(Q)NC(Q) C
V C HY(Q) and V is trivially dense in H(Q).

(iv) = (ii). Assume that V is dense in H(€2). We claim that E is dense in

H'(Q). Let ¢ > 0 and u € H'(Q). By hypothesis, there exists v € V such that

||U — U”HI(Q) < €.
Since F is dense in V, there exists w € F such that

lw =]y <e.
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We obtain that

lw — vl o) + v —ull g1 @)
|w=vllv + llv—ull g1
2e

[|[w — U||H1(Q)

IAIACIA

and thus E is dense in H 1(Q). Assume that p is not a finite measure. Then
1(0Q) = oo and therefore p is locally infinite on a relatively closed subset 'y, of
0R. Therefore

HY Q) NC(QU (0Q\Ts)) C EC {ue H(Q)NCQ): ulr. =0}.

oo

By Theorem 2.4.2 the closure of E in ﬁ[l(Q) is given by
E={uecH'(Q): =0 r.qe. on I'y}.

Since E is dense in H'(Q), it follows that Capg(I'ss) = 0 which is a contradiction.
Thus u(02) < oo and the proof is complete. O

Remark 3.4.7. In Corollary 3.4.6, if we drop the hypothesis u € My, then we
always have the following implications: (i) = (ii) = (i1i) = (). But (iv) = (i)
18 not always true as the following example shows.

Let Q C RY be a bounded open set and v be a finite Borel measure on 0 in
My. We define a measure p on 92 as follows: for B € B(9) we let

(B) = oo if Capg(B)=0, B#0
) v(B) otherwise .

Then i is a Borel measure on 0. Let I's, be the part of 02 on_which  is locally
infinite. By the proof of Proposition 3.4.6, the closure of E in HY(Q) is E. Since
Capg(Tso) = 0, it follows that E = H'(Q) and thus V is dense in H*(Q) but p is
not a finite measure on 0f).

By Proposition 3.4.5, for a given Borel measure p on 9§ in Mo, the closed
form (a,, V') is not always regular on €2. The following result shows that it is always
regular on some relatively open subset of €.

Proposition 3.4.8. Let 1 be a Borel measure on 02 in Mg and (a,,V) be the
closure of the form (a,, E). Then there exists a relatively open set X satisfying
Q C X C Q2 such that the Dirichlet form (a,, V') is reqular on X.

Proof. Let
X:=0\{z€Q: ulx)=0YuecVnC.(Q}.
Then X is relatively open in . Since

{ue H(Q)NCQ) : ulsg =0} CVNCQ) C HY(Q) NC(Q),
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it follows that Q2 C X C Q. We show that (a,, V) is regular on X.

a) If 1 is a Radon measure, then X = Q and by Proposition 3.4.5 (a,, V) is
regular on X = Q.

b) If p is not a Radon measure, let I's be the relatively closed subset of 92
on which p is locally infinite. Then it is clear that

I = {2€dQ: u(B(z,r)=00 Vr >0}
= {z€Q:ulx)=0VueVNnCQ)}

and therefore X = Q \ I's,. Recall that by Proposition 3.3.4,
V={uecHYQ): @eL*ON, )}

By the proof of Proposition 3.3.4, the space H'(Q2) N C.(X) is a,-dense in V. To
complete the proof, it suffices to show that H'(Q) N C.(X) is uniformly dense
in C.(X). Since (aN,ﬁl(Q)) is a regular Dirichlet form on Q having H'(Q) N
C.() as a core and since X is relatively open, it follows from Theorem 2.4.2 that
HY(Q)NC.(X) is uniformly dense in C,.(X) (see also Lemma 3.4.22 below) which
completes the proof. O

Next we investigate under which conditions two measures in M determine
the same semigroup. Before, we need some definitions.

Along with the relatively quasi-continuity of functions, we can introduce the
relative quasi notions of subsets of .

Definition 3.4.9. a) A set O C Q is called relatively quasi-open if for every e >
0 there exists a relatively open set G containing O with Capg(Ge \ O) < €.

b) A relatively quasi-closed set is by definition the complement of a relatively
quasi-open set.

Using an abstract result which is contained in [55, Lemma 4.6.1], we can
prove the following result.

Lemma 3.4.10. A set F C Q is relatively quasi-closed if and only if there exists
a nonnegative r.q.c. function u € H*(Q) with F = u~1({0}) r.q.e.; i.e., up to a
relatively polar set.

Definition 3.4.11. Let p and v be two Borel measures on 02 in My. We say that
u is equivalent to v (1 ~ v) if etAr = AV for all t > 0.

Proposition 3.4.12. Let  and v be two Borel measures on 02 in My. Then the
following assertions are equivalent.

(i) pr~v.
(i) [o0|ul? dp = [4q ul* dv Y u e HY(Q), u r.q.c.
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(iii) w(G) = v(G) for each relatively quasi-open subset G of ON2.

Proof. (i) = (ii). Assume that p is equivalent to v. Then V, = V, and
a,(u,v) = a,(u,v) for all u,v € V, =V,; e,

/Vqudac—i—/ ﬂﬂdu:/Vqudx—F/ v du.
Q oQ Q oQ

In particular,
/ lu|? dp = / lu|? dv
o0 a0

forallr.q.c.ueV, =V,. Let u e H'() be r.q.c. but not in V. =V,. Then

/ lul? dp = oo = / lu|? dv
0 G19)

and the proof of (ii) is complete.
(ii) = (i). Assume that (ii) holds. It suffices to show that V,, = V, and

ay(u,u) = a,(u,u) for all u € V,,. We may assume that each function u € H'(Q)
is r.q.c. The condition (ii) implies that

/ lu|? dp :/ lu|? dv
o9 o9

for all v € V,, and for all u € V,. Then we obtain easily that V, = V, and
a,(u,u) = a,(u,u) and therefore p ~ v.

(ii) = (iii). Let G C 0N be relatively quasi-open. Then by Lemma 3.4.10,
there exists a nonnegative function u € ﬁl(Q) which is r.q.c. such that G = {u >
0} up to a relatively polar set and then up to a p, v null set (since p, v € My). Let
v = (ku) A1 for k € N. Then the functions v, € H'(€2) and are r.q.c. By (ii),

/ o |2 d,u:/ log|? du.
G19) G19)

lim log|? dp = lim/ lvg|? dv.
aQ k—oo Jaq

k—o0

Thus

It is also clear that v,% T Xfu>0} as k — oo. Using the Monotone Convergence
Theorem (see [43, Theorem 2, p.20]), we obtain that

/ klim log|? du:/ lim |vg|? dv;
90 k—o0 9q k—oo

/ dp = / dv
{u>0} {u>0}

i.e.
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and thus u(G) = v(G).

(iii) = (ii). Assume that (iii) holds. Let u € H'(€) be r.q.c. By definition, for
every € > 0 there exists G. relatively open such that Capg(Ge) < € and u|g\¢, is
continuous. We may enlarge G to make it relatively quasi-closed without changing
its relative capacity. Let ¢ be an arbitrary nonnegative continuous function on R
and let f := pou. Then f is r.q.c. This implies that the inverse image under f of
an open set is r.q.e. quasi-open. So

/Ooo,u(f>t)dt:/ooou(f>t)dt

, we obtain (ii) and the proof is complete. O

or

Taking p(x) = 22
Remark 3.4.13. If one of the measure p and v is a Radon measure, then the
condition (iii) of Proposition 8.4.12 implies that u = v.

Proposition 3.4.14. Let 1 and v be two Borel measures on 0 in M. Let
Iy={2€0Q: 3r>0u(B(2,00)N0N) < oo}

(resp. T',) denote the part of 9Q on which u is locally finite (resp. the part of 99
on which v is locally finite). Then the following assertions are equivalent.

(i) pr~v.
(i) T, =T, (ie., Capg(I'yAT'Y) =0)and p=v onIT':=T, NT,.

Proof. (i) = (ii). Assume that p ~ v. Let (a,,V,) (resp. (av,V.)) be the
closure of the form (a,, E,) (resp. (ay, Ey)). Then V,, =V,. We may assume that
each function v € H'(Q) is r.q.c. Since each function u € V, =V, satisfies u =0
r.g.e. on I';, and in I'}, it follows that I'j, = I}, and therefore I'), = I',.. Since T’
is relatively open, it follows from Proposition 3.4.12 that u(T") = v(T"). Moreover,
for every relatively quasi-open set O C I' we have p(O) = v(O). Since u|r and v|p
are Radon measures, it follows that p|r = v|p.

(ii) = (i). Assume that (ii) holds. Let u € V,,. We may assume that u is r.q.c.
Since p is locally infinite on I'; we have that w = 0 r.q.e. on I'® and therefore p
a.e. Since 4 = v on I, it follows that

/ lu|? dv = / lu? dv = / lu|? du < oo
o9 r r

and thus V,, C V. Similarly, we obtain the converse inclusion. It is easy to see
that a,(u,v) = a,(u,v) for all u,v € V,, = V,, and therefore p ~ v. O
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Recall that, by Theorem 3.4.1, for each Borel measure u on 92 in M, the
Cop-semigroup (e!#);>q on L2(2) given by p is always between (e'2P);>o and
(etAw )i>0. A very natural question is the following. Is the converse also true?
More precisely, if T = (T'(t))+>0 is a Co-semigroup on L?(12) satisfying

AP < T(t) < AN (3.12)

for all t > 0 in the sense of positive operators, is T'(t) always given by a measure
1 on 97 The following example shows that this is not always the case.

Example 3.4.15. Let © C RY be a bounded domain with Lipschitz boundary.
Let B be a bounded linear positive operator from H!(Q) into L?(02, o) where o
denotes the usual Lebesgue surface measure. Consider the bilinear form ap with
domain H*(Q2) on L%() defined by

ap(u,v) = /QVUVU dzr + /asz(BU)U do.

Since for all u € H'(Q), we have

|[Bull2(80,0) < c1llull (o)

and
lull 200,06y < c2lullmr (o)

(since Q has a Lipschitz boundary), it follows that the form agp is closed on L?().
Let Ap be the closed operator on L?(Q2) associated with the closed form ap. The
operator Ap generates a Cop-semigroup on L?(Q) and using Theorem 3.4.2, we
obtain easily that e!# satisfies (3.12), but it is not given by a measure on 95 in
general.

More precisely, let Q = (0,1). Define the form a with domain H'(0,1) by,

1
a(u,v) = /0 v dz 4+ u(0)v(0) + u(1)v(0) + u(0)v(1) + u(1)v(1).

Then (a, H'(0,1)) is a regular Dirichlet form on [0,1]. Let T be the associated
semigroup on L?(0,1). Then T(t) satisfies (3.12) but the semigroup T is not given
by a measure on 0f).

Now we would like to determine under which conditions, each semigroup on
L%(Q) between (e!®P);>q and (e!A%);>q is given by a measure p on 9. For this
we need some preparations.

Let X and m satisfying (1.3) and (a, D(a)) be a symmetric closed form on
L?(X,m). Let A be the nonnegative selfadjoint operator on L?(X,m) associated
with (a, D(a)) and {G4, o > 0} the resolvent corresponding to A. It is well-known
that G (L?(X, m)) C D(a) and if u € L?(X,m) and v € D(a)

a0 (Gou,v) = (u,v),
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where a,(u,v) := a(u,v) + a(u,v) for u,v € D(a). We define a symmetric form
al® on L*(X,m) by: for u,v € L*(X,m) we let

a'® (u,v) := a(u — aGau,v). (3.13)
Lemma 3.4.16. For every u € L?(X,m), a'® (u,u) is nondecreasing as a T oo and

{D(a) ={u € L*(X,m) : lim,_ o a'® (u,u) < oo}

a(u,v)  =limg o0 a'®(u,v), u,v € D(a).

Idea of the proof. In fact, the resolvent equation and the contraction prop-

erty of G, imply that G, is nonnegative definite and (G,u,u) < l(u, u). Hence

a'® (u,u) > 0. By the resolvent equation again

do

d—la(a)(u,u) = —2(v,G,v) <0

{ d a(a) (u, u) = (aGau —u, O[GaU — U) > 0
do

where v = aGou—u. We see in particular that a(®) (u, u) is nondecreasing as a 1 cc.
The second part of the lemma can be proved by using the Spectral Theorem (see
[565, Section 1.3]) or by a direct computation (see [69, Theorem 1.2.13]). O

Lemma 3.4.16 says that a(® is an approximating form determined by G..
The following result is contained in [55, Lemma 1.4.1].

Lemma 3.4.17. If S is a positive symmetric linear operator on L?(X,m), then there
exists a unique positive Radon measure v on the product space X x X satisfying
the following property: for all u,v € L?>(X,m),

(u, Sv) = / u(z)v(y) dv.
XxX
Next, for a measurable function u on X we let
supplu] = supp||u| - m] (3.14)

and call supp[u] the support of u. Note that if u = v m-a.e., then supp[u] = supp[v].
Hence supp[u] is well-defined by (3.14) for all u € L?(X,m). If u € C(X), then
supp(u] is just the closure of {z € X : u(z) # 0}.

Definition 3.4.18. Let (a, D(a)) be a symmetric Dirichlet form on L*(X,m). We
say that the form (a, D(a)) is local if a(u,v) = 0 for all u,v € D(a) with disjoint
compact supports.

The following result shows that under the regularity asumption of the form
(a,D(a)), “supplu], supp[v] compact” in the definition of local forms can be
dropped and gives another property which is equivalent with the local property.
The first part of the proof is contained in [69, Proposition V.1.2] and the second
part in [69, p.150].
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Proposition 3.4.19. Assume that (a, D(a)) is a symmetric reqular Dirichlet form
on L?(X,m). Then the following assertions are equivalent.
(i) (a,D(a)) is local.
(i1) a(u,v) =0 for all u,v € D(a) with supplu] N supp[v] = 0.
(#1) a(u,v) =0 for all u,v € D(a) N C.(X) with supp[u] N supp[v] = 0.
Now we return to the form (a,,V).

Proposition 3.4.20. Let ;1 be a Borel measure on 02 in Mg and (a,,V') be the
closure of the form (a,, E). Then the form (a,, V) is local.

Proof. Let I', be the part of 9 on which pu is locally infinite and let X :=
QU (002\ T'x). Since by Proposition 3.4.8, the form (a,, V) is regular on X and
has H'(Q) N C.(X) as core and for u,v € V we have

a,(u,v) = / VuVv dlE+/ v dp,
Q o0
it is clear that a, (u,v) = 0 whenever u,v € H'(Q)NC.(X) with supp[u]Nsupp[v] =
() and by Proposition 3.4.19 the form (a,, V) is local. O

Now we can give the following result which characterizes the semigroups
which are between (e/22);5¢ and (e'2V);>.

Theorem 3.4.21. Let Q C RY be an open set and T = (T(t));>0 be a symmetric
Co-semigroup on L2(Q) satisfying

AP < T(t) < etAN (3.15)

for allt > 0 in the sense of positive operators. Let (a, D(a)) be the closed form on
L?(Q) associated with T. Then the following assertions are equivalent.

(i) T(t) = et®x for some positive Borel measure p on 02 which does not charge
relatively polar Borel subsets of the part of Q2 on which it is locally finite.

(i) (a) (a,D(a)) is local.
(b) D(a) N C.(Q) is dense in D(a).

To prove this result, we need the following version of Stone-Weierstrass’ The-
orem which is contained in [31, Theorem D.23].

Lemma 3.4.22 (Stone-Weierstrass). Let X be a locally compact metric sapce, and
let F' be a subalgebra of Co(X) such that

a) F separates the points of X, and
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b) for all x € X there exists u € F such that u(x) # 0.
Then F' is uniformly dense in Co(X).

Proof of Theorem 3.4.21. (i) = (ii). This part follows from Corollary 3.3.2
and Propositions 3.4.8 and 3.4.20.
(ii) = (i). 1) Let

X =0\{zcQ: ulx)=0Yuc D(a)NC,(Q)}.

It is clear that X is relatively open. Since H}(Q2) C D(a), we have 2 C X C Q. As
D(a) is a Dirichlet space, it follows from [55, Theorem 1.4.2 (ii)] that D(a)NC.(X)
is a subalgebra of C.(X). It is also clear that D(a) N C.(X) separates the points
of X. Moreover, by definition of X, we have that for every x € X there exists
u € D(a) N C.(X) such that u(z) # 0. It then follows from Lemma 3.4.22 that
D(a) N C.(X) is uniformly dense in C.(X).

2) Since T'(t) satisfies (3.15), it follows from Theorem 3.4.2 that H{ (2) is an
ideal of D(a) and D(a) is also an ideal of H'(Q). Moreover, for all u,v € H}(Q),

a(u,v) = / VuVu dx,
Q
and for all u,v € D(a)4,
/ VuVou dx = ay(u,v) < a(u,v).
Q
For u,v € D(a) N C.(X) we let
b(u,v) := a(u,v) — an(u,v) = a(u,v) — / VuVo dz.

Q

Let {G% : 8> 0} be the resolvent of the operator associated with the closed form
(a,D(a)) and {G§ : 3> 0} be the resolvent of Ay. Note that we regard G% and
Gg as operators on L?(X,m) (where m is defined in Section 2.2) which can be
identified in an obvious way with L2(£2). With this consideration, the space X and
the measure m satisfy the conditions (1.3).

Let a'® and ag\’?) be the approximating forms of @ and ay as defined in (3.13)
and let
b () = a(u,v) - ol (u,v)
= Bu— BGFu,v) — Blu— ﬁGgu,v)
= B(B(GF - GHu,v).

Since by the domination criterion, b®)(u,v) > 0 for all positive u,v € D(a) N
C.(X), we have that ﬂ(Gg — (%) is a positive symmetric operator on L*(X,m)
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and it then follows from Lemma 3.4.17 that there exists a positive Radon measure
vz on X x X such that for u,v € D(a) N C.(X) we have

bﬁ(u, v) = ﬁ(ﬂ(Gg - Gju,v) =03 u(z)v(y) dvg.
XxX
It is clear that b%(u,v) — b(u,v) as B 1 oo for all u,v € D(a) N C.(X). Since for
each >0 and u € D(a) N Ce(X)

b (u,u) < alu,u),

it follows that the sequence of measures (fvg) is uniformly bounded on each com-
pact subset of X x X and hence a subsequence (3,3, converges as 3, — oo vaguely
on X x X to a positive Radon measure v. Moreover, since by 1) D(a) N C.(X) is
uniformly dense in C.(X), we have that the measure v is unique and therefore for
all u,v € D(a) N C.(X) we have

b(u,v) = /X Xu(as)v(y) dv.

Since the forms a and ay are local, it follows that b(u,v) = 0 for all u,v € D(a)N
C.(X) with supp[u] N supp[v] = @. This implies that supp[v] C {(z,z) : = € X}
and therefore

b(u,v) = /Xu(ac)v(x) dv.

Since b(u,v) = 0 for all u,v € D(2) C D(a), we have that supp[v] C X \ Q := 90X
and thus

b(u,v) = /ax u(x)v(x) dv.

Define a measure p on 92 by: for B € B(9Q2) we let

(B {V(B) 1T B € BOX)=B@x,
P =\ o it B ¢ B(OX).

Then p is a Borel measure on 99 and for u,v € D(a) N C.(X) we have

a(u,v) = / VuVu dx+/ uv dp. (3.16)
Q 1)

Since D(a) is an ideal of H!(), it follows that D(a) N Cs(X) = HY(Q) N C.(X)
and therefore a = a, on H*(Q)NC.(X). Since (a, D(a)) is a closed form, it follows
that (a, HY(Q)NC(X)) = (au, H () NC.(X)) is closable and by Corollary 3.3.2,
this is equivalent to the property that plopx = v does not charge relatively polar
Borel subsets of 0.X.

3) Let (a,, V) be the closure of the form (a,, H*(Q2) N C.(X)). By definition,
V is the completion of H'(Q) NC.(X) with respect to the a, = a-norm. To finish,
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we have to show that V' = D(a). It is clear that V' is a closed subspace of D(a). It
suffices to show that

D(a) N Ce(Q) = {ue H'(Q) N Ce(Q) : ulpnrox =0, / lul?dp < 0o} =: E,
0X

(3.17)
and that (3.16) remains true for all u,v € E,,.
In order to prove (3.17) it suffices to consider positive functions. Let 0 < u €
E,. Then (u—e)t € HY(Q) N C.(X) (by the fact that D(a) N C.(X) = HY(Q) N
C.(X)) for all € > 0. Moreover, (u—¢e)" — uin H(Q) and (u —¢&)T|ox — ulox
in L?(0X, ) as e | 0. Hence (u—¢)7 is a Cauchy net in D(a). Thus u € D(a) and
a(u,u) = lsllrr& a((u—e)t, (u—¢e)™)

lim (/ |V(u—6)+|2dx+/ ((u—5)+)2du)
el0 \Ja X
_ /|Vu|2dx+/ luf? dp.

0 ox

Conversely, let 0 < u € D(a)NC.(Q). Since a is a Dirichlet form, (u—¢)* converges
tow in D(a) as € | 0. Moreover, (u—¢)" € E,,. Hence

au) = lima((u =), (w=e)) = [ (VuPdot [ JuP dp.

We have proved (3.17) and (3.16) for u = v. The polarization identity shows that
(3.16) holds for all u,v € E,. Now Proposition 3.4.8 implies that a = a, and
therefore V = D(a). O

Next we characterize those semigroups which are given by finite measures.

Corollary 3.4.23. Let Q C RY be a bounded open set and T = (T(t))i>0 be a
symmetric Co-semigroup on L?(Q) satisfying

etAD § T(t) S etAN

for allt > 0 in the sense of positive operators. Let (a, D(a)) be the closed form on
L?(Q) associated with T. Then the following assertions are equivalent.

(i) T(t) = e'®x for a unique finite Borel measure ju on 9 in Mo.
(i) (a) (a,D(a)) is local.
(b) 1 € D(a) N C(Q).

Proof. (i) = (ii). This part follows from Theorem 3.3.1, Corollary 3.4.6 and
Proposition 3.4.20.
(ii) = (i). The proof is similar to the proof of Theorem 3.4.21.
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1) Since 1 € D(a) and D(a) is an ideal of H* (1), it follows that D(a)NC/(Q) =
H'(2) N C(Q) which is uniformly dense in C(€2).

2) The fact that 1 € D(a) N C(Q) implies that X = Q which is a compact
set. Proceeding as in the proof of Theorem 3.4.21 by letting

b(u,v) = a(u,v) — / VuVv dx
Q

for u,v € H'(Q) N C(Q), we obtain that there exists a unique positive Radon
measure g on 99; i.e., a finite measure such that for all u,v € H(Q) N C(Q) we

have
b(u,v) :/ uv dp
oN

and therefore for all u,v € H'(2) N C(Q) we have

a(u,v) = / VuVu d;v+/ uv dp.
Q o9

Since the form (a, D(a)) is closed, it follows that the form (a, H*(Q2) N C(Q)) =
(au, HY () N C(2)) is closable on L?(2) and by Theorem 3.3.1 this is equivalent
to the property that u € M.

3) Let (a,,V) be the closure of (a,, H'(2) N C(Q)). To finish, we have to
show that (a,D(a)) = (au, V). Since p € My, it follows from Proposition 3.3.4
that N

V={uecHQ): @€ L0}

It is clear that V is a closed subspace of D(a). Let u € D(a). Without restriction,
we assume that u is r.q.c. By considering ut and u~ separately if necessary, we
may assume that 0 < u. For k € N we let uy := u A k. Then uy, € HY(Q) is r.q.c.
Since 0 < ug < k and pu(09Q) < oo, it follows that uy € L(0€, ) and therefore
uy, € V. It is also clear that u, — u in H*(Q) and thus after taking a subsequence
if necessary, we may assume that up — w r.q.e on €. Since u € Mo, it follows
that ur — u p a.e. on 99. Finally, since 0 < u < k, the Lebesgue Dominated
Convergence Theorem implies that uy — u in L?(9€, p) and thus u, — u with
respect to the a,-norm and therefore v € V' which completes the proof. O

3.5 Convergence of Forms.

Throughout this section,  will denote a bounded open set in RY. Let p, € M
be a sequence of measures on 02 and pu € My be a measure on 0f2. Consider
the submarkovian Cp-semigroups (e*®#n);5¢ and (e*2#);>o on L?(€)) generated
respectively by A, and A,. The basic question which we address is, whether we
have

etBun — P as m— o0 (3.18)
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if the measures pu, converge to p in an appropriate sense. By the Trotter-Kato
Approximation Theorem (see [11, Theorem 3.6.1 p.149]), we have strong conver-
gence in (3.18) if the generators A, — A, as n — oo in the strong resolvent
sense. Before studying this notion, we recall the following well-known result [84,
Theorem S.17 p.374].

Proposition 3.5.1. Let A and B be two selfadjoint closed operators on a Hilbert
space H and let a and b be the corresponding forms. Then a < b if and only if
(B+1)'<(A+1)7h

We begin with a very simple case by considering 1 € My to be a finite Borel
measure on 0f2. Before, we need the following notions.

Definition 3.5.2. Let pu be a Borel measure on 02 which is in Mg. A set F is said
to be a relative quasi-support of y if the following two conditions are satisfied:

(i) F is relatively quasi-closed and p(0Q2\ F') = 0.
(ii) If F is another set with property (i) then F C F r.q.e.

The relative quasi-support F' of p is unique up to the r.q.e. equivalence.
Moreover if I' is the topological support of p, since every relatively closed set is
relatively quasi-closed, we have that F© C I' r.q.e. and by deleting a set of zero
relative capacity from F if necessary, we can always assume that F' C T

Thoughout the following for a measure p on 92 in M, we always denote by
(au, V) the closed form on L?(Q) as defined in the preceding section; i.e.

a,(u,v) :z/VuVU dx—|—/ U dp
Q a0

with domain
Vi={ue H(Q): / |a| dp < o0}
oN

Proposition 3.5.3. Let u € Mg be a finite Borel measure on 02 with relative
quasi-support 0L and let k € N. We define

aur(u,v) ::/Vqudx—i—k/ wdp u,veV.
Q o0

Then A, — Ap as k — oo in the strong resolvent sense.

Proof. It is clear that 0 < a,; <aue <... <aup < ... Let

Voo :={u €V : supayui(u,u) < oo}
k

and
Qoo (U, u) := lim ayk(u, w) = sup a,k(u, w).
k

k—oo
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1) First, we prove that (aeo,Veo) = (ap, H}(Q)). It is easy to see that
H}(Q) C V. Let us prove the converse inclusion. Let u € V. Then
limy— oo apk(u, u) < co. Without restriction, we may assume that w is r.q.c. This
implies that

lim k/ lu? du < oo,
k—oo 90

which is possible if and only if [, |u|* diu = 0 and then u = 0 & a.e. on 9. Since
we suppose that the relative quasi-support of u is 9€2, this implies that u|sq = 0
r.q.e. (this follows from an abstract result contained in [55, Theorem 4.6.2]) which
implies that u € HZ(2) by Theorem 2.4.1.

2) Now we show that A, — Ap as k — oo in the strong resolvent sense.
Since aui < aoo, by Proposition 3.5.1, for ¢ € L?(Q2), we have

(0, (Ap + 1) 0) < (0, (A + 1) 1p).

Since (¢, (A, +1)71¢) is monotone decreasing, it follows that
Jim (0, (A + 1)) = imf(p, Ak +1) ')

has a nonzero value, so we can find a selfadjoint operator C' with zero kernel so
that (¢, (Auk+1)71p) — C weakly as k — oo (see the proof of [84, Theorem S.14
p.376]). Let b be the form associated with B := C~! — 1. Since

(Ap+1)'<C< (A +1)7,

by Proposition 3.5.1, we have that a,r < b < ap. Passing to the limit as k — oo,
we obtain s, = ap < b < ap. Then b = ap and B = Ap. Thus (A, +
1)~! — (Ap +1)7! weakly as k — co. By a similar argument this holds if 1 is
replaced by an arbitrary A > 0 and by analyticity we have weak convergence of
the resolvent on C \ [0,00) and since weak resolvent convergence implies strong
resolvent convergence (see [84, Section VIIL.7]), this proves the claim. O

Proposition 3.5.4. Let p € Mg be a finite Borel measure on 02, k € N* and define

1
auk(u,v) ::/VUV’U dIJFE/ wdp u,veV.
Q [219)

Then Ay — Ay as k — oo in the strong resolvent sense.

We do not give a proof of Proposition 3.5.4. We shall consider the case where
the measure on 0f2 is the restriction to 9 of the (N — 1)-dimensional Hausdorff
measure which we denote by ¢. Then Proposition 3.5.4 becomes a particular case,
since o is not always a Radon measure. For this we need some preparations.

Recall that, we call Ay (the Laplacian with Neumann boundary conditions),
the selfadjoint operator on L?(£2) associated with the closed form ay with domain
H'(Q) defined by

an(u,v) := / VuVo dx.
Q
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If we replace H L(Q) by the closed subspace Dp of the form:
Dp:={uec H'(Q): =0 qe. on B}

for some B € B(02) with Capg (92\ B) > 0, then the operator A¥ associated with
(an, Dpg) is the Laplacian with Dirichlet boundary conditions on B and Neumann
boundary conditions on 92\ B which we call Dirichlet-Neumann Laplacian.

In the following, without restriction, we assume that €2 is such that o € M.

Proposition 3.5.5. Let k € N* and define

1

aok(u,v) := [ VuVuv dx + f/ uv do, u,v € V.
Q k Jaq

Let A,y be the operator associated with (agk, V). If 0(02) < oo, then Ay — Ay

as k — 0o in the strong resolvent sense. If o is locally infinite on a part I'oo C 08,

then Ay — A?\f" as k — oo in the strong resolvent sense.

Proof. We give a proof only for the case o(9€) < co. The proof of the other
case is exactly the same.
a) We have ay1 > ap2 > ... > ao > ... > 0. For u € V define

oo (U, u) 1= klin;o aok(u,u) = ir;f aok(u,u).

It is clear that for such u,
Qoo (U, ) :/ |Vul? du.
Q

Let ((aso)r, V) be the closable part of (as, V). Since (as, V) is closable on L?(12),
we have (aoo)r = @oo. Let Vo be the completion of V' with respect to the norm

e e llul| g1 (). By Corollary 3.4.6, Voo = H'(Q). Thus the closed form

((aco)rs Vo) 1s the form associated with the operator Ay.

) Let us prove that A, — Ay as k — oo in the strong resolvent sense. Let
© € L%(9). Since (¢, (Agr+1) 1) is monotone increasing and (¢, (Ayx+1)"1y) <
(o, (AN + 1)71yp), it follows as in the proof of Proposition 3.5.3 that there exists
a closed operator C' with zero kernel such that

(App + 1)1 — C weakly.

Let s be the quadratic form of S := C~! — 1. Then s < a,%. Since s is a closed
form, it follows that s = s,. This implies that s < (@), and thus s < (@ )r. On
the other hand, since (aoo)r < oo < G, we have that (Ax+1)71 > (Ayp+1)7 L.
Taking the limit as k — oo, one obtains (Ay + 1)1 > (S +1)7! 50 s > (aeo)r;
i.e., s = (@ )r = an. Now the statement follows from the fact that weak resolvent

convergence implies strong resolvent convergence. O

Next we consider the case of a sequence of measures.
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Proposition 3.5.6. Let u,, and u be finite Borel measures on 02 in Mgy. Assume
that ., is monotone and p1, — @ vaguely. Then A, — A, in the strong resolvent
sense.

Proof. We give a proof only for the increasing case.
1) We have again 0 < ap, <ay, <0< ay, < ... We will denote by V,, the
domain of the form a,,,. Let

Voo :={u € MV, ¢ supay, (u,u) < oo}

and oo (u, u) := lim,, o0 @, (w, w). It is clear that
L.CVppCcV,Cco..Cc Vo C VL

We want to prove that as, = a,. As H(Q2) N C(Q) C V, for all n > 1 we have
that HY(Q)NC(Q) C V. Let u € HY(Q)NC(Q). Since p,, — p vaguely, it follows
that lim, oo a,, (u,u) = a,(u,u). Since H(2) N C(R) is dense in Vi, we obtain
that

lim a,, (u,u) = aco(u,u) = ay(u,u) YVue€ V.

n—oo

Then a,(u, 1) = ax(u,u) for all u € V. Since a, < as we have that Vo C V.
Let u € V,,. It is clear that u € N, V,,. The density of H'(2) N C() in V,, implies
that sup,, a,,, (v, v) = a,(u,u) < oo and thus u € V which implies that Voo = V,.

2) The proof of A,, — A, in the strong resolvent sense is the same as in
Proposition 3.5.3. O

Next we introduce the following well-known notion of convergence.

Definition 3.5.7. Let X be a metric space. Let (I,) be a sequence of functions from
X > R:=RU{-00,+0} and F : X — R. We say that (F,,) I'-converges to F
in X if the following conditions are satisfied.

a) For every u € X and for every sequence w,, converging to u in X

F(u) < liminf F, (up).

n—oo
b) For every u € X there exists a sequence u,, converging to u in X such that

F(u) = limsup Fy, (uy,).

n—oo

For each 1 € M, we associate the following functional F}, defined on L?*(Q)
by letting

Fo(u) = Jo IVul? de+ [ |[a]* dp weV
P o u € L?(Q) but not in V.

We only consider measures which do not charge relatively polar sets.
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Definition 3.5.8. Let uy,, u € My. We say that ., y-converges to u if the sequence
of functionals F,,, T'-converges to the functional F, in L*(Q).

Proposition 3.5.9. Let p,, p € Mq. Assume that p, y-converges to p. Then
Ay, — A, in the strong resolvent sense.

Proof. Let f € L?(2), u, = AR\, A,,,,)f and u = AR(\,A,)f where A > 0.
We have to prove that u, — u strongly in L?(Q2) as n — oo. Remark that u,, is a
weak solution of the equation —A,, u, + Au, = Af. The Dirichlet principle (see
[24, Proposition 1X.22]) says that w, is given by

1
min { (/ |Vu|? d:v+/ || du—i—)\/ |u|? dm) - )\/ fu dx}.
weH Q) |2 \Ja a0 Q Q

By the definition of I'-convergence there exists a sequence v,, converging to v in
L?(Q) and
F,(u) = lim F, (v,).

Set
J(u) = F,(u) —|—)\/ lu|? dx — 2)\/ fu dz.
Q Q

Since u,, is minimum, we have
T (Un) < Jy,, (0n).

Therefore

T (un) + )\/Q |f1? do < J,,, (vn) + )\/Q |f|? da.

This means that

F., (un) + )\/

Q(un — f)2 de < F,, (vn) + )\/ (v, — f)2 dx.

Q

Hence,

lim sup <F#n (un) + A /Q (uy — f)? d;z:> < lim <FM (vn) + A /Q (v — f)? d:z:>

n— oo n

Fu(u) + )\/ (u — f)?* dx.
Q

It is clear that u, is a bounded sequence in V. Then there exists a subsequence

which converges weakly in V' to a function w € V. We may assume that u,, — w

weakly in V. Then F,(w) < liminf, o F),, (u,). Moreover,

n—oo

/(w — f)?de < liminf/(un — f)? da.
Q Q
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Hence,
F,(w) + )\/ (w— f)>dr < liminf <Fﬂn(un) + A/ (un — f)? dz)
Q o Q
< limsup (FM (un) + /\/ (un, — f)? dm)
n—o00 Q
< Fu(u)+ )\/ (u— f)? da.

Q

Since v is unique, we have that w = u and

F,(u) +/\/(u7 f)? de = lim <Fﬂn(un) +)\/Q(un —f)? dz) .

O n—oo

This implies that [, (u — f)? dz = lim,_.o Jo(un — f)? dxr and thus u, — u
strongly in L?(Q) as n — oo. O

3.6 Comments.

Sections 3.1 and 3.2.
A proof of Lemma 3.2.5 is given by Daners in [34] for the particular case where p
is the restriction to 02 of the (N — 1)-dimensional Hausdorff measure o.

Now we prove the following result which says that the space H* () is a lattice
and the lattice operations are continuous. The first part of the proof is contained
in [59, Lemma 7.6 p.152] and the second part in [33, Lemma 6.4.1].

Theorem 3.6.1. The following statements are satisfied.

a) Ifue HY(Q) then ut € HY(Q) and the mapping u — |u| is continuous from
HY(Q) to HY(Q).

b) If 0 <u e HY(Q) then (u —1)T € HY(Q) and the mapping u — (u —1)T is
continuous from H(Q), into H ().

Proof. a) Let u € H'(Q). It is clear that ut € L?(Q). For every ¢ > 0 let

JE@+eHr—e if >0
f(§) = {0 i £ <0,

For every € > 0, f- € C}(R) and f! is bounded since

JA =& +e)7% g>0.
Thus f. ou € HY(Q) for all u € H(2). For ¢ € D() we have

uD;u
/Q(fs ou)D;p dr = — /u>0 907@2 e/ dx.
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Taking the limit as ¢ — 0 we obtain

/u*Digodm = —/ pD;udz
Q u>0

which implies that

D if u>0
Dl-u*:{ wotue (3.19)

and thus D;ut € L?(Q). Notice that by (3.19) we have V|u| = sgnuVu. Hence
| [l || 1) = llull g1 (o) for all uw € H'(£2). To prove the continuity of the mapping,
let (u,) be a sequence in H'(Q) converging to v in H'(2). Then, by the reverse
triangle inequality

[ fnl 1=l T = FHlunllf = N0l T < flun = vllm @)

This implies that || [u,| [|z1(q) converges to || [v] [|z1(q) as n — oco. On the other
hand, as || |un| |m10) = l|unllmr(o) the sequence (|u,|) is bounded in H'(Q),
and therefore has a weakly convergent subsequence. As the mapping u — |u is
continuous in L2?(Q) its (unique) limit is |v| in L?(Q2), and therefore the whole
sequence converges weakly to |v| in H'(Q). As we showed already that the norm
converges, we conclude that |u,| — |v| in H*(2), proving the continuity of the
mapping u +— |ul.
b) The proof is similar as in a). Here we let

CJE-2e)2 e i €1
ro-{| e

and use Stampacchia’s Lemma (Vu = 0 a.e. on {z : u(z) = ¢} for any constant
c). O

Section 3.3.
The notion of perturbation of regular Dirichlet forms by measures has been con-
sidered in [55, Section 6.1] and [89].

Lemma 3.3.5 can be also proved by noticing that the set RNM, is an ideal in
R where R denotes the set of all Radon measures on 9. In fact, let u € R N Mg
and v € R be such that v < p. Let A € B(99) be such that Capg(A) = 0. Since
1w € RN My, we have that u(A) = 0. But v < p implies v(A) = 0 and thus
v € RN My. Using the Riesz Decomposition Theorem (see [86, Theorem 2.10
p.62]), the band orthogonal to R N M, (in the lattice sense) is the set of all such
measures ps. This technique has been used by Stollmann and Voigt in [89].

Section 3.4.
By Proposition 3.4.8, for a given Borel measure p on 92 in Mo, there always
exists a relatively open set X satisfying ! C X C Q such that (a,,V) is regular
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on X. Note that V is an ideal of H'(€) containing H () as a closed subideal. A
natural question is the following. Let I be an ideal of H! () containing H} () as
a closed subideal. Is the space I regular on some subset Y of Q? By [88, Theorem
1.1] if I is a closed subspace of H'(Q) then there exists a Borel subset M of 9
such that _

I={uc H(Q): 4=0 r.qe on M}.

A closer look of the proof of [88, Theorem 1.1] shows that M is in fact relatively
quasi-closed and therefore 0\ M is relatively quasi-open. If Q\ M is relatively
open (i.e., if M is relatively closed) by Theorem 2.4.2 I is regular on X := Q\ M.
Since a relatively quasi-open set is not necessarily relatively open, we do not know
whether I is in general regular. Therefore we do not know if condition (ii) (b) of
Theorem 3.4.21 can be omitted. By Example 3.4.15, the local condition on the
form can not be omitted.

Finally, the notion of local forms is contained in [55] and [69]. It is well-known
that if (a, D(a)) is a regular local symmetric Dirichlet form on L?(2) where  is
an open subset of RY and if D(Q2) C D(a) then the restriction of a to D(Q) is of

the form
N
a(u,v) = Z / D;uDjv dv;; +/ uv dk
Q Q

i,j=1
where for 1 <i,j < N, v;; is a Radon mesure on € such that for every compact set

K cQ, Vij(K) = Vji(K) and Z?fj:l flfjl/”(K) > 0 for all f = (fl,. .. ,fN) e RN
and here k is a positive Radon measure on € (see [69, IT Theorem 2.8 p.47]).

Section 3.5.
The monotone convergence of forms is contained in [84]. For more information on
the notion of I'-convergence we refer to [21] or [32].
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Chapter 4

Robin and Neumann Boundary
Conditions

In this chapter, we examine two particular cases of Chapter 3. The first one, Robin
boundary conditions, corresponds to the case where p is the restriction to 92 of
the (N — 1)-dimensional Hausdorff measure H~ =1 which we denote by o, or more
generally it corresponds to the case where p is absolutely continuous with respect
to 0. The second one, Neumann boundary conditions, corresponds to the cases
where ¢ = 0 or p is concentrated on a relatively polar Borel subset of 9€Q). We
need some preparations to examine these cases.

4.1 Maz’ya Inequality.

Before giving the very remarkable inequality due to Maz’ya (Theorem 4.1.7) and
called Maz’ya inequality, we need some preparations. The proof of the Maz’ya
inequality is based on Theorem 4.1.1, and on the well-known coarea formula (The-
orem 4.1.4) and on the isoperimetric inequality. The proof of Theorem 4.1.1 given
here is taken from [43, Remark p.192].

Theorem 4.1.1. Let Q C RY be an open set and u € C>(S2). Let
E :={zxeQ:u(zx) >t} teR.

Then -
full e, < [ 1B at (4.1)
N-—-1 0

Proof. We can assume that v > 0. Let

us ;= min(t,u) and F(t):= (/ ug dw)
Q



86 4. ROBIN AND NEUMANN BOUNDARY CONDITIONS

Then F' is nondecreasing on (0, c0) and

lim F(t) = ul| .

t—o00

Moreover, for h > 0,

0<F({t+h)—F(t) = [/ut]i_hl dsc} - {/ut”_l dm]
Q Q
< [/ \Ut+h—ut\% da:]
Q
< hE|T~.

Thus w < |Et|¥ Taking the limit as h — 0 (since F' is locally Lipschitz
it is differentiable a.e.) we obtain that F’(t) < |Et|¥ Integrating, we obtain

</d> :/ F’(t)dtg/ By
Q 0 0

which gives (4.1). O

Lemma 4.1.2. Let (X,B,u) be a measure space and u : X — R a nonnegative

function. Then
/ u(z) du z/ w(Ey) dt
X 0

where the integral over [0,00) is an improper Riemann integral and Ey := {x €
X : u(z) >t}

Proof. Let A := {(z,t) : u(z) > t} and L' be the Lebesgue measure on R.
Then

[T uEra = [Cuewoecana
- /Xﬂl({te[o,oo):(a:,t)eA}) dp

/X 10, u(2)]) dy

/X (2) dp.
O

A proof of the following result due to Morse is contained in [73, Corollary
1.2.2].
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Lemma 4.1.3 (Morse). Let Q C RY be an open set and u € C=(Q). Then for
almost all t € R the set {x € Q: u(x) =t} is a smooth manifold.

The following well-known result called Coarea Formula is contained in [43]
or [50]. The proof given here is taken from [73, Theorem 1.2.4].

Theorem 4.1.4 (Coarea formula). Let Q C RN be an open set and p € C(Q2), » >
0. Let uw € C*(2). Then

[ e@ivuiar= [~ [ o) are = a (42)

where Ay = {x € Q : |u(x)| = t}. Here we may assume HN"! to be the usual
Lebesgue surface measure, since by Lemma 4.1.3, A; is a smooth manifold.

Proof. Let w € D(Q)Y := D(Q,RY) and u € C*°(Q). Integrating by parts

yields,
/ wVu dx = —/ udivw dz.
Q Q

Since for u > 0, u(z fo X[u>1] (%) dt, we obtain

/Qudivw dx = /Q (/OOO Xfuz4(2) dt) divw(z) dz
= /Oo </ X[uz¢ (7) divw(x) dx) dt
= / dt/ divw(z

For u < 0, we have u(z) = fi)oo(X[uZt] (x) — 1) dt. Then

/Qudivw de = /Q(/_OOO (Xpusg(z) — 1) dt) divw(z) dx

0
= / dt divw(z) dx

—o00 u>t

0
= —/ dt divw(z) dz.

— o0 u<t

Finally we obtain that

/qudx = —/udivwdx

Q Q
00 0

—/ dt/ divw d:c—i—/ dt/ divw dx.
0 u>t —o0 u<t
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Since A; is a smooth manifold, integrating by parts yields,

divwdxz—/ wvd'HN_lz—/ Vu dHNT
>t u=t |v |

where v is the normal to A; directed into the set {x : u(z) > t}. Similarly,

/ divwdx:/ wudHNfl:/ &do
u<t u=t |V |

Making a change of variable in the last integral by letting s := —t, we obtain

/qu dx / dt/ w— dHN 1 4+ / dt/ U gHN-

Q |Vu|
dt/ dHN 1.

/ A, |VU|

Vu
=¥
(IVul2 +¢)2
where ¢ € D(Q), ¢ > 0 and ¢ is a positive number, we obtain

/@((vi) 2+ o)1 / /A |Vu| Y + o)t T

Passing to the limit as € | 0 and making use of Beppo Levi’s Monotone Conver-
gence Theorem we obtain (4.2) for all ¢ € D(R2), ¢ > 0.

2) Let ¢ € C(2), ¢ > 0, supp[y] C © and let n.¢ be a mollification of ¢
(see [59, Section 2.7]) with radius e. Since supp[n.¢] C 2 for small values of e, we

have that -
/(nscp)Vu dz :/ dt/ nep dHN L. (4.3)
Q 0 At

Let a € D(2) satisty

1) Letting

a=1on | Jsupplneg], a > 0.

€

Obviously,

[ neodt™ < gl [ adn <ol [ @™ )
Ay t Ay

By (4.2) applied to ¢ = a, the integral in the right-hand side of (4.4) is a summable
function on (0, 00). Since 7.¢p — ¢ uniformly and H¥~1(A; N supp[a]) < oo for
almost all ¢, it follows that

/ nepdHN 1 — edHN"! ase —0
Ay Ay
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for almost all ¢t. Now, Lebesgue’s Dominated Convergence Theorem ensures the
possibility of passing to the limit as € — 0 in (4.3) and we obtain

/chudx:/ dt/ @dHN 1
Q 0 At

for all p € C(Q), ¢ > 0 and supp[yp] C Q.
3) Further, we remove the restriction supp[p] C . Let ¢ € C(€2),¢ > 0 and
am be a sequence of nonnegative functions in D(€2) such that:

Usupp[am] =Q, 0<a, <1,
m
am =1 for x € supplam—1].

Then supplam,p] C 2 and

/amcp|Vu| d:c:/ dt/ amep dHN L
Q 0 At

Since the sequence (au,p) does not decrease, by Beppo Levi’s Theorem we may
pass to the limit as m — oo which completes the proof. O

Definition 4.1.5. Let Q C RY be an open set.

a) A function u € L'(Q) is of bounded variation in ) if

sup{/ udivy dz, o € CHORY): |p| < 1} < 00.
Q

We write BV () to denote the space of functions of bounded variation.
b) An LN -measurable set G C RN has a finite perimeter in Q if x¢ € BV ().
Next we give a version of the well-known Isoperimetric inequality. For the
general case, we refer to [4, Theorem 3.46 p.149] or [73, Theorem 6.1.5 p.301].

Lemma 4.1.6 (Isoperimetric inequality). Let G be a bounded measurable set of
finite perimeter in RY. Then

Gl < C(NYHY=1(8G). (4.5)
The constant C(N) is called the isoperimetric constant and is given by

D(Y + 1)
N

where I' denotes the usual gamma function.

C(N) :=
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Next for an open subset Q of RY and 1 < p < oo we denote by W, (€2) the
space of all functions u € LP(£2) such that Vu € LP(Q)" equipped with the norm
1/
lullws ey = (lulll + [IVullh) " .

Then HY(Q) = W1 (Q).
Now we are in position to give and to prove the Maz’ya inequality.

Theorem 4.1.7 (Maz’ya). Let Q C RY be an open set. For allu € Wi(Q)NC>=(Q)N

C.(Q), the inequality
Jull x < C(N)(IVully + [lullL1 00.0)) (4.6)
holds. Here C(N) is the isoperimetric constant.
Proof. Let u € W}(2) N C>=(2) N C.(Q) and let
Ei:={zcQ: |u(@)| >t} and A :={zecQ: |u(z) =t}
Then E, is a bounded set of finite perimeter in R"V. By Lemma 4.1.6,
|E,|"% < C(NYHNL(OE,).

Here OF; is the boundary of E; in RY; i.e., 0E; = A; U (E; N ON) where E; is the
closure of E; in RY. We obtain that,

N—-1

By~ < C(N) (KN (A) + HYN"HE, N 09)) . (4.7)
Thus
/ B~ dt < C(N) (/ HNL(A,) dt+/ HN LB, N 0Q) dt)
0 0 0
< C(N) (/ dt/ dHN*1+/ dt/ dHN1>.
0 Ay 0 E:noQ

By Theorem 4.1.1, we have
> N—1
lull g, < [ 1R (48)

Applying Theorem 4.1.4 with ¢ = 1 we obtain

Vs :/0 dt/A dHN (4.9)

Remark that E; N9Q = {x € 9Q : |u(x)| > t}. Let o be the restriction to
09 of the measure HY~!. Then applying Lemma 4.1.2 with the measure space
(09, B(0R2), o) we obtain that

/ | da:/ o(E, N 09) di. (4.10)
oQ 0

Now (4.8), (4.9) and (4.10) give (4.6). O
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Corollary 4.1.8. Let Q C RN be an open set. Then

1/2
lull . < COV)Y2 (Il + 1l + 3 0. (4.11)

for allu € HY(Q) N C>=(Q) N C.(Q).

Proof. Let u € H*(Q)NC>®(Q)NC.(Q). Then u? € W(Q)NC>(Q)NC.(Q).
By Theorem 4.1.7, one has that

lullZs, = lu < O (19 + el 00.0)
< o) (2uvully + )3z 00,0
< o) (2Vullzlulls + 4l 000
< O (IVall3 + ull3 + elF2on,0))
which is the inequality (4.11). O

We will call the inequality (4.11) Maz’ya inequality for open sets with infinite
measure.

Corollary 4.1.9. Suppose that @ C RY is an open set of finite measure. Then
) ) 1/2
lull g, < O 19D (Il + [l om0 ) (1.12)

for allw € HY(Q) N C>(Q) N C.(Q).

Proof. Let u € HY(Q)NC>®(2)NC.(Q). Then u? € WH(Q)NC.(Q)NC>(Q)
and by Theorem 4.1.7, one obtains that

C(N) (IV ()11 + 1wl 22 o0.0))

CV) (2uvuls + llul o0 ) - (413)

IN

ullPos, = [l

IN

By Hélder’s inequality and the Young inequality 2ab < ca? + %62 for all a,b >0
and for every € > 0, we obtain that

2luVuly < 2fullol|Vulls < 21202 full px [Vl
N-—-1

IN

1
ellull’ex + -1/ | Vul)3
= €
for every € > 0. Choosing € := QC%N) and substituting the above inequality in
(4.13) we obtain that

ullZes < 20(N) max{1,2100% C(V)} (IVul3 + 00,0,
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and the proof is complete. O

We will call the inequality (4.12) Maz’ya inequality for open sets with finite
measure.

Definition 4.1.10. Let Q@ C RN be an open set. We denote by Wi ,(2,00) the
completion of the set

W, = {Hl(Q) NC®(N)NC(Q) : / lul? do < oo}
oN
with respect to the norm
2 2 2 1/2
lalls = Tl oom = (IVul3 + el + lul3oan) - (414)
If Q has a finite measure then this norm is equivalent to the norm
) ) 1/2
lullz = (IVul3+ lulE200.0) - (4.15)

We call Wy 5(Q2,0Q) the Maz’ya space.

Remark that in both cases (€2 of finite measure or not), by Corollary 4.1.8,
the space W, equipped with the norm defined by (4.14) satisfies

2N

Wo Il lIl) = L¥=T(Q) (4.16)

where the embedding constant just depends on the dimension N.
If W, is equipped with the norm defined by (4.15), then by Corollary 4.1.9,

2N

Wo, [l - ll2) — L¥=1(82) (4.17)

for every open set with finite measure and in that case the embedding constant
depends on N and an upper bound for |2|. If 2 has an infinite measure, under
some geometric conditions on €2, the embedding (4.17) is sometimes true (see [73,
Theorem 4.11.1.1]).

4.2 The Laplacian with Robin Boundary Conditions.

Throughout this section Q C RY (N > 2) is an open set not necessarily of finite
measure. Since

E::{ueHl(Q)ﬂC’C(Q):/ lul? do < 0o}
oN
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is a dense subspace of W21’2 (Q,090) we can replace W, by E in the definition of

W3 ,(€,09). Let us denote by j the natural embedding from E into L¥ (Q). As
a bounded linear operator, it has a unique extension to an operator

2N

J€ L(W;35(Q,09), LN=1(1Q)).

Robin boundary conditions have been studied by Daners [34]. In particular, he
conjectured that the mapping 7 is always injective provided that o(9€2) < co. We
shall prove in this section that this conjecture is not true. Letting V denote the
domain of the closure of the closable part of (ay, F), the results of Chapter 3 imply
that V = (ker 7)*. Therefore, the restriction of j to V is injective, and since V is
a closed subspace of W3 ,(€,99), it follows that

Vs LY (Q). (4.18)

More precisely, to see that (4.18) holds, let ¢ = o, + o5 be the decomposition of o
as in Lemma 3.3.5 or as in Remark 3.3.7. Note that E is dense in V. Recall that
o, = xso and o; = yno for some relatively polar Borel set N and S :=T'\ N
where

Fi={2€9Q: 3r>0: o(B(z,r)NON) < co}.

Since o, is a regular Borel measure, there exists an increasing sequence of compact
sets K, C N such that o5(N\U, K, ) = 0. Let u € E. As in the proof of Proposition
3.3.8, we find a sequence u,, € F such that v, — u in ]?1(9)7 Unlog — uloq in
L?(09Q,0,) = L*(S,0) and u,|oq — 0 in L*(N, o).

If © has a finite measure, inserting the sequence u,, in the Maz’ya inequality
(4.12) and taking the limit as n — oo, we obtain that

1/2
lull g, < V19D (IVulE + lullBase) =Nl (419)

If © has an infinite measure, inserting the sequence u,, in the Maz’ya inequal-
ity (4.11) and taking the limit as n — oo, we obtain that

1/2
Il g, < CON) (Il + ol + NulFaqs,m )~ = Il (4.20)

In both cases, we denote by Ag the selfadjoint operator on L?(£2) associated
with the closure of the closable part of (a,, F). The operator Ag is the Laplacian
with Robin boundary conditions. Using the inequalities (4.19) and (4.20) we will
prove that the semigroup (e!“%);>o on L?(f2) generated by Ag has a kernel which
satisfies some Gaussian estimates with modified exponents, a result obtained by
Daners [34] in the case where  is bounded.



94 4. ROBIN AND NEUMANN BOUNDARY CONDITIONS

2N
A. The Embedding WW,,(02, 02) into L~-1(Q) is not always Injective.
In this subsection, we prove that the form (a,, E) is not always closable.

Theorem 4.2.1. Let Q C RN be a domain of finite measure. Let j be the natural
embedding from E into L*(Q) and ] its continuous extension from Wy (€2, 052)
into L?(Q). Then j is not always injective.

Proof. The results of Chapter 3 imply that the injectivity of 7 is equivalent to
the closability of the form (a,, E) which is also equivalent to the fact that o € M,
in the case where o(9€2) < co. Let Q C R? be the domain constructed in Example
2.3.10. We have proved that for this domain, the 2-dimensional Hausdorff measure
on 0F2 charges relatively polar subsets of 0Q; i.e., o & M. Since o(99Q) < oo, this
implies that 7 is not injective. To illustrate this, replacing p by o in the proof of
Theorem 3.3.1 ((i) = (ii)), we have a sequence w;, € H'(Q) N C(N) satisfying: wy,
converges to zero in H*(£2), wg|sq is a Cauchy sequence in L?(9€, o) and wi|sn
converges to xx pointwise where K is the subset of 99 satisfying Capg(K) = 0
but o(K) > 0. Since w|aq is a Cauchy sequence in L?(9€2, o) and converges to
Xk pointwise, the uniqueness of the limit implies that wg|sn converges to xx in
L?(09,0) but the function X is not zero since o(K) > 0. O

Remark 4.2.2. [t follows from Proposition 2.3.4 and Theorem 2.1.5 that if ﬁl(Q)
has the continuous extension property, then o € Mg and therefore (ay, E) is clos-
able. In particular if Q is a bounded Lipschitz domain then (aq, E) is closable
and in that case, since each u € HY(Q) has a trace in L2(0),0) and the trace
application is continuous from HY(Q) into L2(0,0) (see below), it follows that
V= W3,(Q,00) = H(Q) = H(Q).

B. Characterization of the Domain of Ap.

Let © C RN be a bounded domain with Lipschitz boundary. Let
THY(Q) ={f: f=uloa: ue H(Q)}

be the trace space of H!(Q) equipped with the norm

||f||TH1(Q) = inf{||uHH1(Q) U € Hl(Q) . u‘ag = f}
Let
HY2(0Q) = {u € L*(0Q,0) : |ull1/2.00 < o0},
where

u(z) — u(y)?
HUH%/z,aQ = ||“H2L2(aﬂ,a) +/ d

(o ®o).
OO xOO\d lz —y|N

Then, it is clear that H'/2(9Q) is a Hilbert space. The following result due to
Gagliardo is contained in [75, Theorem 4.1.1].
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Theorem 4.2.3 (Gagliardo’s Theorem). Let Q C RY be a bounded domain with
Lipschitz boundary. Then the space TH" () and H'Y/?(0Q) coincide with equivalent
norms. Furthermore, there is a bounded linear extension operator

E: HY?(9Q) — HYRM).
By Gagliardo’s Theorem, the mapping
Yo : HYQ) — HY2(09) : u— vo(u) := ulsq

is linear and for each w € H'/2(99), there exists v € H'(£2) such that yo(v) = w.
Moreover there exists a constant C' > 0 such that,

[olla1(@) < Cllwllgzo0)- (4.21)

Let
H(AQ) :={uc H(Q): Auc LZ(Q)}

be equipped with the norm

lullra.0) = lulli @) + [1Aull3.

Then H(A,Q) is a Hilbert space containing C*°({2) as a dense subspace (see [68,
Theorem 8.2 p.39]). We will denote by H~1/2(99) the dual space of H'/?(0%)
where (u,v) = [5, uv do if u,v € L*(8Q, 0).

The proof of the following result given here is taken from [38, Chap. VII
Lemma 2.2.1 and Corollary 2.2.1].

Lemma 4.2.4. Let Q C RY be a bounded domain with Lipschitz boundary. Then
the mapping v1 : C>®(Q) — C(9Q) defined by 1 (u) = %”39 (where v denotes
the exterior normal to 0§)) has an extension, again denoted by 71, which is a
continuous mapping of H(A, Q) into H='/2(9Q). Moreover, for everyu € H(A, )
and v € HY(Q), we have the generalized Green formula

(y1(u),v) :/QAuv dm+/QVqu dx (4.22)

where (,) denotes the duality between H—/2(0Q) and H'/?(0Q).
Proof. Let u € C*®(9Q). For w € HY?(99), we let
Ou

l(w) := —w do.
(w) aa OV

Let v € H'(Q) be such that 5o(v) = w. Since Q has a Lipschitz boundary, it
follows that for u € C*°(Q) and v € H(Q2), we have the Green formula

l(w) :/Auv d:ch/ VuVv dz.
Q Q
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From Schwarz inequality and (4.21), we therefore have
l(w) < Hu||H(A,Q)||UHH1(Q) < OHUHH(A,Q)||wHH1/2(8Q)

which proves that [ € H~/2(9Q) and, in addition, that the mapping v, : u €
C>®(Q) — 1 € H™'/2(09) is bounded on C*(Q) equipped with the norm of
H(A,Q). Since C>() is dense in H(A,Q), we have that 71 can be extended by
density to a continuous linear mapping from H(A, Q) into H~'/2(9%).

Finally, since for each v € H(A,Q), v1(u) is a linear continuous functional
on H'/2(082), we have the generalized Green formula (4.22). O

The following result characterizes the domain of the operator Ag.

Proposition 4.2.5. Let Q C RN be a bounded domain with Lipschitz boundary.
Then the operator Ag is given by

{D(AR) ={ue H(A,Q): (F +u) loa = 0} (4.23)

Agru = Au.

Proof. Let us note that (% + u) oo = 0 means that (g—;‘ Jru) loo = 0 in
H=Y2(09); ie., for all ¢ € HY2(9Q) we have ((2% +u)|sq, ) = 0. Since Q
has a Lipschitz boundary, it follows that o € My (since H(€) = H'(Q2) has the
extension property) and V. = W3 ,(Q,0Q) = H'(Q) with equivalent norm. By
definition

{D(AR) ={ue HY(Q): Jve L2(Q): ay(u,p) = (v,0) ¥ p € H'(Q)}
Agru = —w.

Let

D:={ue HAQ): (gqj—&-u) loo = 0}.

We have to show that D = D(Ag). Let uw € D and v := —Au. Then v € L*(Q).
Using the generalized Green formula (4.22), we obtain that for all ¢ € H(),

(v.9) = (~Bug) = | VuVoda = ().
Since u € D, it follows that

(m(u) +70(u), ¢) = 0.

This implies that
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Therefore,

(v,cp):/vcp dx ::—/Aucpdx = /Vchpdx-l—(’yo(u),go)
Q Q Q

= /Vchpdx+/ up do
Q o0

= a,(u,p).

Thus v € D(ARr) and Aru = —v = Au.
To prove the converse inclusion, let © € D(Ag). Then, by definition, there
exists v € L2(2) such that for all ¢ € H() we have

aq(u, ) = / VuVe dx —|—/ up do = / v dx. (4.24)
Q a0 Q
If we choose ¢ € D(Q), (4.24) can be written

<*AU, 90> - <U7 SD>

where (,) denotes the duality between D(Q2)" and D(Q). Since ¢ € D() is arbi-
trary, it follows that
—Au=v in D(Q).

As v € L?(), this implies that Au € L?(Q) and then u € H(A, ). To finish, we
have to prove that vy (u) + yo(u) = 0 in H~/2(99Q). Using the generalized Green
formula, we obtain that for all ¢ € H(Q)

/ngp de = /Q(—Au)(p de = /QVquo dz — (1 (u), )

= /QVquodm—i—/aQucpdo—/mugodd—<71(U)7<P>
= a,(u, ) — (7 (u) +vo(u), ).

Since u € D(AR), it follows that [, ve dz = ax(u, @) and thus (y1(u)+70(u), p) =
0. Since ¢|aq € HY?(9Q) is arbitrary, this implies that

yi(u) +vo(u) =0 in HY2(5Q)
and thus v € D which completes the proof. O

Next we assume that Q@ C RY is an arbitrary bounded domain. We simply
denote by (as, V) the closure of the closable part of (a,, E). Let S be the subset
of 9 obtained by decomposing ¢ as in Lemma 3.3.5 and let

V(A,Q):={uecV: Aue L*(Q)}
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be equipped with the norm
ull}r a0y = llulli + [[Au]3.

Then V(A,Q) is a Hilbert space. We claim that for each u € V(A, ), we can
define a “normal derivative” of w on S in the “generalized sense”.

It is well-known (see Chapters 2 and 3) that H}(Q) is a closed subspace of
V and by Theorem 2.4.1 it is given by

Hy(Q)={uecV:a=0 rqe on 9Q}.

Throughout the following, without restriction, we assume that each function u €
HY(Q) is r.q.c.
Let V(99) := V/H}(Q) be equipped with the quotient norm

/
U = inf |lu—v|y:= inf (Vu—v 24 ||lul? ) .
fillvon == int vl = inf (19— o)+ s
It is then clear that V(9€) is a Hilbert space and the mapping v : V — V(912) :
u +— Yo(u) = ulg is linear continuous. In particular, the mapping v : V(A, Q) —
V(09Q) : u — 7o(u) is linear continuous. Let V' denotes the dual space of V. Since

the mapping 7 defined above is linear continuous, it follows that the mapping L
defined by: for u € V(A,Q),

Lu: V—->R: v— (Lu)v:= (—Au,v) — as(u,v),

where (,) denotes the duality between V' and V', defines a linear continuous func-
tional on V. Moreover, since for each v € H}(Q)

(—Au,v) = / VuVo = aq(u,v),
Q

it follows that the functional (Lu) is zero on Hg(£2) and hence it defines a linear
continuous functional on V(02). By Riesz’s Representation Theorem (see [24,
Théoréme IV.11]), there exists a unique element G(u) € V(99)" (the dual space
of V(092)) such that for all v € V,

(G(u),v)v a0y xv(o0) = (—Au,v)vxv — ao(u, ). (4.25)
We define
ou . .
= —(G(u)+u) on S in the “generalized sense”
v
or 5
a% = —(G(u) +u) in V(5Q)

and we call % the normal derivative of v € V(A,Q) on S in the “generalized
sense”.
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Remark 4.2.6. The notion of the “normal derivative” of a function u in V(A,Q)
defined above is only formal since for an arbitrary domain the mormal does not
always exists o a.e.

Next, since the embedding from V(9Q) into L?(S, o) is continuous, it follows
that every g € L?(S, o) defines a linear continuous functional on V (9Q). Therefore,
we can write

(G(u),v)v(a0) xv (o) = / gvdo YveV;
s

that is G(u) = g on S in the “generalized sense” or G(u) = ¢ in V(0Q)".
The following result characterizes the domain of the operator Ap for an
arbitrary bounded domain as in the case where 2 has a Lipschitz boundary.

Proposition 4.2.7. Let Q C RY be a bounded domain. Then the operator Ag is
given by

D(Ar) ={ueV(A,R): Glu)=0 on S}

ARru = Au.

Proof. By definition, the operator Ag is given by

D(AR) =={uecV:3veL?Q): as(u,p) = (v,p) Ve V}
Agru = —0.

Let
D:={ueV(AQ): Glu)=0 on S}.

Let u € D and v := —Awu. Then v € L*(Q). Using (4.25), we have

(U’<p) = (—Au,cp) = <_Auv <,0> = aU(uﬂD) VeV

and thus u € D(Ag) and Agu = —v = Au.
To prove the converse inclusion, let uw € D(Ag). By definition, there exists
v € L%(Q) such that for all ¢ € V we have

VuVy dx + / up do = / V. (4.26)
Q s Q

As in the proof of Proposition 4.2.5, the equality (4.26) implies that Au € L?(£2)
and thus u € V(A, Q). Finally, by (4.25), we obtain that for all ¢ € V,

/ v da = / (—Au)p dz = (—Au, )v xv = (G(u), p)v () xv(69) + o (U, ¢).
Q Q
Since u € D(AR), we have that

aa(uw):/w dx
Q
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and thus
(G(u), ©)v o0y xvaa) = 0.

Since p|g € V(99) is arbitrary, this implies that G(u) = 0 in V(9€2)’. Thus v € D
and the proof is complete. O

Next we give a very important remark.

Remark 4.2.8. Recall that the Laplacian with Robin boundary conditions is the
closed operator Agr associated with the closed form (a,,V') where o is the restric-
tion to O of the (N — 1)-dimensional Hausdorff measure. We show that this
classical definition has some disadvantages and thus seems not to be the correct
definition.

Let Q C R? be the domain bounded by the von Koch curve as in Figure 4.1
It is well-known that o is locally infinite on 02 and thus the results of Chapter 3
imply that the closed form (ay,V) is given by V = HZ () and

ay(u,v) = / VuVo dz.
Q

Thus the operator Ag is the Laplacian with Dirichlet boundary conditions.

By [13, Section 1.5.1 Example 1], the boundary 02 of Q2 is a quasicircle
and then by [63, Theorem B and Theorem 4], H'(Q) has the extension property.
Since Q is a domain in R?, by Remark 2.5.6 H'(Q) has the continuous extension
property. Let s be the Hausdorff dimension of 0. By [46, Example 2.7 p.31] and
[46, Section 9.2 p.117],

log4

1 = — s .
<s log3<2 and 0 < H®(0) < o0

Since HY()) = H(Q) has the continuous extension property, by Proposition 2.3.4
and Theorem 2.1.5, H® € M. Let us still denote by H® the restriction to 02 of
H?®. Then the form (ays, E) is closable on L*(Q) and its closure is given by:

ays(u,v) = / VuVv dm+/ uv dH?®
Q o0

with domain N
V={uecH(Q)=HYQ): @ e L*0Q,H)}.

Thus, we see that in order to define the Robin boundary conditions, it is more
natural to take as measure the restriction of the s-dimensional Hausdorff measure
to 02 where s is the Hausdorff dimension of the boundary, than taking the measure
o. After this investigation, we can ask the following question.

Is the Maz’ya inequality also true if we consider the measure 7* in place of
o?
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More precisely, let @ C RN be an open set with finite Lebesgue measure and s
be the Hausdorff dimension of its boundary. Let W be the completion of the space

By = {u e HY(Q) N C.(Q) : / uf? dH® < oo}
o

with respect to the norm
[ull? = [IVull3 + lull7zo0,m0)-

Is it always possible to find g > 2 such that the space W is continuously embedded
into L1(Q)?

Figure 4.1: von Koch curve

C. Kernel Estimates and p-Independence of the Spectrum.

The following inequality called Nash inequality is only a consequence of the two
Maz’ya inequalities. The proof given here is very easy and works also for an arbi-
trary Dirichlet space D(a) which embeds into LP(X,m) for some p > 2 where X
and m satisfy the condition (1.3).

Proposition 4.2.9 (Nash inequality). There exists a constant ¢ > 0 such that

24+ % 2
lulls™ < ellull5 flull (4.27)
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for allu € VNLY(Q). The constant ¢ depends only on N if |Q| = co and it depends
on N and |Q| if |©] < oo.

Proof. Let u € V N LY(Q). Using the Holder inequality, one obtains the
following interpolation inequality:

5 N
[ullz < Jlull™" lull 2a” -
N—1

(4.28)

Using the Maz’ya inequality (4.11) if |Q] = oo and (4.12) if || < oo, one has that

N]Xrl < ﬁ 4.29
[l T < eafull . (4.20)

Finally, replacing (4.29) in (4.28) we obtain that

1 .
lJulla < e ffal| 7 {fafl 0

Thus

2 2
lul3 ™™ < clulf ull ¥
O
The Nash inequality implies that the operator e»% has a kernel. To obtain an
estimate of this kernel, we shall use a technique of Arendt and Ter Elst. They have
proved in [16] Gaussian estimates of semigroups generated by elliptic differential
operators with general boundary conditions. Then the proof given here is only an
adaptation of the proof contained in [16, Theorem 4.4]. Finally, we note that this
technique uses Davies’ perturbation method which is contained in [39].
Next, let

W= { € C*(RY) : [[Villo <1, [DiDjtllos <1V 1 <4,j < N}.

For a semigroup 7 on L2(f2), p € R and ¢ € W we define the perturbed semigroup
T, on L*(2) by T,(t) = U,T(t)U, " where (U,p)(x) = e PP @ ().

To obtain the Gaussian estimates, we need the following result which is con-
tained in [16, Proposition 3.3].

Proposition 4.2.10. Let T be a semigroup on L*(Q) and c,w; € R. Then the
following assertions are equivalent.

(i) There exists a constant wy > 0 such that
T, (Ol o < et~ /20107025

uniformly for all p € R, >0 and ¢ € W.
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(i1) There exists a constant b > 0 such that the operators T(t) have a kernel
K; € L™(Q x Q) which verifies

|z~

a2
K (z,y)| < ct™N/2e7? P gat

for (z,y) a.e. and for allt > 0.
The following is the main result of this subsection.

Theorem 4.2.11. There exists a constant C' > 0 depending on the constant of the
inequality (4.27) such that

2R oe < CtTN (4.30)

uniformly for all t > 0 if |Q| < co.
There exists a constant C' > 0 depending only on N such that

€271 oo < Celt™ (4.31)

uniformly for all t > 0 if |Q)] = co. Moreover, the operators e*® have a kernel
K; € L>™(Q x Q) satisfying

|z —y|2
t

0 < Ky(z,y) < Ct Ne™® (4.32)

for some constant b > 0, and for (x,y) a.e. and uniformly for all t > 0 if || < co
and

0 < Ki(x,y) < Ot N ewte—bE (4.33)
for some constants b,w > 0, and for (z,y) a.e. and uniformly for all t > 0 if
|Q] = oo.

Proof. 1) First, we prove the inequality (4.30). Let 0 < f € L}(Q) N L?(Q2) =
L?(Q) and let
fri=eBnf and u(t) = |
Then f, € VN LY(Q) = V. As (e!®7);>¢ is a holomorphic semigroup on L?()
then

du
—E = —(Aan ft) = aa(ftvft)-
Using the inequality (4.27), one has
du 1 2 =2 1 1 =2
—op = (e f0) = AT = u@ A
Therefore
d —1 -1 _1,d
= (u(t) ~ ) = Fu®) ()
1 1 .1 1 =2
S GO TOR A Py
1 =2
> 1fell™ (4.34)

cN
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Since (e*A%);> is a submarkovian semigroup, one has the bound | fi|l; < ||f|:
and therefore

_z _2
Ifell ™ > (1FIl ™ (4.35)
Integrating (4.34) and using (4.35), we obtain

/Ot di (u() %) ds = u(t)* — (o) * = 7l . (4.36)

Since u(0) := || f||3 > 0, the inequality (4.36) implies that

Finally,

w2

cN N
el < () I = a7l

This bound extends to all 0 < f € L*(2) by an approximation argument and then
to all f € L1(2) by the positivity of e!A%. By duality, we have

N
2% flloe < eat™ = || f2.

Since e!Ar = ¢38Re5AR we have
€27 1 o0 < (|27 |1 s le"/220 |30 < CEN

uniformly for all ¢ > 0.
2) Next we prove the inequality (4.31). This is the case where || = oo. For
fe Ly () NL*Q), we put

foi= AR f and u(t) = | £
Then f; € VN LY(Q). Proceeding exactely as in 1), we obtain that
le" B =Dy < O
uniformly for all ¢ > 0. Thus
€271 oo < Ct Vet

uniformly for all ¢ > 0.

3) Next we prove the bounds (4.32) and (4.33). By (4.30), Dunford-Pettis’
Theorem (see [11, Theorem 1.2.6]) ensures that e!~% is an integral operator (see
Definition 4.3.2 below) with kernel K, € L>(Q2 x Q) for all ¢ > 0. Recall that we
assume that each function v € V is r.q.c., and

lully = IVull3 + l[ullf2s,0)
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if Q] < oo and
lull} = IVull3 + lull3 + lulZzs,0)
if |2 = oo. For each p € R and ¢y € W we define the perturbed semigroup 7,(t) o
L%(Q) by T,(t) == UpetARUp_l. This definition has a sense since e *¥¢ € LP(Q) 1f
pe LP(N) forall 1 < p < oo.
a) Let ¢ € V, then U,p € V. Indeed, there exists a sequence ¢,, € E such
that ¢, — ¢ in V. It is clear that U,p, € I and,

IVUpn —Upp)lz = IV(e™(n — 9)) 2
< e PV(pn — 9)ll2 + p(on — 9)e VY2
< e ooV (en = @)ll2 + le™" locllon — ©ll2
— 0 as n — oo.

Moreover,
[Upon = Upipllz = e (on — @)l
< ||e_p¢|‘oo||%0n —¢lla—0 as n — oo.
Furthermore,
1Upen — Uppllrzs,ey < lle™loollon — @ll2(s,0)
— 0 as n— oo.
Thus U,p € V.

b) Let A, be the generator of the semigroup 7},. The form a, associated with
the operator A, is given by

a,:VxV —R; ap(u,v):ao(Up_lu,Upv).

Letting ; := D;%, a simple calculation gives

N
o(u,v) = ; /Q(DZ + p)u(D; — p;)v dx —|—/ uv do.

S

Let v € V, then
Z/ (D; + pvi)u(D; — pb;)u dx +/ lu|? do

/\Vu|2dx— /|w\ |u|2d:v+/ luf? do.
¢ [ VOl do < 6 [ 1 da.
Q Q

Since
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it follows that
ap(u,u) + p°flull3 >0

which implies that
2
1T, ()22 < e

for all ¢ > 0.

c) Let p € 2N and ¢ € L*(Q) N L>(2). Then (T,(t)p)? € V whenever ¢ > 0.
In fact, let f = T,(t)p. Then f € V and therefore f € V.N L*>(Q). We show that
fPeV.Forp=2 since f2=f-fand f € VN L®Q), by [55 Theorem 1.4.2
(ii)], f? € V. Now, by induction on p, one obtains easily that f? € V.

d) Let p € L*(Q) N L*>®(Q), p € 2N and ¢; := T,(t)p. We claim that the
mapping ¢ — ||Tp(t)<pH§g is differentiable on (0, c0) and

d B _
TIT@Oell5y = =2p(Aper, 927 ) = =2pa (1, ") (4.37)

Indeed, consider the following mappings:

G : (0,00) — L2(Q)\ {0} : tsF
Fo:o LPO\{0} =Ryt ue [full3

Clearly, ||Tp(t)<pH§§ = F o G(t). Since T}, is a holomorphic semigroup on L?(Q), it
follows that G is differentiable and

G'(t) = —pp} ™~ Ayepr.
It is also easy to verify that F is differentiable and for every u € L?(Q) \ {0}
F'(u) - h =2(u, h).
Thus the mapping ¢ — |\Tp(t)g0||§§ is differentiable on (0, c0) and

d

yr [ OL (FoG)(t) = F'(G(t)) - G'(t)

—2p(Apr, 077 1) = —2pa, (o1, 07

which proves the claim.
e) Next we show that there exists a constant ¢ > 0 such that

d 2
T ®elap < =lefllv + oIl 113

uniformly for all t > 0,p € R,y € W, € VN L>®(2) and p € 2N. By (4.37), a
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simple calculation gives

d
AL

N
—2p (Z/Q(Di + pi)pr (D — pibi) i~ d + /s |0} [? dO’)
=1
N N
—2PZ/QDMD¢¢3”*1 dx — ZPZ/de}iSDtDiSD?pil dzx
=1 =1

N N
QPZ/ pigi”” Digr da + QPZ/ PP} d
i=17% i=17%

2pllo} Nl L2 (s,0)-

The first term can be estimated by

N
- —2p(2p — 1)
-2 [ DD do = =D yveg | < 21V
i=1

In the following estimates, we shall use frequently the Holder inequality and the
Young inequality. The second term can be estimated by

N
—2py /Q pio DipfP ™t da
i=1

N
—2(2p - l)pZ/QwisOfDiwf dx
i=1

< ANp|plIVeEl2M1€7 |2
< e|lVeL|3 + e NP1 F |13

for every € > 0. The third term can be estimated by

N
2 /Q pipi" " Dipy da
=1

IN

2|p

N
Z/ Py Dy} da
i=17/%

< ANDpl[IVEY 207 Il2
< elVRIE + e N2 PP |t |13

for every € > 0. The fourth term can be estimated by

Finally, one has

d
ST 00l3 <

N
2pp? Z/Q%%?p dx < 2N*p? 02|V |13
=1

(2= 22) 913 — 6F lz2(s.0) + PPPPN2(2 4+ 267 ) [ 3.

Choosing € = 1/2, one obtains that

d 2
ZNT®¢llz, < =lefllv + 680 7 I3



108 4. ROBIN AND NEUMANN BOUNDARY CONDITIONS
if Q] < oo and

d

ST (el < —lleflv +6Np*(p* + D)} I3

if |9 = oo. Since [|T,(t)]|2—2 < e?’t uniformly for all t > 0,p € R and ¢ € W,
applying [16, Proposition 4.6], we obtain that

[T, (1)]l2oo < ct™ % el te3N"P7t = op =7 (13N
if [©2] < oo and
175 (t)l2—00 < ot B P te3N (40PNt _ =5 BNt (143N?)p%
if |©2] = oo. By duality we obtain
T, (8)]|1p < ct ™% e(H3ND)R%

if Q] < oo and
[T (@)[[1—2 < ct™ % 3N te(143N%)p%t
if |Q| = oco. Hence
HTp(t)||1~>oo < Ct7N6(1+3N2)p2t

for all ¢ > 0 and p € R if [€2] < 00, and
1T ()l —o0 < et~ N B3Nt (143N?)p?t

for all ¢ > 0 and p € R if |Q] = co. Now the claim follows by applying Proposition
4.2.10. O

Now, since (e!2®) is a submarkovian semigroup on L?($2), by Theorem 1.3.17,
there exist consistent semigroups on all LP(2), 1 < p < oo. We denote by A%, the
generator of the semigroup on LP(Q) for 1 < p < co. Notice that A% = Ag

Proposition 4.2.12. Let @ C RY be an open set. Then the spectrum of AY, is
independent of p; i.e., o(A%) = o(AR) for all1 < p < .

The proof uses the following result due to Kunstmann and Vogt and contained
in [67, Proposition 5] which can be reformulated as follows.

Theorem 4.2.13 (Kunstmann-Vogt). Let Q C RY be an open set and (e!4);>¢ be
a submarkovain Cy-semigroup on L%(Q) such that et has a kernel K; satisfying
the upper bound

Jz—y|?

|Kt(x7y)| S C1t_]\/[/26_C2 ¢ (t > 07 T,y € Q)

for some constants c¢i,co > 0 and M > N. Let A, be the generator of the semi-
groups on LP(Q) for 1 <p < oco. Then o(A,) = o(Asz) :=o(A).
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In fact, by [67, Proposition 5], R(\, 4,)" is independent of p for all large A
and for all n > 1+ -~ and by [64, Lemma 6.3] we obtain that 0(A,) = o(As).

Proof of Proposition 4.2.12. By Theorem 4.2.11, the semigroup (e!A%);>¢ is
ultracontractive; i.e. €% maps L?(2) into L°°(£2) (see [39, Section 2.1]).

1) If |©] < oo, by [39, Theorem 2.1.5], the ultracontractivity implies that
o(A}) = a(Ap).

2) If |Q| = oo, then, by Theorem 4.2.11, the operator €% has a kernel K;
satisfying the upper bound

z—yl?
0 < Ki(x,y) §C’t*Ne‘*’te*bl # (t>0, z,y € Q).
Thus the kernel e~“*K; of ef(Ar=wI) gatisfies
|2
0<e “Kiz,y) < Ot 2N/2=bE= (t>0, z,y € Q).

Since 2N > N, it follows from Theorem 4.2.13 that o(AY, — wl) = o(Ar — wi)
and therefore o(A%,) = 0(Ag) which completes the proof. O

4.3 The Laplacian with Neumann Boundary Conditions.

This section is devoted to the study of the Laplacian with Neumann boundary
conditions. We shall prove that e*~ is always an integral operator, but it is given
by a singular kernel; i.e., a kernel which is not bounded if 2 is irregular.

Recall that as in Section 3.5, in the definition of Ay, if H'(Q) is replaced by
the closed linear subspace D of H'(Q) of the form

Dp:={ueH'(Q): =0 r.qe on B}

for some B € B(9€) with Capg (92 \ B) > 0, we call the selfadjoint operator A¥
on L?() associated to (ay, Dp) the Laplacian with Dirichlet-Neumann boundary
conditions.

A. Characterization of the Domain of Ay for Lipschitz Domains.

Similarly to the operator Ag, we can also give a characterization of the domain
of Ay in the case where €2 has a Lipschitz boundary. Note that if §2 is irregular, a
definition of a general notion of a “normal derivative” of a function w in H(A, Q)
as before Proposition 4.2.7 for functions in V(A, Q) is not possible, because, we
claim that, if the boundary of € is “bad” then, there is no p > 1 such that the
space H(Q)/HE(Q) is continuously embedded into LP (99, o). Indeed, if for each
bounded domain © with ¢(9f) < oo, the space I;fl(Q)/H& (©) is continuously
embedded into LP(99Q,0) for some p > 1, this shall imply that there exists a
constant C' > 0 such that

o(K)?/? < C Capg(K)
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for every compact set K C 002 and then o will be in M. The domain of Example
2.3.10 says that this is not always the case.

Proposition 4.3.1. Let Q C RN be a bounded domain with Lipschitz boundary.
Then the operator Ay is given by

(4.38)

D(Ay) ={ue H(AQ): % pq =0}
Anu = Au.

Proof. The proof is the same as for the operator Ag. For convenience, we
shall repeat the proof. By definition

{D(AN) ={ue H(Q): 3ve L?*(Q): an(u,¢) = (v,90) Vo € H'(Q)}
Anu = —.

Let 5
U
D:={ue HAQ): £|ag =0}.

Let w € D and v := —Au. Then v € L?(€2). Using the formula (4.22) we obtain
that,

(v,9) == (Au, ) = an(u,) — (11 (u), ) V€ H'(Q).

Since u € D, it follows that (y1(u), ¢) = 0 for all p € H(Q2). Therefore u € D(Ay)
and Ayu = —v = Au.

To prove the converse inclusion, let u € D(Ay). By hypothesis, there exists
v € L*(Q) such that

/Vquo d:v:/vgo dx ¥ o € HY(Q). (4.39)
Q Q

As for the operator Ag, the equality (4.39) implies that
—Au=v in D)

and Au € L?(Q) and thus u € H(A, Q). Using again the generalized Green formula
(4.22), we obtain that (vy;(u), ) = 0 for all ¢ € H'(Q). Since ¢|aq € H/?(99Q)
is arbitrary, this implies that v (u) := %bg = 0in H-'/2(99Q) and thus u € D
which completes the proof. O

B. The Operator ¢'2~ is always a Kernel Operator.

We introduce the following notion of integral operators. Let 1 < p,q < oo and
Q2 Cc RN be an open set.

Definition 4.3.2.  a) A linear operator T : LP(Q}) — L4(Q) is called an integral
operator if there exists a measurable function K : Q x Q — C such that
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(i) K(z,)f(-) € LY(Q) x a.e. for all f € LP(Q), and
(i) (Tf)(z) = [ K(x,y)f(y) dy = a.e. for all f € LP(Q).

b) The operator T is called regular if there exists a positive operator
S e L(LP(R2),L1(Q)) such that |Tf| < S|f| for all f € LP(Q).

We denote by L7(LP(2), L1(2)) the space of all regular operators and by
I"(LP(QY), L1(QY)) the space of all regular integral operators. The following funda-
mental result is contained in [86, Chapter IV].

Theorem 4.3.3.  a) The space L7(LP(S2), L1(QY)) is a Banach lattice, the modulus
IT| of T'€ LT(LP(Q), LU(Y)) is given by |T'|f = sup g <y |Tg| and the norm
by | T|lr == || |T| || (the operator norm).

b) I"(LP(QY), LI(Q)) is a closed subspace of LT (LP (), L1(£)).
c) I"(LP(Q), L1(Q)) is a band in L"(LP(Q), LI1()).
Now we assume that 2 C RY is an arbitrary bounded open set.

Theorem 4.3.4. Let Ty (t) := et®~. Then the following assertions hold.

a) If 0(0Q) < oo, then T (t) is an integral operator.

b) If 0(02) = oo, then AN s an integral operator where ', denotes the part
of 002 on which o is locally infinite.

Proof. We give a proof only for the case 0(0Q) < co. Let T,y := (et®7* )50
be the Co-semigroup on L2?(Q) generated by Ay,. We have proved in Theorem
4.2.11 that for each k > 1, T,x(t) € I"(L?(f2)). Denote by K(t,-,-) the kernel of
T,k(t). Then

@WW@=L&@MM@@

for z a.e. and all f € L%(Q). Since 0(9Q) < oo, by Proposition 3.5.5, Ay — Ay
as k — oo in the strong resolvent sense. Using the Second Trotter-Kato Approx-
imation Theorem, one obtains that T,x(t) — Tn(t) as k — oo strongly. Since
(T,x(t)) is a directed family majorized by T (t) (see Proposition 3.4.3); i.e.,

Tyi(t) < Too(t) < ... Tor(t) < ... < T(t)

one obtains that T (t) = supy, T,x(t) and Theorem 4.3.3 ¢) completes the proof.
O

Let K; be the kernel of T (t). Then

<mmmwzémmmmmy
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for z a.e. and all f € L?(Q). Note that K; is not always in L°°(Q x Q). Indeed,
assume that 0 < K;(z,y) < a; < oo a.e. Then for f € L'(Q) one has | T (t) f|lco <
arl| fll1; ie.,

TN () [[1—00 < az. (4.40)

We obtain that

| Tn (t)]|2—c0 < @y

by interpolating between the inequality (4.40) and the bound
TN ()]loomoe < 1.

Then one has that T (t) is ultracontractive. If || < oo, this implies that T (t) is
a compact semigroup on L2(12). Since (e*2¥);>¢ is norm continuous for ¢ > 0, one
obtains that Ay has a compact resolvent on L2(Q); i.c., the embedding H* () —
L?(Q) is compact. The following example shows that this is not always the case.

Example 4.3.5. Let Q C R? be the domain defined in Example 2.3.8 and f €
(C*°[0, 1] be the function defined in the same example. Let (u) be the sequence of
functions defined by

up(,y) = e fly)  if ap <z < by,
B Y) = 0 otherwise

where c3(by — ax) = 1. It is easy to see that u, € H(2) N C(). Moreover,
1
fult= [ WP = o-a)d [ 1) dy
Ax 1/3

1
/ FW)P dy.
1/3

Similarly,
1
Va2 = / W) dy.
1/3

Then (uy) is a bounded sequence in H 1(Q). Furthermore, we have
1
o=l = [ 1F @ dy>0 i€ kL
1/3

Hence, there is no subsequence of (uy) convergent in L?(§2). Thus, the embedding
H(Q) — L*(Q) is noncompact.
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C. Continuity and Compactness of the Embedding H(Q) into L?(9).

In this subsection, we give some necessary and sufficient conditions on the relative
capacity to have the compactness of the embedding H'(Q) — L2(£2). We also give
some sufficient conditions on the relative capacity to have a continuous embedding
from H'(Q) into LP(L2) for some p > 2.

Proposition 4.3.6. Let Q C RY be a bounded domain. For each compact set K C
we let K]
V(K) = Gang () if Capg(K) >0
0 otherwise .
The following assertions are equivalent.
(i) The embedding H* () — L2(2) is compact.
(#) limsups_o{v(K): K CQ, |[K|<é}=0.

Proof. Recall that for each Borel set B C 2 we have |B| < Capq (B).
(i) = (ii). Assume that (i) holds. Then for every u € H'(Q) N C(Q), we have

/K uf? di < e(8) ull3ps (4.41)

where £(0) — 0 as § — 0 and K is an arbitrary Borel subset of Q with |K| < 4.
Let K to be a compact set. If we insert into (4.41) an arbitrary function u €
H(Q) N C(Q) with u| > 1 and pass to the infimum on the right part over such
functions, one obtains

[ K| < 2(6) Capg (K)

which gives (ii).
(i) = (i). Let u € H'(Q) N C(Q) and let § € (0, 21). Put

t(6) :=sup{t > 0: |E¢| > 0}

where Ey := {z € Q: |u(z)| > t}. Then t(0) < oo, |Eys)| > d and |E;| < 0 for
t > t(5). We have

/|u|2 i = / |u\2dx+/ luf? do
Q Et(é) E

t(6)

< [EM) fuf? da:—l—/Q(t((S))Q do

g/ luf? da + |QJ4(5)2.
Et(s)

Let vs(z) := max{|u(z)| — t(5),0}. Then
lull2 < [losl2 +t(8)]€2"2. (4.42)
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Moreover,
/ s 2 dx:/ {2 €Q: vs(z) > t}] d(2).
Q 0
Since {vs >t} C Eys)4¢ for all t > 0, it follows that
| sz ) < [ 1Byl ).
0 0

We have |Eys)4¢| < 6 for ¢ > 0 and by hypothesis

IA

o0 o0 |E s |
/0 Bysyae] d(2) / sup = KO ap e (Bunyse) d(P)

Capg (Ey(5)+t)
< 1) /0 Capa (Ers)+e) d(t?)

where f(6) denotes the supremum in (ii). As Eysy44 C By, this implies that
Capg (Ey5)+¢) < Capg(£;). By Proposition 2.2.5 we obtain

00 1/2
losllz < ef(8)'/2 </0 Capg, (E:) d(t2)> < cf ()2 ull ()

Moreover, since |Ey)| > 6, we have that

/ |u| dz > / |u| dx > / t(8) dx = t(6)|Ey(s)| > 6t(9).
Q Ei(s) Eis)

Finally, one has
lullz < eg(®)lull () + 67 1Q? lullx

where ¢ > 0 and g(6) — 0 as § — 0. This inequality implies that every sequence
in H1(Q) N C(Q) bounded in H'(Q) and convergent in L'(f2), is convergent in
L?(Q). Since the injection H!(2) — L'(Q) is compact, one obtains (i). O
Proposition 4.3.7. Let Q@ C RY be a bounded domain such that o(9S)) < oo.
Assume that there exists a constant C > 0 such that

o(K) < CCapg(K) (4.43)
for every compact set K C 0. Then there exists a constant M > 0 such that
l[ull 2 < Mllull g1 (4.44)

for allu € HY(Q) N C(Q).
Proof. Assume that the inequality (4.43) holds. By Proposition 2.2.6, this
implies that
[ullz200,0) < Cllullm () (4.45)
for all u € H'(Q2) N C(Q). Now replacing (4.45) in the Maz’ya inequality (4.12),
we obtain (4.44). O
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Theorem 4.3.8. Let Q C RY be a bounded domain such that o(0Q) < co. Then
the following assertions are equivalent.

(i) There exists a constant C > 0 such that
o(K) < CCapg(K) (4.46)
for every compact set K C 0f).

(i1) There exists a constant M > 0 such that

inf Ju — cll 20,y < MVuls (4.47)

for allu € HY(Q) N C(Q).

Proof. (i) = (ii). Assume that the inequality (4.46) holds. By Proposition
2.2.6, this implies that (4.45) holds and in particular that the embedding H'(Q) —
L?(Q) is compact. Therefore the Poincaré inequality,

inf |lu —¢|l2 < k|| Vul|2 (4.48)
ceR

for all u € H*(£2), holds. Now replacing u by u — ¢ in (4.45), taking the infimum
and using (4.48), we obtain

A

inf [lu—cllzz@0,0) < alVulz+ inf u—c|2

il Vullz + K[ Vul2
M||Vull

IAIA

which gives (ii).
(ii) = (i). The inequality (4.47) implies that

inf [u—cllrz(a0,0) < Mllul|g1(q)- (4.49)

for all u € H(2) N C(Q). Let K C dQ be a compact set and G a relatively open
subset of 02 such that K C G. Let

N:={uc H(Q)NCQ): u=1on K,0<u<1 and u=0 on 9Q\G}.
Substituting any function u of the class N into (4.49), we obtain
min (11 = cfo(K) 4+ 2o(092\ G)) < M? Capg(K). (4.50)

Computing, the minimum is attained for

o(K)
o(K)+ o002\ G)’

CcC =
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Now, replacing ¢ in (4.50), we obtain that

o(K)o(00\ G)

(%) 1o ) = M Capa(K).

If we assume that 20(G) < o(99), then as 0(9Q) = o(G) + o(92 \ G) one has
0(G) < o(002\ G) and since o(K) < o(G), this implies that o(K) +c(0Q\ G) <
20(0Q2\ G). Finally, we obtain

o(K)o(00\ G) < o(K)o(00\ G)

2w @G = oK) +o@nr gy = M Cavali)

which gives the inequality (4.46) with C' = 2M?2. O

4.4 Comments.

Section 4.1.
All the results of this section are well-known and contained in [73] except inequality
(4.11) which has been never considered by Maz'ya. Our definition of Wy (€2, 992)
differs slightly from the Maz’ya one. In fact, for an arbitrary open set 2, Maz’ya
defines W, (€2, 02) as the closure of W, with respect to the norm ||| - [||2 given
by (4.15). With this definition, if © has an infinite measure, then W3 ,(Q,99) is
not always a subspace of L?(Q) and in particular, it is not always embedded into
L1(Q) for some ¢ > 2. Our definition seemed to be the natural candidate for the
study of forms for which subspaces of L?(f2) are needed.

The proof of Maz’ya’s striking inequality (Theorem 4.1.7) given here is taken
from [73, Theorem 3.6.3].

Section 4.2.

Properly speaking, Robin boundary conditions correspond to the case where du =
Bdo for some positive measurable function § in L*°(S,c). Here, we consider the
case 8 = 1, but all the results of this section are true if we take 8 € L*°(S,0)
with infg 8(z) > 0. Writing Ag for the operator associated with the closed form
(ags, V), if § =0 then Ag = Ay and if § = oo then Ay = Ap.

Assume that (2 is an open subset of RV of class C!. Let u be a Borel measure
on 99 in My. By [18, Proposition 5.2, if there exists u € D(A,) N C?(Q2) such
that u(z) > 0 for all z € 09, then there exists § € C(9€Q)4 such that du = Gdo;
i.e. A, = Ag and we have the classical Robin boundary conditions.

Conversely, assuming that € is of class C*“ where 0 < a < 1, if 8 € C1¥(99)
is such that 0 < B(z) (2 € 99), there always exists u € D(Ag) N C%%() such
that inf g u(x) > 0 (see [18, Proposition 5.3]).

By the results of this section, given an open set € in RY, there (always) exists
a natural subset S of 92 where Robin boundary conditions are realized. First, we
note that o(S) > 0 if Q is bounded. In fact, replacing v by the constant function
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1 in the inequality (4.19) we obtain that |Q|"~ < Co(S) and thus o(S) > 0.
Furthermore, we have shown that it is (always) possible to define a “normale
derivative” on S in the generalized sense for every uw € D(AR). We then see that
the set S has some kind of regularity. Let

N :={zx€0: anormal to IQ at z exists}

be the reduced boundary of Q (see [73, Section 6.2]). We don’t know if S = N.
To finish we note that Theorem 4.2.11 has been obtained by Daners [34] in
the case where (1 is bounded.

Section 4.3.
The characterization of D(Ay) for bounded Lipschitz domains is well-known and
contained in [38, Example 2 p.380].

Theorem 4.3.4 can also be obtained by using some results of Arendt and
Bukhvalov [13]. In fact they have proved that for every bounded open set € in
RY the operator R(\, Ax) (the resolvent of Ay) is always an integral operator
for A > 0. Since for each u € L*(Q) the function R(\, Ay)u is the Laplace trans-
form of e!2~y, Theorem 4.3.4 implies the result in [13]. Using the inverse Laplace
transform, we can obtain the converse implication.

The proof of Proposition 4.3.6 is based on some ideas of Maz’ya and Poborchi
[75, Theorem 8.6.3] where they give a similar equivalent condition to obtain the
compactness of the embedding L, (€2) into LI(2) for 1 < p < ¢ < oo where L,(2)
is the space of distributions on Q with derivatives of order 1 in LP(2).
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Chapter 5

The Robin Laplacian on C'((2)

Throughout this chapter, we assume that Q ¢ RY (N > 3) is a bounded domain
with Lipschitz boundary. Recall that this means that 902 is locally a graph of a
Lipschitz function.

We shall denote by o the restriction to 9Q of the (N — 1)-dimensional Haus-
dorff measure which coincides with the usual Lebesgue surface measure (see Chap-
ter 1).

Let 0 <y < g € L*(090) and let f € LP(Q2), g € L1(0N) where p > N and
qg=>N.

We consider the elliptic boundary value problem given formally by

—Au = f in
g%-&—ﬂu =g on 0N

where v denotes the exterior normal to 0f).

It is easy to see that this problem has a unique weak solution u € H'(Q)
(see Definition 5.1.1). The main result of this chapter (Theorem 5.2.7) says that
u € C(Q). This is surprising since (3 is merely supposed to be measurable. We
will use the method of De Giorgi applied by Murthy and Stampacchia [77] to
solve elliptic equations with Dirichlet boundary conditions and Neumann boundary
conditions if € is 1/2-admissible (see [77, Definition 9.7] for the definition). For
the Dirichlet boundary conditions see also [12], [59] or [70]. For the case § = 0
and g = 0, i.e. the homogeneous Neumann boundary conditions, Fukushima and
Tomisaki [58] prove that a weak solution is continuous on ). Biegert [22] gives
an example of an open subset in R? on which a weak solution of the homogenous
Neumann problem (i.e., 3 =0 and g = 0) is not continuous on €.
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5.1 Preliminary Results.

Recall that 2 always denotes a bounded Lipschitz domain. Therefore the results of
Chapter 4 imply that the Maz’ya space W3 5(,99) is isomorphic to H'(Q) with
equivalent norm. In particular, this implies that H'(Q) N C(Q) is dense in H'(Q).
Moreover, H!() is continuously embedded into L%(Q) and each function u €
H'() has a trace noted u|pq which is in L%(GQ); i.e. the trace application
defined by

HY(Q)NCQ) — LF22(09),  ur ulog (5.2)
has a continuous extension to H!(£2). Throughout the following, we let s := %

and denote by s’ the real number verifying % + é =1.

Definition 5.1.1. A function u € H'(Q) is called a weak solution of (5.1) if
ay(u,v) = | fudr+ / gv do, Vove HY(Q), (5.3)
Q o0
where we recall that for u,v € H'(Q),
ax(u,v) := / VuVov dx + Buv do.
Q

o

It is clear that the closed bilinear form a, is continuous on H'(Q) and it is
coercive on H'(2) in the sense that there exists a constant ¢ > 0 such that for all
u € HY(Q)

(U, U) = Cl|U Hl(Q)
(u.0) = efjul}

Let L be the linear functional on H'(f2) defined by: for v € H*(2) we let

Lv::/fvdx+/ gu do.
Q a0

Since p > 2 and ¢ > 2, the functional L is well defined and continuous on H*(().
Thus, by the coerciveness of the continuous bilinear form a, on H(Q), the Lax-
Milgram Lemma (see [24, Corollaire V.8 p.84]) implies that there exists a unique
weak solution v € H*(Q) of the boundary value problem (5.1).

For simplicity, all the calculations will be carried out assuming that N > 3.
However, all the results hold also for NV = 2 with minor changes.

Before starting this study, we recall some fundamental lemmas which we will
use frequently.

Lemma 5.1.2. Let ¢ = ¢(t) be a nonnegative, nonincreasing function on the half
line t > ko > 0 such that there are positive constants ¢, and 6 (§ > 1) such that

p(h) < c(h — k)" (k)
for all h > k > ko. Then we have:
(ko +d) =0, where d > 0 satisfies d* = cp (ko) 120071,
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The proof of the following result given here is taken from [70, Theorem 2.106].
Note that Lemma 5.1.2 can be proved similarly as the following lemma by keeping
r fixed in that case.

Lemma 5.1.3. Let ¢ = ¢(t,r) be a nonnegative function on (t > ko > 0) x (0 <
r < Rg) such that:

a) for every fized r, p(-,7) is nonincreasing,
b) for every fixed h, @(h,-) is nondecreasing
and such that there exist positive constants ¢, o, § and vy (§ > 1) with
p(h,r) < e(h— k)" *(R—r)"p(k,R)° (5.4)

forall h > k > ko, r < R < Ry. If o is an arbitrary real number satisfying
0<o <1, then

o(ko+d,(1 —0)Ro) =0,
where d* = c((1 — o)Ro) ~"p(ko, R0)5*125%¥.

Proof. Let 0 < 0 < 1, kj :== ko +d—277d, rj := (1 —277)(1 — 0)Ry and
@, = p(kj,r;) where j € N. By (5.4), we have the following estimates:

IN

c(277d)7* (277 (1= 0)Ro) "5 4
CQ(OH"Y)jd—a((l _ U)RO)—WQP§71
< 2(a+w(j_1_ﬁ)90(k0;Ro)l_(s(Pg,l-

P

IN

By induction we obtain that,

I e
©j <2 5*1]<p(k0,R0).
Taking the limit as j — oo, we obtain the claim. O
The proof of the following result is contained in [77, Lemma 3.13].

Lemma 5.1.4. Let ¢ be a nonnegative, nonincreasing function on a closed
bounded interval kg <t < M such that there exist positive constants ¢, & with

(h—k)*p(h)’ < (M ~ k)*(p(k) — o(h)) (5.5)
for all kg <k <h < M. Then limp_,pr p(h) = 0.

The following well-known result is contained in [77, Lemma 11.3] (see also
59, Lemma 8.23 p.201] or [70, Lemma 4.12 p.196]).
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Lemma 5.1.5. Let w(r) be a nonnegative function defined on 0 < p < R satisfying
the condition that there exist constants n and ¢ with 0 <n < 1, ¢ > 0 such that
w(p) <nw(dp) +cp®, 0<4p <R, a>0.
Then there exist two constants K > 0 and 0 < § < 1 such that
w(r) < Kr® for 0<r<R.

Remark 5.1.6. From the proof of the preceding lemma, we have that if ag > 0 is a
real number such that 4*°n := ¢; < 1 then § = min(w, o) and

K:(sup ﬁ(sp)—k < )
r<p<4r P ]-_Cl

Throughout the following, for 2y € Q and r > 0, we shall denote

Q(zg,7) := QN B(xg,7) and Q(zq,7) := QN B(zo,7),

where
B(zo,7r) :={z € RN : |z — 20| <7}

If D is a Lebesgue measurable subset of 2 and F a o-measurable subset of 0,
we denote by |D| the Lebesgue measure of D and by [E] := o(F) the (N — 1)-
dimensional Hausdorff measure of F.

To obtain the uniform continuity on Q of the solution of the problem (5.1),
the following result will play an important role. It has been obtained by Fukushima
and Tomisaki (see [58, Sections 3 and 6]).

Theorem 5.1.7. Let 1 < p < N and r be a real number satisfying p < r < ﬁ—ﬁp.

Then for each xo € Q and each x € (0,1], there exists a constant py := po(xo) > 0
such that,

1/r 1/p
/ |u|" dx < c(mr)pN(%_%) pp/ |Vul? dz +/ |ul? dx
Q(zo,p) Q(zo,p) D

(5.6)
for every u € HY(Q(xo,p)) and every measurable subset D of Q(xg, p) such that
|D[ = K|Q(z0, p)| and 0 < p < po.

Remark 5.1.8. a) For each xy € Q, we can always assume that 0 < pg < 1.
Then, as pN(1/r — 1/p) +p > 0, given a measurable subset D of Q(xg, p)
such that |D| > k|Q(zo, p)| for 0 < p < po, the inequality (5.6) implies that

1/r 1/p
(/ [u|” dx) < c(k,T) (/ [Vul? dx)
Q(z0,p) Q(z0,p)

for every u € HY(Q(zo, p)) such that u =0 on D.
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b) The continuity of the trace application (5.2) gives that there exists a constant
C > 0 depending only on £ such that

[ulls,o0 < Cllulla g

for every u € H* (). Then as in a), given a measurable subset D of Q(xq, p)
such that |D| > k|Q(zo, p)| for 0 < p < po, we have that

[[u

|5,00nB(w0,0) < (8, D[ Vull2,.0(20,0)

for every u € H(Q(xo, p)) such that u=0 on D.

5.2 Holder Continuity of Weak Solutions.

Throughout the following, if E is a subset of Q, v € H*(2) and k a real number,
we say that u > k on F in the generalized sense, if there exists a sequence of
functions u, € C*(Q) such that u, > k on E and u, converges to u in H({).
Since a sequence of functions converging in L?(Q) has a subsequence converging
almost everywhere with respect to the Lebesgue measure, it follows that v > &k on
FE in the generalized sense implies that « > k on E a.e. Similarly we define u < k
on E in the generalized sense. A function u € H'(Q) is said to be equal to k on
FE in the generalized sense when u > k and u < k on F in the generalized sense.
If there is no confusion, we shall always omit the expression “generalized sense”.

Before proving the Holder continuity, we show that for some values of p and
q the weak solution u € H(2) of (5.1) is bounded on Q.

Proposition 5.2.1. Let u € H*(Q) be a weak solution of (5.1) and assume that
p> N and g > N — 1. Then there exists a constant C = ¢(N,p,q,|2|,[09]) > 0
such that

u(@)] < C(lfllp.0 + lgllq.00)

almost everywhere on €.

Proof. Let u € H'(9) be a weak solution of (5.1) and k > 0 be a real number.
Let v := (Ju| — k)" sgn(u). Then v € H(Q) is given by

u(z) —k if u(x) >k
v(xz) =40 if |u(z)| <k
u(z) +k if u(z) < —k.

Moreover,

0 otherwise

Vo — {Vu in A(k)



126 5. THE ROBIN LAPLACIAN ON C(Q)
where A(k) := {x € Q: |u(x)| > k}. Calculating, we obtain,

ay(u,v) = /QVUVU dx + 80,6’uv do

/ |Vo|? da +/ Bv? do + k‘/ Blv| do
A(k) 0N A(k) dQNA(k)

= a,(v,v)+ k/ Blv| do
A0NA(K)

which implies that

as(v,v) < ag(u,v) = fvdx —|—/ gv do. (5.7)
A(k) A(k)noQ

Using the Holder inequality, the continuous embedding from H!(f2) into LV (Q)
and the continuity of the trace application (5.2), we obtain the following estimates:

fode < ||fllz,am)llvll2,ak)
A(k)
< ARV flpallvllm ). (5.8)
Similarly,
/ gvdo < lgll2, agynoallvllz,amk)nen
A(k)noQ
< [A(R) N OQ V0 gl e vl () - (5.9)
Letting

H(k) = [AGR)272(1f o + [AK) 0 09574 glg,00,
the inequalities (5.7), (5.8) and (5.9) imply that
[0l 1 (o) < cH (k).
It follows that there exist some constants c¢1,co > 0 such that
0]l 22, agky < crH () (5.10)

and

)]s, A(k)n00 < coH (K). (5.11)
Let h > k > 0. Then A(h) C A(k) and on A(h) we have |v| > h — k. Thus the
inequalities (5.10) and (5.11) imply that

N-—2

|A(R)|"~

<eci(h—k)2H(k)? (5.12)
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and )
[A(k) N 095 < co(h — k) 2H (k)2 (5.13)
Next letting a(h) := |A(h)|+[A(h)NOQ] T , we obtain the following estimates:
a(h) < (h—k)"* H(k)*
2 1/2—1 1—1/s—1 2
< elh =R (JAR)P7 e + [AR) 002 gl 00

*

s

IN

c(h = k)= (a(k)' 22 fllp0 + alk) om0

2
gllq,an) ;

._ 2N
where 2* := 5" Let

0 :=min{(1/2 - 1/p)2*,(1 —1/q—1/s)s}. (5.14)
Then
a(h) < clh = k) (a(k)( 02702 =03 0 4
+a(k) OV D0F gl p0)” a)?
< clh— k)T (j P 0E f  +
+POYO 0 ) 50)” a(h)’
Let

c3 1= cmax{|Q|(1/2*1/P)2**5’ [39](1*1/61*1/8)8*5}.
We finally obtain that

a(h) < es(h = k)™ (If lp.c + lgllg.00)* a(k)’.

Since p > N and ¢ > N — 1, it follows that § > 1. The function a(h) satisfies then
the conditions of Lemma 5.1.2 with o = 2* = % and § given by (5.14). Taking
ko = 0, one obtains that a(d) = 0 with

(63 2* - [e3
d* < e3 (|| fllp.2 + lgllg00)” a(0)’~" = c(lfllp.0 + llgllq.o0)

which implies that

u(@)| < C(lfllp.0 + lgllq.00)

almost everywhere on €. O

For g = 0, the result of the preceding proposition has been obtained by Daners
(see [34, Theorem 4.2]) with a different proof and for an arbitrary bounded domain
Q.

We obtain the following result as a corollary of the proof of the preceding
proposition.
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Corollary 5.2.2. Let f; € LP(Q),i =0,...,N, g € LY(Q) and u € H () be such
that

N
aa(u7<p):/Qfmpd;v—s—Z/inDigodx—i—/anpda
i=1

for allp € H*(Q). Assume that p > N and q¢ > N —1. Then there exists a constant
C= C(Napvq7 |Q‘a [89]) > 0 such that

N
u(@)| < OO I fillpo + llgllg.00)
=0

almost everywhere on .

Before giving the main result, we need some preparations. Recall that 2
always denotes a bounded Lipschitz domain in RY (N > 3).

Proposition 5.2.3. There exists a constant C > 0 such that for each xo € , and
for all k > 0 and for all 0 < p < R < pg, a weak solution u € H(Q) of the
equation (5.1) satisfies

/ |Vul|? do < C{(Rp)2/ lu — k|2 d:z:+G(k,R)} (5.15)
A(k,p) A(k,R)

where for 0 < r < po,

Ak, r) :=={z € Qxo,7) : ulz) >k},
and
Gk, B) := | fl[5 00l Ak, R)'2/PF2N 4 |lg]§ pal Ak, R) N OQ)/* =2/,

Proof. Let zp € Q be fixed and pg > 0 be the constant given by Theorem
5.1.7. Let p and R be two real numbers verifying 0 < p < R < pg and let ¢ €
CL(B(zo, po)) be a function such that

{o < ()

<1 o) = 1 in B(zg,p)
V@) < er-pt P {

0 outside B(zg,R).
Let u € H'(Q) be a weak solution of (5.1) and k be a real number. We consider

the function v € H'(Q) defined by v := ¥?(u — k). Then

0 outside .

. {z/J2(u— k) in A(k,R)
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Replacing v in (5.3) we obtain:

/ VuV[?(u — k)] do + / Bu?(u — k) do =
A(k,R) A(k,R)NON
/ f?(u—k) dx+/ g?(u — k) do.
A(k,R) A(k,R)NON

Since u(u — k) > 0 on A(k, R),
/ V2| Vul|? de < —2/ YVuVY(u — k) dx
A(k,R) A(k,R)

+/ Yfv(u—k) dx+/ Vg (u —k) do.
A(k,R) A(k,R)NO

Next, using the Holder inequality, the Young inequality, the continuity of the

N
trace application (5.2) and the continuous embedding from H!(f2) into L% (Q),
we obtain the following estimates:

IN

9 /A o PTITR) d S 200V s | T Bl

A

< elVul g + IV~ BIE g
for every € > 0. Similarly,

J o B R < g I — Rl

19 s ace ol ACK, RO b~ B g ag

r [ flz.am.m Ak, R)MN[v(u = k)| 12 (@)

cerl[9 s — K)o oy + 21918, a gy ACK, B/

ec vau”;A(k,R) +eci i (u — k)Hg,A(k,R)

eV = B Bagur + 2SS IRIAG, R /722N

ININ AN IA

_|_

for every € > 0 and some constant ¢; = ¢(p, q, |©2|, [0€2]) > 0. Moreover,

/ Ygp(u—k)do < |[Yglls, amrynoall(u —E)lls atk,r)no0
Ak, R)NOQ

IN

1
£|¢9||§f,A(k,R)maQ + coel[P(u — k)| F1q)

IN

eca| VU3 s my +ecallo(u =R A, ry
+eea|| Vo (u = k)5 gk, m)

1 v
o llg|2 sl Ak, R) 0 002/ /4
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for every € > 0 and some constant ¢y = ¢(p, ¢, ||, [0€2]) > 0. Choosing e suitably,
using the fact that ¢ = 1 on B(zo,p), 0 < ¢(z) < 1, |Vi(z)| < (R —p)~! and
A(k,p) C A(k, R), we obtain the inequality (5.15). O

Lemma 5.2.4. There exist some constants Cy, Cy, C3 > 0 such that for each xy € €,
and for all 0 < p < py and for every u € H'(Q), we have

(i) fA(k,p) lu— k| do < C1|A(k, p) [N fA(k,p) [Vul® dz;

N—2

(ii) |A(h, p)| ™~

(iii) |A(h. p)

for all h > k >0 and for every k > 0 such that

< COy(h—k)~2 fA(k:,p)\A(hm) |Vul? dx;

2N—-2

< Cy(h— k)72 [ 4 [Vul? da (JA(. p)] — |AR p))

1

where A(k, p) is defined as in Proposition 5.2.5.

Proof. Let 29 € Q, 0 < p < py and k > 0 be a real number such that
|A(k, p)| < 5[Q(wo, p)| and let u € H'(Q).
(i) Consider the function v € H!(Q) defined by v := (u — k)™. Then

N-—2

Jekdo= [ ju—kPdo < Ao (/ |u_k|f?fz>
Q2 A(k,p) A(k,p)

Since v = 0 on Q(z0, p) \ A(k, p) and [Q(zo, p) \ A(k, p)| > 2|z, p)|, by Theorem
5.1.7, there exists a constant C; > 0 such that

(/ lu— k|N2N2>
A(k,p)

Finally, this implies that

N-2
N

< C1/ |Vu|? d.
A(k,p)

/ lu—k|? dz < Cl|A(k,p)|2/N/ |Vul|? dz.
A(k,p) A(k,p)

(ii) Let h > k, where k > 0 satisfies |A(k, p)| < £|Q(zo, p)|. Consider the
functions vy, vy € HY(Q) defined by v1 = (u — k)*, vg = (u — h)" and let w :=
V1 — V3. Then

h—Fk in A(h,p)
w=qu—k in A(k,p)\ A(h,p)

0 otherwise .
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Since w = 0 on Q(z0, p) \ A(k, p) and |Q(zg, p) \ A(k, p)| > 3]Q(z0, p)|, using the
Holder inequality and Theorem 5.1.7, we obtain the following estimates:
N-—2

[ wPde < (AP (/ |w|13$)
A(h,p) A(hsp)
2N NN
A(h, )P (/ w|>
A(k,p)

Cal A(h, )P/ / Vl? d.

A(k,p)

IN

IN

for some constant Cy > 0. Replacing w, we obtain that
[Alh.p)| < Calh = 021G [ [ do
A(k.p)

which gives (ii).

(iii) Consider the same function w € H(2) as in (ii). Since w = 0 on
Q(zo, p) \ A(k, p) and |Q(zo, p) \ A(k, p)| > 1|z, p)|, using the Hélder inequality
and Theorem 5.1.7, we obtain the following estimates:

/ |w]| dzx
A(h,p)

A\
B
S
>

=

=z
/-~
S
=
>
=
2|
L
~—
2|

A
=
B
>
=

~
2
Y
—
>
>
B
g
~—
2

IA

C\A(h7p)|1/N/ V| da
A(k,p)

for some constant ¢ > 0. Replacing w, we obtain the following estimates:

A o) < clh— k)M A(h )N / Vul de
A(k,p)\A(h,p)
< c(h—k)"HA(h, p)|¥|A(k, p) \ A(h, p)|?

X
1
2
X </ |Vul? da:)
A(k,p)\A(h,p)

< Cy(h— k)2 /A o 19l (140 )] 1A ).

which implies that

2N -2
N

|A(h, p)

Next we give some estimates for a weak solution u of (5.1).
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Proposition 5.2.5. For each xo € Q, and for all0 < p < R < po and for a weak
solution u € HY(Q) of (5.1) the following estimates hold.

(i) fA(h7p) lu—h[*dz < ¢ {(R —p)? fA(k,R) u— k[* dz + G(k, R)}

x|A(k, R)[>/N;
(i1) [A(h,p)| "7 < calh = 1) 72 {(R = p) 2 [y ) lu = kP do + Gk, R)
(iii) | A(, )5 < cs(h = k)2 {(R = p) ™2 [y ) [u— kI* dz + Gk, B) |

<(JA(k, )| — |A(h, p)));
(i) [A(h,p) 1092 < cah— k)2 {(R— )72 [y lu— K da+ GOk, R)}

for all k > 0 such that |A(k, p)| < 3|Q(zo, p)| and for all h > k, where G(k, R)
and A(k, p) are defined as in Proposition 5.2.3.

Proof. (i) Since A(h,p) C A(k, p), by Lemma 5.2.4 (i),

/ lu— B2 de < / lu— k|2 dz < c|A(k,p)\2/N/ Vul? da.
A(h,p) A(k,p) A(k,p)

Now we obtain (i) by using Proposition 5.2.3.

The assertions (ii) and (iii) are also an easy consequence of Lemma 5.2.4 and
Proposition 5.2.3.

(iv) Let w € H'(Q) be the function defined in the proof of Lemma 5.2.4 (ii).
Since w = 0 on Q(zg, p) \ A(k, p) and [Q(z0, p) \ A(k, p)| > 3|Q(z0, p)| We obtain

2/s 2/s
/ |w|® do < / |w|® do < c/ |Vw|? dz.
A(h,p)NoQ A(k,p)nNoQ A(k,p)

Replacing w, we obtain that

[A(h, p) NOQY* < ¢(h — k:)‘2/ \Vul|? dz.
A(k,p)

Now Proposition 5.2.3 completes the proof. O

Next we introduce some notations. Let E C 2 be an open set. We put
H(E) :={ulp: uve H(Q)}.

Let G be an open set, not necessarily contained in . We denote by H!(G) the
closure in H'(Q) of the space of functions of the type ¥u where u € H*(£2) and
¥ € CHRY) with suppy C G.
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Remark 5.2.6. If G C G C Q, then H}(G) = Hj(G). Note that in order to
obtain the estimates of Proposition 5.2.3 at a fized point xo € §2, it is enough that
u € H(Q(zo, R)) and (5.8) is satisfied by those functions 1 € H}(B(zo, R)).

We are now in position to prove our main result which is the following theo-
rem.

Theorem 5.2.7. Let p > N and q > N — 1. Then there exists a constant 0 < § < 1
such that for every f € LP(Q) and g € LI(9Q) the weak solution u € H'(Q) of
(5.1) belongs to C9(£).

Proof. Let p > N and ¢ > N — 1. We show that there exists a constant
0 < &1 < 1 such that if f € LP(Q), g € LI(0Q) and u € H'(Q) is the weak
solution of (5.1), then there exist a constant H > 0 such that

w(r) < Hrot, (5.16)
for every zo € Q and for every 0 < r < pg, where

w(r) := esssupu(x) — essinf u(x).
Q(zo,r) Q(zo,r)
By Remark 5.2.6, it is enough to consider a solution u € H(2(zo, R)) of the
equation

/ Vqua—i—/ Bup do = / fe d:v+/ gp do (5.17)
Q(z0,R) Q(fto,R)ﬂ@Q Q(z0,R) Q(!I)Q,R)ﬂaﬂ

for all ¢ € H!(B(xo, R)). By definition, for every open set G, H}(G) is a closed
subspace of H'(Q). Since a, is a closed coercive form on H'(), it follows that
ay is a closed coercive form on H!(G). Let G := B(xg, R) and L be the functional
defined by: for ¢ € H!(B(z0, R)) we let

Ly = / fo dx+/ gp do.
Q(z0,R) Q(z0,R)NON

Then L is a linear continuous functional on H} (B(zg, R)). Since a, is a closed coer-
cive form on H} (B(zg, R)), it follows from the Lax-Milgram Lemma that the equa-
tion (5.17) restricted to H!(B(zo, R)) has a unique solution w € H!(B(zq, R)).

Now, let u € H(Q(zo,R)) be a solution of (5.17) and v := u — w. Then
v € H(Q(zo, R)) satisfies

/ VvVgD-I—/ Buvp do =0 V¢ € HY(B(z0, R)). (5.18)
Q(x0,R) Q(z0,R)NIN

Thus, if v € H(Q(xo, R)) is a solution of (5.17), we can always decompose u =
v+w, where v € H(Q(zo, R)) is a solution of (5.18) and w € H}(B(xo, R)) satisfies

/ VwVe + / Pwe do = / fodx+ / g do,
Q(x0,R) Q(z0,R)NON Q(zo,R) Q(z0,R)NON
(5.19)
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for all p € H!(B(zo, R)).
1) We claim that there exists a constant 0 < 1 < 1 such that for v €
H(Q(xg,4r)) solution of (5.18), we have

w1 (r) < nuwi (4r) (5.20)
where for 0 < p < po,

w1(p) := esssupv(x) — essinf v(z).
Owo,p) @(0,p)

Indeed, let ko > 0 and k > ko be such that |A(k, p)| < 1|Q(z, p)| for every
0 < p < po, where here

Ak, p) :=={zx € Qxo,p) : v(z) > k}.
Let h > k> kg, and 0 < p < R < pg and set
p(h, p) ::/ [0 —hf* da
A(h,p)
and oy
alh, p) = |Alh, p)| + [A(h, p) N 0O T,
Since v satisfies the estimates of Propositions 5.2.3 and 5.2.5 with G(k, R) = 0, by

Proposition 5.2.5 (i) one has,

1i(h, p) (R = p) 2k, R)|A(k, R)|*'N

¢(R — p)"2u(k, R)a(k, R)*/".

INIA

Let « be the positive solution of the equation

20% = (a + 1)(N - 2). (5.21)
Then, o
ks p)° < e(R = p)~2u(k, R)a(k, R) ¥ (5.22)
By Proposition 5.2.5 (ii) and (iv),
a(h,p)" % < clh—k)"2(R— p)"2u(k, R). (5.23)

The inequalities (5.22) and (5.23) imply that

N-—2

p(h, p)*alh, p) ¥

Letting @(h, p) = a(h, p) ¥

<c(h—k)"2(R—p) "2 2 u(k, R)a(k, R) ¥

2u(h, p)%, we obtain

o(h,p) < c(h—k)"*(R— p)~***p(k, R)°
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where § = 1+ é > 1. Then the function ¢(h, p) satisfies the conditions of Lemma
5.1.3. Taking R = 2r and p = r we obtain that ¢(ko + d,r) = 0 where

2 = o (ko 2r)° !
< C 7"_2_2%“%#(/60, 2r)
= Cr Nu(ko,2r).

But (ko + d,7) = 0 implies that [A(ky + d,7)| = [A(ko + d,7) N 0Q] = 0 which
implies that v(z) < kg 4+ d almost everywhere on Q(xg,r). Then we obtain that

1/2
esssupv(z) < ko + CT*N/ |v — ko|? dx . (5.24)
Q(zo,r) A(ko,2r)

Next for 0 < p < po we put

M (p) :=esssupv(z), m(p):= essinf v(x).
Q(zo,r) Q(zo,7)

Thus wq(p) = M1(p) — mi(p). Let 0 < r < 4r < po. For an integer n > 0 we put
K, := My (4r) — 2= Dy, (4r).

Then K, is an increasing sequence converging to Ko, = M;j(4r) and it is clear
that Ko = % (M;(4r) + my(4r)). Note that if v is a solution of (5.18) then —v is
also a solution of (5.18). By changing v to —v if necessary, we may assume without
restriction that Ko > 0 and

1
|A(Ko,2r)| < §|Q(xo,2r)|. (5.25)
Thus K,, > Ky > 0 for each integer n. By Proposition 5.2.5 (iii),
2N-—-2 _ —
[A(h,p)| "~ < c(h—k)*(R—p)~° /A(k 0 v —k[* da (|A(K, p)| — |A(h, p)|)

where 0 < p < R < pg and all b > k > 0 for every k > 0 such that

1
[ Ak, p)| < 5120, )

Since by (5.25) this condition is satisfied for k = K, taking p = 2r and R = 4r,
we obtain

2N -2

|A(h, 2r)| "~

c(h — k)*2r72/ v — k|2 dz (JA(k,2r)| — |A(h, 2r)|)
A(k,4r)

< olh— k)22 Ak, 4r)| (M (47) — k)2
x (|A(k, 2r)| — [A(h, 2r)])
< e(h—k) 72N (M (4r) — k)2 (JA(Kk, 2r)| — |A(h, 2r)|)
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which implies that

2N -2

(rNAh2r)) ¥ < e(h— k)2 (My(4r) — k)?
x (r=N|A(k,2r)| — r~N|A(h,2r)]).

Applying Lemma 5.1.4 with the function (h) := r~™|A(h, 2r)| we obtain that
r~NA(h,2r)| — 0 as h — Mj(4r).

Thus
rNA(K,,2r)| — 0 as K, — M(4r).

So we can choose n so large such that
1
| A, 27)] < 518220, 2r))|

and 1
Cr—N|A(K,,2r)| < 1

where C' is the constant in (5.24). The constant n can be chosen independtly of
xo. Now, using (5.24) with ky = K,,, we find that

My(r) < K+ (COM(2r) — K,) 2 NA(K,, 2r)])
< K,+ %(Ml(Qr) ~K,)
< K,+ %(Ml(élr) ~K,)

= My(4r) — 272y (4r).
Since my(r) > my(4r), the preceding inequality implies that

wi(r) == My(r) —ma(r) My (r) —ma(4r)
M (4r) — 2_(”+2)w1(4r) — my (4r)

(1 — 272y (4r).

IAIACIA

Letting 7 := (1—2~("*2)), we obtain the inequality (5.20) and the claim is proved.
2) We claim that there exist two constants K > 0 and 0 < o < 1 such that
if we HY(B(zo,7)) (0 <r < po) is a solution of (5.19) we have

wa(r) < Kr?, (5.26)
where for 0 < r < pg,

wa(r) := esssup w(z) — essinf w(x).
Q(zo,7) (zo,7)
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Indeed, for every real number k > 0, let ¢ := (Jw| — k)" sgn(w). Then ¢ €
H!(B(z0,r)). Proceeding as in the proof of Proposition 5.2.1 and setting

H{(k,r) = [A(k, )7 PENY fl] 0 + [Ak, 7) 0 0919 lg] 4 00
where A(k,7) := {x € Q(zo,7) : |w(z)| > k}, we obtain that
| lw| =kl #10) < cH(k,r).

It then follows that

I wl =kl 2a sy < crH(k,7) (5.27)
and
| lw] = ks, ak,yno0 < coH (K, 7). (5.28)

Let h > k > 0. The inequalities (5.27) and (5.28) imply that

N-—-2

[ Ak, )|

< Cy(h—k)2H(k,r)? (5.29)

and
[A(k,7) N OQF < Cy(h — k)" 2H (k,r)2. (5.30)

Letting a(h,r) := |A(h,r)| + [A(h,r) N O] 3<12V1X2>, we obtain that

N-—2

a(h,r) ™

<c(h—k)2H(k,7)%

Therefore we obtain the following estimate:

N-—2

a(h,r)™~

< el = k)72 (JAG )Y £l +
1 _1__ N _ 2
Ak, ) N0Q]7 57T D gl ) a(k, 7).

Since |A(k,7)| < ¢ rV and since 2 has a Lipschitz boundary, there exist some
constants by, by > 0 such that

byrV1 < o(0QN B(x,r)) < bor™V Tl for z €0, 0<r <1,

(see [72, Theorem 4.14]), and it follows that

N-—2

a(h,r)"~

< c(h— k)72 (PO V|| f2 o 4+ r 2N/ g2 0 Y ah, 7).
N—2

For r fixed, we let ¢(h) := a(h,7) "~ . Then

p(h) < clh— k)72 (r2ON| 2 o 4 p 2N DY g2 50 ) (k)P
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where § = &5 =1+ 125 > 1. By Lemma 5.1.2, ¢(ko + d) = 0. Taking ko = 0,
we have ¢(d) = 0 with

@ < e (PN f2 o 42V g2 00 ) o(0)

We therefore obtain,

&N
IN

(0~ = a(0,7) (IA(O,T)I +[A(0,7) N amﬁ)w

N aN(N—1)\ 2/N
c (r +r s(N-2) )

C7’2.

IN

IA

Finally we have
@ < C (PO 2 o 4 r20- DD g2 o ).

This implies that

1/2 4
esssupw(x) < esssup |w(@)| < d < ¢ (| fI2.0 + I9%00) /" (5.31)

Q(zo,r) Q(zo,r)
where 0 < « =min (1 — N/p,1 — (N —1)/q) < 1. As

wa(r) := esssupw(z) — essinf w(z) > 0,
Q(z0,7) Q(zo,7)
and since

wa(r) < 2esssup |w(x)l,

Q(zo,7)

1/2
by (5.31), we have the inequality (5.26) with K := 2¢ (||f\|12)Q + ||g||2,89) and
the claim is proved.
3) Next, let

w(r) := esssup u(x) — essinf u(x)
Q(zo,7) Q(zo,r)

where u = v 4+ w. Then
w(r) < wi(r) + wa(r).
By (5.20) and (5.26) we obtain that
w(r) < nwy(4r) + Kr® < gw(4r) + Kre.

Note that 0 < < 1 and K are independent of r. Since a depends only on
Q,00,N,p and ¢, by Lemma 5.1.5 and Remark 5.1.6, there exist two constants
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H>0and 0 <d <1 (0< 6 <a) where §; depends only on Q,9Q, N,p and ¢
such that
w(r) < Hr for 0<7r < pg

which is the inequality (5.16).

4) Notice that it is well-known that a weak solution u of the problem (5.1)
belongs to C1(£2). Finally the Hélder continuity on  of the weak solution u €
H(Q) of the problem (5.1) is a direct consequence of the inequality (5.16). [

Now, let Ar be the selfadjoint operator on L?({) associated with the closed
form (a,, H*(Q)). Since Q has a Lipschitz boundary, by Proposition 4.2.5, A is
given by

D(AR)={ue H(A,Q): (%% + Bu) |sn = 0}
AR’U, = AU,

where we recall that
H(A,Q):={uc H(Q): Auc L*(Q)}.

For a real number A > 0, we denote by R(A,Agr) the resolvent of Ar and for
u,v € HY(Q) we let

ar(u,v) := ag(u,v) + )\/ uv dz.
Q

For 0 < a < 1, we set
Co(Q):={uecC(Q): Ic>0: Va,ycQ: |ulz)—uly)| <cz—y*}
We obtain the following result as a corollary of Theorem 5.2.7.

Corollary 5.2.8. The following assertions hold.

a) Assume that p > N. Then for each A > 0, R(\, Ar)(L?(Q)) C C%*(Q) for
some 0 < a < 1 depending only on 2, 02, N and p.

b) For each A >0, R(X\, Ag)(C()) is dense in C(Q).
Proof. a) Let A > 0, f € LP(Q2) and u € H'(Q) satisfying

ap(u,v) = / fv dx, Yoe HY(Q). (5.32)
Q

If A = 0, then u is a solution of (5.1) with ¢ = 0 and by Theorem 5.2.7 u € C%({2)
for some 0 < o < 1.

If A > 0, the results of Chapter 4 or Proposition 5.2.1 (see also [34]) imply
that the function u satisfying (5.32) is bounded. We obtain that  is a solution of
the equation

ad(u,v):/ﬂ(f—/\u)v dz, Yve HY(Q).
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As (f — Au) € LP(Q2), replacing f by (f — Au) in (5.1) and taking g = 0, Theorem
5.2.7 implies that u € C%*(Q2) for some 0 < o < 1 which completes the proof of

a).
b) Let v € C(Q). For every ¢ > 0, by Weierstrass Theorem, there exists
u € C*(Q) such that
lv — ul|eo < e.

For such u € C*(Q), define the linear functional Lu on H'() by: for every
© € HY(Q) we let

(Lu,p) = —/VUV@ dr — Bup do
Q a0

N
= —Z/DiuDigo dm—/ Buyp do.
3/ aQ

For each A > 0, define T := Au — Lu. Since T is a linear continuous functional on
H(Q), there exists a unique element w € H'() such that

aé(wv<p):<T7<p>v VWEHI(Q).

We denote this element w by Rx(Ag)T. In fact, one has w := R\(Ag)T = u.
Next we show that there exists g € C°°(£2) such that

”u - R()‘v AR)gHoo <e.

Let k; € C>®(Q),i=0,...,N be such that

ko = Aully < & and Dy~ killy <

for some p > N andi=1,...,N, and

N
18— killgon < e

i=1
for some ¢ > N — 1. Let

N
i=1
Then g € C*°(Q). Moreover, for every » € H'(£2) we have
ap(u— RO AR)g, @) = ay(u¢) — az(R(N, Ar)g. )
= (I,g) —/gsodx
Q

N
= /(/\ufko)ga derZ/(DiU*ki)Disﬁ dx +
Q =179
N
+/ Bu — ki | ¢ do.
L (xx)
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By Corollary 5.2.2,
N N
lu— RO\ AR)glle < ¢ (HAu —kollp + > 1Diu — kil + [|Bu — Zkinq,m>
=1 =1

< 3ce.

Let f € C(2) be such that

lg = flloo <e.
Then
[v—=R\AR)flleoc = [lv—u+u— R\ Agr)g+ R\ Ar)g — R\, Ar)flls
< v =ulloo + [lu = RN, AR)gllec + [R(A, AR)(g — f)lloo
< Ce
which completes the proof. O

Theorem 5.2.9. Let A% be the part of the operator Ag in C(S) in the sense that
D(AY) :={ue D(AR)NCEQ): AgueC()}; A%u:=Agu.

Then Ag generates a holomorphic compact contractive Cy-semigroup (T'(t))i>0 on

().

~ Proof. By Corollary 5.2.8, the operator A% generates a Cpy-semigroup on
C(£2) which is contractive.
The compactness follows from the formula

T(t) = ABCD

where D = Id is bounded from C(Q) into L?(Q), C = e!/34% is compact from
L*(Q) into L?(Q), B = e!/32r is bounded from L?(Q) into L>(Q) by ultracon-
tractivity (see Chapter 4) and A = e!/32% is bounded from L>(f2) into C(Q) by
the strong Feller property (Corollary 5.2.8 a)).

Now we prove the holomorphy. Since the semigroup (e!A%);>q on L?(Q) is
submarkovian, it induces contractive semigroups on all LP(2), 1 < p < oo which
are strongly continuous if 1 < p < co. Moreover, these semigroups are consistent
(see Theorem 1.3.17). Let us denote by A% := (AL)* the generator of the semi-
group on L>(Q). The consistence property and Corollary 5.2.8 a) imply that for
each A > 0,

R(A, AR)(L>(Q)) = R(A, AR)(L>(Q)) = D(AF) C C(Q).

Thus A% can also be defined as the part of the operator A% in C(€2). We obtain
that

D(A2) = {ue D(AF)NC(Q) : AZu e C(Q)} = D(AF).
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Since C(Q) is a closed subspace of L®(Q) and D(A%) = D(A%) which is dense
in C(Q) = D(A%) (by Corollary 5.2.8 c)) and since (e! R );>¢ is a holomorphic
semigroup on L>(£) (see [16, Theorem 5.2]), it follows from [11, Remark 3.7.13]

that (T'(t))¢>0 is a holomorphic Cp-semigroup on C () which completes the proof.
O

5.3 Resolvent Positive Operator.

In this section we define an operator A on C(Q) x C(9€) whose part in C(Q) is
the operator A. Using an elliptic weak maximum principle, we will show that A
is a resolvent positive operator.

Definition 5.3.1. Let A\ be a positive real number. A function u € HY () is called
a subsolution of the equation associated with a) if

ar(u,v) <0 Yove HY(Q), suchthatv>0 on Q in the “generalized sense”.
(5.33)

We have the following elliptic weak maximum principle.

Proposition 5.3.2 (Elliptic weak maximum principle). Letu € H'(Q)NC(Q) satisfy
(5.83). Then u <0 on €.

Proof. Let u € H'(Q) N C() satisfy the equation (5.33) and let v := u™.
Then v € HY(Q) N C(Q) and v > 0 on . As v is continuous on , then v > 0
on ) in the “generalized sense” is the same than v > 0 on Q in the usual sense.
Replacing v in (5.33), we obtain:

)\/ u? dx +/ |Vul|? do +/ Bu? do < 0.
{u>0} {u>0} {u>0}NoQ

Since 3(x) > v > 0 for some constant v, it follows that for each A > 0, we have
that u =0 or u <0 a.e. on Q and u <0 o a.e. on J€2. Since u € C(9), this cleary
implies that © < 0 on €. O

We obtain the following result as a consequence of the above elliptic weak
maximum principle.

Proposition 5.3.3. Let f € C(Q2), f >0, ¢ € C(3Q), ¢ > 0 and let u € H(Q) be
a weak solution of the inhomogeneous Robin problem

{)\u—Au —f inQ (534)

%-Fﬂu =¢ on 00

where XA > 0 is a real number. Then u >0 on €.
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Proof. We can decompose u = v + w, where v € H*(f)) is a weak solution of
the equation

Av—Av = in
WwoAv =f n (5.35)
S+ Bv =0 on 9Q
and w € H() is a weak solution of the equation
Aw—Aw =0 in Q
S w (5.36)
So+pPw =¢ on OO

1) Tt is well-known that R(\, Ag) is a positive operator. Since f > 0 on (2,

it follows that v := R(X,Ag)f > 0 a.e. on Q. As v € C(Q), it follows that v > 0
on {.
2) The solution w of (5.36) satisfies

aé<w,w>:/mwda Ve H(Q).

By Theorem 5.2.7, w € HY(Q) N C(Q). As ¢ > 0 on 95, then for all ¢ € H(Q),
¥ > 0 on Q in the “generalized sense” we have, a)(w,v) > 0. One obtains that
ar(—w,y) = —ad(w,) < 0 and then (—w) is a subsolution of the equation
associated with aé. By Proposition 5.3.2, —w < 0 on Q and thus w > 0 on Q.
Finally, one obtains that u = v+ w > 0 on Q. O

On C(Q) we consider the operator A,, defined by

D(A,) ={uec H(Q)NCK): AuecC(Q): Jp e C(09):
ao(u,v) = — [, Auv dx + [, ov do, Vv e H(Q)}
A u =Au in Q.

Obviously, A,, is a closed operator on C(Q).
Next we consider the operator A on C(Q) x C(99) defined by

{D(A) = D(An) x {0},
A(u, 0) = (AU, _90)7

where ¢ si given by the condition u € D(A,,) and the Banach space C(Q) x C(92)
is equipped with the norm

1(f, 9)llc@yx o) = max (|| fllo@) lgllcoa)) -

Proposition 5.3.4. Let f € C(Q) and g € C(09Q). Then —A(u,0) = (f,g) if and
only if u is a weak solution of the problem (5.1).
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Proof. Let u € D(A,,) be such that —A(u,0) = (f,g). Then

—Au =f in Q
) =g on 0%

where ¢ is the function given by the condition u € D(A,,;). We obtain that for
every v € H'(Q),

/Vqudx+ fuv do = —/Auvdm—i—/ v do
Q Q a0

G19)
= /fvdx—i—/ guv do
Q a0
and thus u is a weak solution of (5.1).

To prove the converse, let u € H'(Q) be a weak solution of (5.1). By Theorem
5.2.7, u € C(9). Since Au = —f € C(f), taking ¢ = g € C(01), one has that
u € D(A,,) and —A(u,0) = (f,9). O

Next, let X be a Banach lattice. A closed operator B on X is called a resolvent
positive operator, if there exists w € R such that (w, 00) C p(B) (the resolvent set
of B) and R(A, B) > 0 for all A > w. We denote by

s(B) =sup{ReA: A € o(B)}
the spectral bound of B, where o(B) denotes the spectrum of B.
Proposition 5.3.5. The operator A is resolvent positive and s(A) < 0.

Proof. a) Let A > 0 be a real number and suppose that A € p(A). Let
f e Cc), g e CON) and (u,0) = RN\, A)(f,g). Then u is a solution of the
equation

aﬁ(u,v)z/fvdx—i—/ gv do, ¥Yve H (Q).
Q 1)

If f<0and g <0, it follows from the weak maximum principle that u < 0 in Q.
Thus R(X, A) > 0.

b) We show that 0 € p(A). Let f € C(Q) and g € C(99). Let u € H'(2) be
a weak solution of (5.1). Taking ¢ = g, we have that v € D(A,,;) and —A(u,0) =
(f,g).- Thus —A is surjective. Since a weak solution of (5.1) is unique, it follows
that —A is bijective and 0 € p(A).

¢) Proceeding exactly as in the proof of [11, Theorem 6.1.6 c)], we obtain
that [0,00) C p(A) and this completes the proof. O

Proposition 5.3.6. The operator A% is the part of A in C(Q). Moreover we have
p(A) = p(A3).
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Proof. a) We claim that D(A) = C(Q) x {0}.
(i) First, let

ou

D:={uec H(Q)NCQ): Aue C(9Q), <8V

+ ﬂu) e ()},

We show that D(A,,) = D. Indeed, let v € D and ¢ := % + Bu. Then integrating
by parts yields,

—/Auvdw—i—/ pvdo = /Vqudm—/ @vda—k/ pv do
Q N Q a0 OV 0

= ay(u,v) Voue H(Q).

Thus u € D(Ay,).
~ To prove the converse inclusion, let u € D(A,,). By hypothesis, u € HY(Q)N
C(2), Au € C(2) and there exists ¢ € C(9f2) such that

ag(u,v):—/QAuvd:U—&—/aQw)da, Yoe HY(Q).

Integrating by parts yields,

/VuVdeJr ﬂuvdU:/Vqud:c—/ @v dchr/ v do.
Q o0 Q oq OV o0

This implies that

/ (M—l—ﬂu)vda:/ ovdo Vove HY(Q).
o0 \ OV 0

Since ¢ € C(99), this gives that (9% + Su) € C(912) and thus u € D.
(ii) We claim that D(A%) C D(A,,). In fact, let u € D(AR). By definition,
u e C(Q)ND(AR) and Aru € C(Q2) where we recall that

D(AR) :={ue€ H(A,Q): (g:j —|—ﬂu> = 0}.

We obtain that v € H(Q)NC(Q), Au € C(Q) and (2 + Bu) = 0 € C(9Q).
Thus u € D(A,,). .

(iii) Since D(A$) C D(A,,) and D(A$) is dense in C(Q) this implies that
D(A,,) is dense in C(Q) and the proof of a) is complete.

b) Let Ag be the part of A in C(Q) x {0}. Then

{D(AQ) .= {(1,0) € D(A) N (C(Q) x {0}) : A(u,0) € C(Q) x {0}},
Ag(u,0) = A(u, 0).
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Let (u,0) € D(Ag). The condition A(u,0) € C(Q) x {0} means that —A(u,0) =
(f,0) for some f € C(£2). By Proposition 5.3.4, this implies that u is a weak
solution of the equation (5.1). We obtain that

du

—A(u,0) = (—Au, (81/

+ Bu)) = (£,0).

Thus

du

D(Aq) = {(u,0) € D(A) N (C(2) x {0}) : (Au, (5

+ pu)) € C(Q2) x {0}}.
Identifying C(Q) x {0} with C(£2), one obtains that
D(Ag) ={uec C(Q)ND(AR): Auc C()} =D(AY).

Moreover, with this identification, Agu = Awu and the proof of this part is com-
plete.

¢) Now we show that p(A) = p(AR). Let A € p(A), f € C(Q) and (u,0) =
R(A\, A)(f,0). Then (A—A)(u,0) = (f,0) and u is a solution of the equation (5.32)
which is in H() N C(£2). This gives that R(\, A)(C(Q) x {0}) € C(Q) x {0} and
thus p(A) C p(A$).

To prove the converse inclusion, let A\ € p(A$). For f € C(Q) and ¢ €
C(09Q), let u € HY(2)NC(Q) be a solution of the equation (5.34). We obtain that
(8% + Bu) := p € C(0Q) and

ag(u,v):—/QAuvdx—i—/anovda

for every v € H'(2). This implies that u € D(A,,) and (A — A)u = f. Then
(u,0) € D(A), (A\—A)(u,0) = (f, ) and thus (A— A) is surjective. Let u € D(A,,)
be such that (A— A)(u,0) = (0,0). Then u is a solution of the equation (5.34) with
f=0and ¢ = 0. We obtain that u € D(A%) and (A — A%)u = 0. Thus u = 0 and
the proof is complete. O

Remark 5.3.7. If follows from the proof of the preceding proposition that for u €
D(A,,), we have
Ju

ov

Finally, notice that the fact that the operator A is a resolvent positive oper-
ator can be used to study the well-posedness of the heat equation with inhomoge-
neous boundary conditions

—A(u,0) = (—Au, (=— + Su)).

W(t) = Ault)  (te [0,7])
(%89 1 pu(t)) oo = o(t),  (t€ [0,7);
u(0) = uo,
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where up € C(Q) and ¢ € C([0,7],C(09Q)) are given. The case of the inhomoge-
neous Dirichlet boundary conditions is contained in [11, Chapter 6]. We will not
go into details.
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Chapter 6

Wentzell-Robin Boundary
Conditions on C'[0, 1]

In this chapter we consider the operator Ay on C[0,1] defined by

D(Aw) = {u € C*[0,1] : (aw)'(j) + Bju'(j) + yju(j) = 0; j = 0,1} (6.1)
Awu = (au'), '
where 3;, v; (j = 0,1) are arbitrary real numbers and the function a € C*[0,1]
satisfies
a(x) > a>0 (6.2)
for some real number «. We call the operator Ay, the realization of the operator
(au)" on C[0, 1] with Wentzell-Robin boundary conditions. Note that this bound-
ary condition called Wentzell-Robin boundary condition is a dynamic boundary

condition (see [14]). We will use perturbation arguments to show that Ay gener-
ates a holomorphic Cy-semigroup.

6.1 Intermediate Results.

Before starting the study of the problem mentioned in the introduction, we prove
the following abstract result which we shall use frequently.

Theorem 6.1.1. Let Y be a Banach space and Ay be a generator of a holomorphic
Co-semigroup Ty = (Ty (t))i>0 on Y. Let X :=Y & Z for some Banach space Z
and A be the closed operator defined on X by

Az = Ay, z) := (Ayy, 0)

with domain D(A) = D(Ay)® Z. Then A generates a holomorphic Cy-semigroup
on X.
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Proof. Note that Ay is the part of A in Y. It is also easy to see that A
generates a Cp-semigroup T = (T'(¢));>0 on X and for every x := (y,2) € X, we
have T'(t)x = (Ty (t)y, ). Since Ty = (Ty (t))i>0 is a holomorphic semigroup on
Y, it follows that T = (T'(t))+>0 is a holomorphic semigroup on X. O

Next, we consider the bilinear form [ : H}(0,1) x H}(0,1) — R on L?(0,1)
defined by

l(u,v) ::/0 a(z)u' (z)v'(z) dw—i—/o b(z)u (z)v(x) dm—i—/o c(z)u(z)v(x) du;

where we assume for the moment that a € L°>°(0,1) satisfies the condition (6.2)
and b, c € C[0,1].

It is well-known (see [12]) that (I, H}(0,1)) is a bilinear densely defined closed
form on L?(0,1) which is also elliptic; i.e., there exist w € R and p > 0 such that

u,u) + w||u||2L2(0,1) 2 MHu”%ﬂ(O,l)

). Let Ly be the closed operator on L?(0,1) associated with

for every u € H}(0,1).
1)); ie.,

the form (I, H3(0,1)
{D<L2> = {ue HY(0,1): 3ve L2(0,1): lu,p) = (v,9) ¥ o € H}(0,1)}
Lou := —v,

where (, ) denotes the scalar product in L?(0,1). It is easy to see that the operator
L is given by

D(Ly) = {u e H}0,1): (au') —bu' —cu € L?(0,1)}
Lou = (au') — by’ — cu.

Moreover, since H(0,1) is dense in L2(0,1) and (I, H}(0,1)) is a bilinear closed
elliptic form, it follows from Theorem 1.3.4 that Ly generates a holomorphic Cy-
semigroup T = (Ta(t))s>0 on L?(0,1). It is also easy to verify that the first
Beurling-Deny criterion for non-symmetric forms is satisfied (see [80, Théoreme
1.2.2]). Thus the semigroup is positive. If ¢ > 0, then the second Beurling-Deny
criterion is satisfied (see [12, Section 4] or [80, Théoréme 1.2.5]) and this implies
that the semigroup is submarkovian.

Next let Ly be the part of Lo in Cy(0,1) := {u € C[0,1] : «(0) =u(1l) =0};

ie.,

.D(L()) = {’LL € D(Lz) N C(](O, 1) : (au')’ —bu' —cu € C()(O, 1)}
Lou := Lou = (au') — bu’ — cu.

Proposition 6.1.2.  a) Assume that b € C1[0,1]. Then Lo generates a holomor-
phic Cy-semigroup on Cy(0,1).
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b) Assume that a € C'[0,1]. Then Ly is given by

D(Lg) = {u € C?[0,1]N Cp(0,1) : (au') —bu' — cu € Cy(0,1)}
Lou = (au') — bu’ — cu.

Proof. a) This part follows from [12, Corollary 4.7].
b) Set

D :={u e C?*0,1]NCy(0,1) : (au') —bu' — cu € Cy(0,1)}.

Let w € D. Then u € H}(0,1) and (av') — bu’ — cu € L*(0,1). We obtain that
u € D(La) N Cy(0,1) and (au’) —bu' — cu € Cy(0,1). Thus u € D(Ly).

To prove the converse inclusion, let u € D(Lg). Then wu is a solution of the
Dirichlet problem

u € HE(0,1)

() —bu' —cu=f,
where f € Cy(0,1) € L*>(0,1). Since we assume that a € C*[0,1], it follows from
[37, Proposition 13 p. 605] that u € C[0, 1] and this implies that (au’)" € C[0, 1].
As (av/) = d'v/ + av” then au” € C[0,1]. The continuity of a and the fact that
a(z) > a > 0 imply that «” € C[0,1] and then u € C?[0,1]. Finally, we obtain
that w € C?[0,1] N Cp(0,1) and (au') — bu’ — cu € Cy(0,1) which completes the
proof. U

Throughout the following, we shall assume that ¢ € C[0, 1] satisfies ¢(x) > 0
and a,b € C1[0,1] and that the function a also satisfies the condition (6.2).
Next we define an operator A on C[0,1] by

{D(A) = {u € C?[0,1] : (au') —bu' — cu € Cy(0,1)} 63)

Au = (au') — bu’ — cu.

Proposition 6.1.3. The operator A generates a holomorphic Cy-semigroup on
Clo,1].

Proof. a) We claim that A is a closed operator on C[0,1]. Indeed, it is well-
known (see [25, Remark 9 p.133]) that for u € C?[0, 1],

lull := llullse + llu" [l
is a norm on C2[0, 1] which is equivalent to the norm of C?[0, 1] given by:
lullezpo,1) = llwlloo + [1u'llse + [l loo-

Moreover, using Taylor’s formula (see [25, Remark 9 p.133]), we obtain that for
every € > 0 there exists C. > 0 such that for every u € C?[0, 1],

[ulloo < llt”lloo + Cellulloo- (6.4)
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We finally obtain that for every u € D(A) C C?[0,1],

[u'lloe < ellu"lloo + Cellulloo
< eaHau"||oo + Cellullo
< ea Mau" + a'v — a'v — b’ — cu+ b’ + culloo + Ccl|tf 0o
< ea” | Aulloo +ea ([l oo + [1Blloo) o +

+ea el + Co)llullo-

From this inequality, we see that there exist some constants ki, ks > 0 such that
for every u € D(A),
[0 loo < K1l Aulloo + kal|uloc- (6.5)

Using the inequality (6.4), we obtain the following estimates.

a(aw) —bu' — cu — a'u' + bu' + cul| oo

a ™M Aulleo + a (J|a oo + [1Bllco) 14/ [loo + @ Hlelloo [l oo
a ™M Aulleo +ea ([l oo + [[blloo) [0 [0 +

+a HCe(l|a"loo + [1blloc) + llelloo) [[tt]|oo-

1
[ oo

IAINCIA

Choosing ¢ suitably, we obtain that there exist some constants ¢y, co > 0 such that
for every u € D(A),
[0 lloe < e1l|Aulloo + c2[ut]|oc- (6.6)

Let u, € D(A) and u,v € C[0, 1] be such that
lim |Jup —ulleo =0 and lim || Au, — v|je = 0.

It follows from (6.5) and (6.6) that «], and u!’ are Cauchy sequences in C10, 1] and
then converge uniformly. Thus v € C?[0, 1]. Since Au,,(0) = Au, (1) = 0 and Au,
converges to v uniformly, it follows that v(0) = v(1) = 0 and then u € D(A) and
Au = .

b) We claim that C[0,1] = Cy(0,1) @ ker(A). In fact, let f € C]0,1] and
u € H'(0,1) be a solution of the Dirichlet problem

Lu = (av') —bu' —cu =0
u(0) = £(0) (6.7
u(l) (1).

By [59, Theorem 8.34], one has u € C?[0,1] and then u € ker(A). Writing f =

(f —u) + u, we obtain that (f —u) € Cy(0,1) and u € ker(A). Since by [59,
Corollary 8.2], the equation

- =

u € HE(0,1)
Lu=20
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has only the solution u = 0, the decomposition is unique.

¢) We claim that D(A) = D(Lg) @ ker(A). Indeed, let f € D(A) and u €
C?[0,1] be a solution of the equation (6.7). Then (f —u) € C?[0,1] N Cy(0,1)
and L(f —u) = Lf — Lu = Lf € Cy(0,1). Thus (f — u) € D(Ly). Moreover,
f=(f—u)+uand u € ker(A). The uniqueness of the decomposition is obtained
exactly as in b).

d) Note that the decompositions in b) and in c) are also topological. Moreover,
it is clear that Ly is the part of A in Cy(0,1). Since, by Proposition 6.1.2, Lg
generates a holomorphic Cy-semigroup on Cy(0, 1), it follows from Theorem 6.1.1
that A generates a holomorphic Cy-semigroup on C|0, 1] and the proof is complete.

O

The fact that A generates a Cy-semigroup on C[0, 1] (without holomorphy
property) can be also obtained from the results of Clément and Timmermans in
[30] with a different proof.

6.2 Holomorphy.

Throughout this section, (A, D(A)) will denote the operator defined by (6.3) in
Section 6.1.

Let Aw be the operator defined in (6.1). The following is the main result of
this chapter.

Theorem 6.2.1. The operator Ay generates a holomorphic Cy-semigroup on

o, 1].
Proof. Let B be the operator on C[0, 1] defined by
D(B) :=C"0,1] and Bu:=bu'+ cu.
Then D(A) C D(B). For every u € D(A) we have
1Bulloe == [[bu’ + culloo < [[Blloc ][t/ [loo + ll€lloo[lulloc-

Using the inequality (6.4), we obtain that for every € > 0,

[Bulloo < [Iblloo(ellu”|[oo + Cellulloo) + llelloo llulloo
< elblloollu” oo + (Cellblloo + llelloo) lulloo
< ot |b]soll(an’) — by’ — cu — a'u 4 bu’ + cul|oo +
F(Celbllo + [lelloo) llulloo
<o telblool|Aulloo + o elbllcolla oo |40 +

+o~ e [|bllos || Bulloo + (Cellbll oo + llelloo) ulloo-
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Using the inequality (6.5), we obtain the following estimates for every £ > 0 and
every u € D(A).

1Buloe < a7 elblloo | Aulloo + ™ ella’[loc 1Blloc (k1| Aulloo + k2llulloc) +
+a~ e[bllos || Bulloo + (Cellblloo + llelloo) [[ullo-

Thus

[Bulloo < eC1|Aulloc + C2|Bullo + Csul| o, (6.8)
where

Cr:=a bl (1 + kil|a’l|oc) , C2:=a™t|[b]l
and

Cs = 5k20‘_1‘|al||00”buoo + Cc[b]| oo + €]l co-

Let w € R. Since by Proposition 6.1.3, A generates a holomorphic Cy-semigroup on
C[0, 1], then the operator (A —w) generates a bounded holomorphic Cp-semigroup
on C[0,1] for w sufficiently large. This implies that there exist 6 € (0,7/2] and
M > 1 such that for every

NETgigi={z€C\{0}: |argz| < 7 +6),

we have

M
A€ p(A—-w) and ||[R(NA-w)| < o

From the inequality (6.8), we obtain that

[Bulloo < eCh[[(A = w)tfloo + eCsl|Bulloo + (eCi|w]| + C3)[ul|oo-

Choosing ¢ such that
ECl 1

< < ,
1-— 802 M+1
the Perturbation Theorem in [42, Chap. IIT Theorem 2.13] implies that the op-

erator ((A+ B — w), D(A)) generates a bounded holomorphic Cp-semigroup on
C[0,1]. Therefore the operator Ay defined by

0

D(Aog) = D(A) and Apu = Au+ Bu

generates a holomorphic Cyp-semigroup on C10, 1]. The operator Ay is given by

D(Ag) ={ue C?[0,1]: (a')'(j) — b(j)u'(j) — c(j)u(j) = 0; j = 0,1}
Agu = (au')’.

Setting §; := —b(j) and v; := —c(j) for j = 0,1, we obtain that D(Ay) = D(Aw)
and Awu = Aogu = (au’)’. Finally, note that, since ¢(z) > 0, then v; := —¢(j) < 0.
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The case 7; > 0 follows from [60, Theorem 2.4] by perturbing the boundary
conditions of the operator Ay by the compact operator

d: C[0,1] = R?: u (—2¢(0)u(0), —2¢(1)u(1))

and by setting 8; = —b(j) and v; = ¢(j) for j = 0,1 which completes the
proof. O
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Zusammenfassung

Gegenstand dieser Dissertation ist das Studium des Laplaceoperators mit Robin-,
Neumann- und Wentzell-Robinrandbedingungen. Via quadratische Formen ist es
einfach, Realisierungen des Laplaceoperators mit Dirichlet- oder Neumannrandbe-
dingungen auf den Riumen L?(Q2) zu definieren, wobei ) eine offene Menge im
R¥ ist. Hierbei betrachten wir allgemeine Robinrandbedingungen; d.h. Randbe-
dingungen gegeben durch Mafe.

Im ersten Teil dieser Arbeit definieren wir einen neuen Begriff von Kapazitét;
die relative Kapazitat. Die relative Kapazitat ist immer kleiner als die klassische
Kapazitat. Relativ polare Mengen im Inneren von offenen Mengen sind polare
Mengen. Wenn die offene Menge nicht regulér ist, dann existieren relativ polare
Teilmengen des Randes mit positiver Kapazitat. Wir illustrieren diese Aussage mit
Beispielen.

Ein positives Borelmafl ;1 auf dem Rand heifit zuléssig, falls relativ polare
Mengen des Randes p-Nullmengen sind. Fiir ein zulédssiges Borelmafl p auf dem
Rand der offenen Menge 2 definieren wir eine positive, bilineare, symmetrische
und abschlieBbare Form auf L?(€2). Der Operator, der mit dem Abschlu der Form
assoziiert ist, ist eine Realisierung des Laplaceoperators und erzeugt eine holomor-
phe, stark stetige Halbgruppe. Diese liegt zwischen den vom Dirichlet und Neu-
mann Laplaceoperator erzeugten Halbgruppen. Auflierdem ist unter Regularitéits-
und Lokalitatsbedingungen jede symmetrische und stark stetige Halbgruppe auf
L?(2), welche zwischen Dirichlet und Neumann Laplace Halbgruppen liegt, durch
ein zuléssiges Borelmafl gegeben.

Ist u = o das (N — 1)-dimensionale Hausdorffma8, dann ist der assoziierte
Operator der Laplaceoperator mit den klassischen Robinrandbedingungen. Wir
zeigen mit Beispielen, dal ¢ im allgemeinen nicht zuldssig ist, aber es existiert
ein Teilmenge S des Randes der offenen Menge, so dal man immer Robinrandbe-
dingungen auf S und Dirichletrandbedingungen auf dem Komplement hat. Der
Robin Laplaceoperator erzeugt eine stark stetige Halbgruppe auf L?(12), die eine
GauBlsche Abschatzung mit modifizierten Exponenten erfiillt. Auflerdem ist das
Spektrum des Robin Laplaceoperators auf L?(€2) unabhéngig von p € [1, 00).

Ist © = 0, so ist der assoziierte Operator der Neumann Laplaceoperator.
Wir beweisen, dafl die Neumann Laplace Halbgruppe aus Kernoperatoren besteht,
jedoch ist der Kern singulér.

Im zweiten Teil der Arbeit beweisen wir, daf} fiir beschrinkte Lipschitz-
Gebiete die Losung des inhomogenen Robin Problems holderstetig bis auf den
Rand ist. Mit Hilfe dieser Resultate zeigen wir, dafl der Teil des Robin Laplaceoper-
ators auf den Rdumen der stetigen Funktionen eine holomorphe, stark stetige Halb-
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gruppe erzeugt. Am Schlufl beweisen wir, dafy der Laplaceoperator mit Wentzell-
Robinrandbedingungen eine holomorphe, stark stetige Halbgruppe auf dem Raum
der stetigen Funktionen auf einem abgeschlossenen Intervall erzeugt.

Erklarung:

Hiermit erklére ich, daf} ich die Arbeit selbstdndig und nur mit den angegebenen
Hilfsmitteln angefertigt habe. Alle Stellen, die anderen Werken entnommen sind,
wurden durch Angabe der Quellen kenntlich gemacht.

Ulm, den 13. Mai 2002.
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