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Introduction

The analysis of mathematical models for physical phenomena is part of the sub-
ject matter of mathematical physics. In all cases the mathematical problems which
arise lead to more general mathematical questions not associated with any par-
ticular model. Although these general questions are sometimes problems in pure
mathematics, they are usually classified as mathematical physics since they arise
from problems in physics.

Mathematical physics has traditionally been concerned with the mathematics
of classical physics, mechanics, fluid dynamics, acoustics, potential theory and
optics. The main mathematical tool for the study of these branches of physics
is the theory of ordinary and partial differential equations and related areas like
integral equations and the calculus of variations.

But in the theory of partial differential equations, an important problem is
the question concerning the existence of solutions when the values on the boundary
of the region are prescribed. “Has not every variational problem a solution, pro-
vided certain assumptions regarding given boundary conditions are satisfied and
provided also, if need be, that the notion of solution shall be suitably extended”?
These are the words of Hilbert used to conclude his question concerning the twen-
tieth problem stated in an address delivered before the International Congress of
Mathematicians in 1900.

Although there are still many open questions related to these problems of
Hilbert, a great deal of progress has been made, with some dazzling success.

One of the components necessary to establish regularity of certain variational
problems was the need to show that a weak solution of a linear (or nonlinear)
equation in divergence form is regular in some sense.

Potential theory, which grew out of the theory of the electrostatic or gravi-
tational potential, the Laplace equation, the Dirichlet problem, . . ., played a fun-
damental role in the development of functional analysis and the theory of Hilbert
space. The connection between potential theory and the theory of Hilbert spaces
can be traced back to Gauss, who proved the existence of equilibrium potentials
by minimizing a quadratic integral, the energy. According to the classical Dirichlet
principle, one obtains the solution of Dirichlet’s problem for the Laplace equation
in a region Ω by minimizing the Dirichlet integral,

∫
Ω
|∇u(x)|2 dx, over a certain

class of functions taking given values on the boundary ∂Ω. The natural explana-
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tion is that solutions of Laplace equation describe an equilibrium state, a state
attained when the energy carried by the system is at a minimum.

It turns out that potential theory is the main tool for the study of regularity
of weak solutions of linear (or nonlinear) equations in divergence form. For ex-
ample, the inspired result by Wiener characterizes continuity at the boundary for
harmonic functions. Serrin discovered that capacity was the appropriate measure-
ment for describing removable sets for weak solutions. Later, Maz’ya discovered
a Wiener-type expression involving capacity which provided a sufficient condition
for continuity at the boundary of weak solutions of equations whose structure is
similar to that of the p-Laplacian.

In particular, potential theory for Dirichlet forms, mainly due to Beurling
and Deny, has many probabilistic interpretations and is also connected with the
classical potential theroy based on Riesz kernels and logarithmic kernels, see [2],
[55] or [73]. This theory of Dirichlet forms is an axiomatic extension of the classical
Dirichlet integrals, see for example [2], [55], [69] or [84].

We will be concerned with Dirichlet forms associated with some realizations
of the Laplacian on L2(Ω) where Ω is a region in RN . It turns out that Sobolev
spaces which have very interesting mathematical structures in their own right,
will play an important role here. The associated realizations of the Laplacian have
some properties which are consequences of the structure of Sobolev spaces which
themselves are related to the structure of the geometry of Ω.

Since open subsets of RN may have a strange geometry, the method of
quadratic forms is the main tool to define realizations of the Laplacian with vari-
ous boundary conditions. For an arbitrary open set there is no problem to define
in the weak sense the Dirichlet Laplacian ∆D and the Neumann Laplacian ∆N on
L2(Ω) and it is well-known that these operators generate holomorphic contractive
C0-semigroups which interpolate on Lp(Ω) for 1 ≤ p <∞ (see [8], [16] or [39]).

Before 1998, the third type of boundary conditions called Robin boundary
conditions has been considered only in the case of regular open sets (for example
Lipschitz domains), see [16], [38] or [59]. The difficulty is to find an appropriate
measure on the boundary and the fact that there may exist functions in the first
order Sobolev space H1(Ω) which have no trace in some appropriate Hilbert space
if Ω is “bad”.

Daners [34] found a way to give a weak formulation of Robin boundary con-
ditions on arbitrary bounded domains. First, he chose as measure the (N − 1)-
dimensional Hausdorff measure restricted to ∂Ω which seemed to be the natural
candidate since this measure coincides with the usual Lebesgue surface measure if
Ω has a Lipschitz boundary. After the choice of the measure, he proved that there
exists a natural subset S of ∂Ω where Robin boundary conditions are realized and
one has Dirichlet boundary conditions on ∂Ω \S. He conjectured that S is always
equal to ∂Ω if ∂Ω has finite (N − 1)-dimensional Hausdorff measure.

In this thesis we will be concerned with Robin boundary conditions, not only
on bounded domains, but on arbitrary open sets.
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The first part of this thesis is organized as follows.

In Chapter 2, we will introduce a new notion of capacity called relative ca-
pacity (relative to Ω) and study the relationship between this relative capacity
and the well-known classical capacity considered by many authors (see [2], [15],
[19] [23], [43], [55] or [73]). It will be of particular interest to compare the relative
capacity and the s-dimensional Hausdorff measure for N − 1 ≤ s ≤ N . It is well-
konwn (see [2], [19] or [43]) that sets of zero capacity have also zero s-dimensional
Hausdorff measure. We will show by several examples that this statement is not
true for the relative capacity.

In Chapter 3 we will consider the bilinear symmetric form on L2(Ω) defined
by

aµ(u, v) =
∫

Ω

∇u∇v dx+
∫

∂Ω

uv dµ

with domain

D(aµ) = {u ∈ H1(Ω) ∩ Cc(Ω̄) :
∫

∂Ω

|u|2 dµ <∞}

where µ is a Borel measure on ∂Ω. If the form aµ is closable then we can asso-
ciate with its closure a selfadjoint realization ∆µ of the Laplacian on L2(Ω). The
operator ∆µ is called the Laplacian with general Robin boundary conditions.

Therefore it is important to know when aµ is closable. This is similar to the
study of an abstract perturbation of Dirichlet forms by measures considered by
Fukushima, Oshima and Takeda in [55], Ma and Röckner in [69] or Stollmann and
Voigt in [89]. It turns out that aµ is closable if and only if µ does not charge Borel
subsets of zero relative capacity of the part on which it is locally finite.

If aµ is not closable, the remarkable result of Reed and Simon [84] shows that
there exists a largest closable part smaller than aµ in some sense. Using the relative
capacity approach we will show that this largest closable part is in fact aµr where
µr is the restriction of µ to some maximal Borel subset S of ∂Ω. The selfadjoint
operator ∆µ on L2(Ω) associated with the closure of this closable part satisfies
general Robin boundary conditions on S and Dirichlet boundary conditions on
∂Ω \ S.

In both cases, ∆µ generates a holomorphic submarkovian C0-semigroup on
L2(Ω) which is sandwiched between the Dirichlet Laplacian and the Neumann
Laplacian semigroups. Conversely, we will also show that under a locality and a
regurality assumption, each sandwiched semigroup is given by a measure on ∂Ω
which does not charge Borel subsets of zero relative capacity of the part on which
it is locally finite.

Chapter 4 will concern to the study of the Laplacian with classical Robin
boundary conditions and of some properties of the Neumann Laplacian. The clas-
sical Robin boundary condition corresponds to the case where µ = σ is the re-
striction to ∂Ω of the (N − 1)-dimensional Hausdorff measure or more generally
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µ absolutely continuous with respect to σ. For simplicity we will consider only
the case µ = σ. We will show by examples that Daners’ conjecture mentioned
above is not true. This follows by the geometry of Ω. If Ω has a very bad bound-
ary it can happen that σ charges subsets of ∂Ω of zero relative capacity. We
will illustrate this situation by several examples. Maz’ya [73] shows that for an
arbitary open set in RN the space W 1

2,2(Ω, ∂Ω) is continuously embedded into
L2N/N−1(Ω). The non-closability of aσ implies in particular that the continuous
embedding of W 1

2,2(Ω, ∂Ω) into L2N/N−1(Ω) is not always injective. However, the
Laplacian with classical Robin boundary conditions has some interesting proper-
ties (p-independence of the spectrum, Gaussian estimates with modified exponent
of the associated semigroup, compactness of the resolvent on Lp(Ω), 1 ≤ p ≤ ∞
if Ω has finite measure) which are direct consequences of the remarkable Maz’ya
inequality.

The Neumann Laplacian corresponds to the case where µ = 0. This operator
has some very strange properties (the spectrum may be p-dependent, the resolvent
is not always compact if Ω is bounded). However, we will show that the associated
semigroup is always an integral operator, but it is given by a singular kernel; i.e.
a kernel which is not bounded if Ω is irregular.

The second part of this thesis is concerned with the study of regularity of weak
solutions and the introduction of the fourth boundary conditions called Wentzell-
Robin boundary conditions.

As mentioned above, one of the component necessary to establish regularity
of certain variational problems is the need to show that a weak solution of a
linear equation in divergence form with bounded measurable coefficients is Hölder
continuous. This result resisted many attempts, but finally in 1957, De Giorgi
and Nash, independently of each other, provided a proof of this crucial result.
The De Giorgi-Nash result stimulated a great number of related investigations,
one of most important being that of Moser who, by an entirely different method,
provided another proof of their result. A crucial component in Moser’s proof was
the discovery that the logarithm of the solution is a function of bounded mean
oscillation. He also proved the Harnack inequality which states that locally, the
supremum of the solution is bounded by its infimum.

In Chapter 5, we will consider the inhomogeneous Robin problem given for-
mally by {

−∆u = f in Ω,
∂u
∂ν + βu = g on ∂Ω

where f ∈ Lp(Ω) (p ≥ 2), g ∈ Lq(∂Ω) (q ≥ 2) and β is a strictly positive bounded
measurable function on ∂Ω. Using the De Giorgi method developped by Murthy
and Stampacchia [77], we will show that a weak solution of the inhomogeneous
Robin problem is Hölder continuous up to the boundary provided that p > N ,
q > N − 1 and Ω is a bounded domain with Lipschitz boundary. This shows in
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particular that the operator ∆σ defined in Chapter 4 has the strong Feller prop-
erty. Furthermore, we show that the part of ∆σ in C(Ω̄) generates a holomorphic
contractive C0-semigroup on C(Ω̄).

Most recently, Favini et al. [48] investigated the Laplacian with Wentzell-
Robin boundary conditions. They considered Lp-spaces for bounded domains in
RN but investigated explicitly the interval [0, 1]. They proved that the Wentzell-
Robin Laplacian generates a holomorphic C0-semigroup on some Lp-spaces. More-
over it generates a C0-semigroup on C(Ω̄) if Ω is regular (for example if Ω is of
class C2). In Chapter 6, we will prove that the C0-semigroup on C[0, 1] generated
by the Wentzell-Robin Laplacian is also holomorphic .
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Chapter 1

Basic Notions of Functional
Analysis

This chapter contains some basic notions which will facilitate the understanding of
the following chapters. We will not give a proof of most of the results. We simply
give some references where one can find these results.

1.1 Measure Theory.

Throughout this section, X will denote a metric space with metric d and B(X) the
Borel σ-algebra of subsets of X; i.e., the smallest σ-algebra containing the open
subsets of X. The following presentation is based on the notions and results of
Evans-Gariepy [43].

Definition 1.1.1. a) A mapping µ : [A : A ⊂ X] → [0,∞] is called an outer
measure on X if the following two conditions are satisfied.

(i) µ(∅) = 0;

(ii) µ(
⋃∞
i=1Ai) ≤

∑∞
i=1 µ(Ai) whenever Ai ⊂ X.

b) A set A ⊂ X is µ-measurable if for each set B ⊂ X,

µ(B) = µ(B ∩A) + µ(B \A).

Remark 1.1.2. If µ is an outer measure on X and A ⊂ B ⊂ X, then µ(A) ≤ µ(B).

Definition 1.1.3. Let µ be an outer measure on X.

a) We say that µ is locally finite if for every x ∈ X there exists r > 0 such that
µ(B(x, r)) <∞, where B(x, r) := {y ∈ X : d(x, y) < r}.
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b) We say that µ is a Borel measure if all Borel sets are µ-measurable.

c) We say that µ is a regular Borel measure if it is a Borel measure and if
for every A ⊂ X there exists a Borel set B ⊂ X such that A ⊂ B and
µ(A) = µ(B).

d) We say that µ is a Radon measure if it is a Borel measure and

(i) µ(K) <∞ for compact sets K ⊂ X;

(ii) µ(O) = sup{µ(K) : K ⊂ O is compact } for open sets O ⊂ X.

(iii) µ(A) = inf{µ(O) : A ⊂ O; O is open } for A ⊂ X.

Remark 1.1.4. a) It follows from the definition that an outer measure µ on X
is a Radon measure if and only if it is a regular Borel measure and locally
finite.

b) Let µ be a regular Borel measure on X. If A ⊂ X is a Borel set, then µ
restricted to A denoted by µ|A and defined by

µ|A(B) := µ(A ∩B) for all B ⊂ X

is a regular Borel measure.

Example 1.1.5 (Hausdorff measure). Let U be a nonempty subset of RN . We define
the diameter of U as follows:

diam(U) := sup {|x− y| : x, y ∈ U} .

Let 0 < δ ≤ ∞ and F ⊂ RN . If {Ui} is a countable family of subsets of RN
such that F ⊂ ⋃∞

i=1 Ui with 0 < diam(Ui) ≤ δ for each i, then {Ui} is called a
δ-covering of F . Let F ⊂ RN , 0 ≤ s <∞ and 0 < δ ≤ ∞. Define

Hs
δ(F ) := 2−sα(s) inf

{ ∞∑

i=1

(diam(Ui))
s : {Ui} is a δ-covering of F

}

where α(s) := πs/2

Γ( s
2+1) and Γ(s) :=

∫∞
0
e−xxs−1 dx is the usual gamma function.

Since Hs
δ(F ) ≤ Hs

ε(F ) if 0 < ε < δ ≤ ∞, it follows that Hs
δ(F ) approaches a limit

as δ → 0. Define
Hs(F ) := lim

δ→0
Hs
δ(F ) = sup

δ>0
Hs
δ(F ).

The limit exists for every F ⊂ RN and can be 0 or∞. We callHs the s-dimensional
Hausdorff measure.

For each subset F of RN and 0 ≤ s <∞, by definition of Hs(F ), we see that
if Hs(F ) <∞ then Ht(F ) = 0 for t > s. Thus a graph of Hs(F ) shows that there
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is a critical value of s at which Hs(F ) “jumps” from ∞ to 0. This critical value is
called the Hausdorff dimension of F and written dimH(F ). Clearly,

dimH(F ) = inf{s : Hs(F ) = 0} = sup{s : Hs(F ) = ∞}
so that

Hs(F ) =

{
∞ if s < dimH(F )
0 if s > dimH(F ).

If s = dimH(F ), then Hs(F ) may be zero of infinite, or may satisfy

0 < Hs(F ) <∞.

Let Ω ⊂ RN be an open set and ∂Ω be its boundary. Then

(N − 1) ≤ dimH(∂Ω) ≤ N.

The following result is contained in [46, Section 2.1], [72, Theorem 4.2 and
Corollary 4.5] and [4, Proposition 2.49].

Theorem 1.1.6. a) The s-dimensional Hausdorff measure on RN is a regular
Borel measure but not always a Radon measure.

b) The measure HN coincides with the Lebesgue measure on RN .

Next we give the following formula called area formula and contained in [4,
Theorem 2.71]

Theorem 1.1.7 (Area formula). Let f : Rk → RN be a Lipschitz function with
N ≥ k. Then for every Lebesgue measurable set E ⊂ Rk the multiplicity function
y 7→ H0(E ∩ f−1(y)) is Hk-measurable on RN and

∫

RN

H0(E ∩ f−1(y)) dHk(y) =
∫

E

Jf(x) dx,

where Jf is the Jacobian of f .

Remark 1.1.8. a) The set f(E) is Hk-measurable, being the support of the mul-
tiplicity function. If f is injective, then

Hk(f(E)) =
∫

E

Jf(x) dx.

b) Assume that g : RN−1 → R is Lipschitz and define f : RN−1 → RN by
f(x) = (x, g(x)). Calculating, we obtain that (Jf)2 = 1 + |Dg|2. For each
open set U ⊂ RN−1, define the graph of g over U ,

G := G(g, U) := {(x, g(x)) : x ∈ U} ⊂ RN .
Then

HN−1(G) = S(G) =
∫

U

(1 + |Dg|2)1/2 dx.
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c) It follows from b) that if Ω ⊂ RN is an open set with Lipschitz boundary; i.e.,
the boundary is locally the graph of a Lipschitz function, then the restriction
to ∂Ω of the (N − 1)-dimensional Hausdorff measure HN−1 coincides with
the usual Lebesgue surface measure on ∂Ω.

1.2 Banach Lattices.

For more information on the theory of Banach lattices, we refer to the monograph
Schaefer [86].

Definition 1.2.1. An ordered vector space E is called a vector lattice if any two
elements f, g ∈ E have a supremum, which is denoted by f ∨ g, and an infimum,
denoted by f ∧ g.
Remark 1.2.2. a) f ∨ (−f) = |f | is called the absolute value of f .

b) f ∨ 0 = f+ is called the positive part of f .

c) −(f ∧ 0) = f− is called the negative part of f .

Let E be a vector lattice. One of the following equivalent assertions is a
necessary and sufficient condition on a vector subspace G of E to be a vector
sublattice.

(i) h ∈ G⇒ |h| ∈ G.

(ii) h ∈ G⇒ h+ ∈ G.

(iii) h ∈ G⇒ h− ∈ G.

Definition 1.2.3. Let E be a vector lattice.

a) A linear subspace I of E is called an ideal if f ∈ I and g ∈ E such that
|g| ≤ |f | imply g ∈ I.

b) A subspace B of E is a band if B is an ideal of E and supM is contained
in B whenever M is contained in B and has a supremum in E.

c) A norm on E is called a lattice norm if it satisfies

|f | ≤ |g| =⇒ ‖f‖ ≤ ‖g‖. (1.1)

d) A Banach lattice is a Banach space E endowed with an ordering ≤ such that
(E,≤) is a vector lattice and the norm on E is a lattice norm.

The following result due to Schaefer (see [86, Example 2 p.157-158]) charac-
terizes the closed ideals in the Banach lattice Lp(X,µ) for some σ-finite measure
µ on X; i.e., we can write X =

⋃∞
i=1Xi where Xi is µ-measurable and µ(Xi) <∞

for i = 1, 2, . . ..
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Theorem 1.2.4. Let µ be a σ-finite measure on X and 1 ≤ p < ∞. Let I be a
closed ideal of Lp(X,µ). Then there exists a measurable subset S of X such that

I = {f ∈ Lp(X,µ) : f = 0 µ-a.e. on S}.

1.3 Semigroups Generated by Dirichlet Forms.

Throughout this section, B will denote a Banach space.

Definition 1.3.1. We call C0-semigroup on B any family T = (T (t))t≥0 of
bounded operators on B such that:

a) T (t+ s) = T (t)T (s) t, s ∈ R+

b) T (0) = I identity on B

c) T (t)x→ x as t ↓ 0 for all x ∈ B.

The generator A of the semigroup T = (T (t))t≥0 is the operator defined on the
domain

D(A) =
{
x ∈ B : lim

t↓0
T (t)x− x

t
exists in B

}

by

Ax = lim
t↓0

T (t)x− x

t
for all x ∈ D(A).

The notion of semigroups has been introduced for the study of the evolution
equation

(PC)

{
u′(t) = Au(t), t ≥ 0
u(0) = x

called Cauchy problem

Definition 1.3.2. Let θ ∈ (0, π2 ]. A semigroup T on B is called holomorphic of
angle θ if it has a holomorphic extension to Σθ := {z ∈ C\{0} : | arg z| < θ} such
that

lim
z→0

T (z)x = x for all x ∈ B.
In this case, T (z + z′) = T (z)T (z′) for all z, z′ ∈ Σθ.

In this section, we will be concerned with semigroups given by Dirichlet
forms which we will define below. In our definition of forms, we shall consider
only symmetric forms. For a general theory, we refer to [65], [69] and [79] where
non-symmetric forms have been considered, too.

Let H be a fixed Hilbert space and D(a) ↪→ H. Let a : D(a)×D(a) → R be
a bilinear positive symmetric form. For u, v ∈ D(a) we let

‖u‖2a := a(u, u) + ‖u‖2H and a1(u, v) := a(u, v) + (u, v)H
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where (, )H denotes the scalar product on H. The space D(a) is called the domain
of a.

Definition 1.3.3. The form (a,D(a)) is said to be closed on H if (D(a), ‖ · ‖a) is
a Hilbert space. More precisely, the symmetric form (a,D(a)) is said to be closed
on H if

un ∈ D(a), a1(un − um, un − um) → 0 as n,m→∞

⇒ ∃ u ∈ D(a) : a1(un − u, un − u) → 0 as n→∞.

Let (a,D(a)) be a closed symmetric form on H. Then we can define a self-
adjoint operator A on H associated with a in the following way:

{
D(A) := {u ∈ D(a) : ∃ v ∈ H : (v, ϕ)H = a(u, ϕ) ∀ ϕ ∈ D(a)}
Au := −v.

The proof of the following result is contained in [35, Chap. XVII p.450].

Theorem 1.3.4. Assume that D(a) is dense in H. Then the operator A generates
a holomorphic C0-semigroup T = (etA)t≥0 on H.

Next we give examples of closed forms. Let Ω ⊂ RN be an open set. We
denote by H1(Ω) the first order Sobolev space defined by

H1(Ω) = {u ∈ L2(Ω) : ∇u ∈ L2(Ω)N}

where ∇u is defined in the weak sense. The norm on H1(Ω) is given by

‖u‖2H1(Ω) =
∫

Ω

|u|2 dx+
∫

Ω

|∇u|2 dx

so that H1(Ω) is a Hilbert space. Denote by H1
0 (Ω) the closure of D(Ω) (the space

of all infinitely differentiable functions with compact support in Ω) in H1(Ω). If
Ω = RN , or more generally if H1

0 (Ω) = H1(RN ), this is the case if and only if
RN \ Ω is a polar set (see Theorem 2.4.4 below) then we will simply denote this
space by H1(RN ).

Example 1.3.5. a) Consider the form aN : H1(Ω)×H1(Ω) → R defined by

aN (u, v) :=
∫

Ω

∇u∇v dx.

Then (aN ,H1(Ω)) is closed on L2(Ω) and the selfadjoint operator associ-
ated with (aN ,H1(Ω)) is the classical Laplacian with Neumann boundary
conditions.
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b) Consider the form aD : H1
0 (Ω)×H1

0 (Ω) → R defined by

aD(u, v) :=
∫

Ω

∇u∇v dx.

Then (aD,H1
0 (Ω)) is closed on L2(Ω) and the selfadjoint operator associated

with (aD, H1
0 (Ω)) which we denote by ∆D is the Laplacian with Dirichlet

boundary conditions.

Next, let again H be a fixed Hilbert space, D(a) ↪→ H and a : D(a)×D(a) →
R be a bilinear positive symmetric form. Let D̃(a) be the abstract completion of
D(a) with respect to the norm ‖·‖a. Let ̃ : D̃(a) → H be the continuous extension
of the embedding from D(a) into H.

Definition 1.3.6. The form (a,D(a)) is said to be closable on H if ̃ is injective.

Remark 1.3.7. a) The following criterion is useful to verify the closability of
a given form (a,D(a)) on H. The form (a,D(a)) is closable on H if and
only if for each sequence un ∈ D(a) converging to zero in H and such that
limn,m→∞ a(un − um, un − um) = 0, one has limn→∞ a(un, un) = 0.

b) A necessary and sufficient condition for a symmetric form (a,D(a)) to pos-
sess a closed extension is that the symmetric form is closable. Then there
always exists a smallest closed extension ã, that is a closed extension whose
domain is contained in the domain of all other closed extensions.

Next we give some examples of closable forms.

Example 1.3.8. a) Consider the form aD defined above but now with domain
D(Ω). Then it is easy to prove that (aD,D(Ω)) is closable on L2(Ω) and its
smallest closed extension is the form (aD,H1

0 (Ω)).

b) Let Cc(Ω̄) denote the space of continuous functions with compact support
in Ω̄. If Ω is bounded then Cc(Ω̄) = C(Ω̄). Let H̃1(Ω) be the closure of
H1(Ω)∩Cc(Ω̄) in H1(Ω). Consider the form aN with domain H1(Ω)∩Cc(Ω̄).
Then it is closable and its smallest closed extension is the form aN with do-
main H̃1(Ω). We call the selfadjoint operator ∆N associated with this closed
form (aN , H̃1(Ω)), the Laplacian with Neumann boundary conditions. If Ω is
regular, for example if Ω is bounded and has a continuous boundary (see [75,
Theorem 1.4.2.1]), it coincides with the classical Neumann Laplacian. More
precisely this is the case if and only if H1(Ω) ∩ Cc(Ω̄) is dense in H1(Ω).

c) Let Ω be a bounded domain with Lipschitz boundary. Let σ be the usual
Lebesgue surface measure on ∂Ω. Then the trace application is linear contin-
uous from H1(Ω)∩C(Ω̄) into L2(∂Ω, σ) (see Chapter 4). Consider the form
aσ on L2(Ω) with domain H1(Ω) ∩ C(Ω̄) defined by

aσ(u, v) :=
∫

Ω

∇u∇v dx+
∫

∂Ω

uv dσ.
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We show that aσ is closable. Let un ∈ H1(Ω) ∩ C(Ω̄) be such that un → 0
in L2(Ω) and aσ(un − um, un − um) converges to 0 as n,m → ∞. Since un
converges to 0 in L2(Ω) and is a Cauchy sequence in H1(Ω), it follows that un
converges to 0 in H1(Ω). Now the continuity of the trace application implies
that un|∂Ω converges to 0 in L2(∂Ω, σ) and the form aσ is closable. By the
continuity of the trace application again, the completion of H1(Ω) ∩ C(Ω̄)
with respect to the ‖ · ‖aσ -norm is the space H̃1(Ω) which coincides with
H1(Ω). The selfadjoint operator associated with the closed form (aσ, H1(Ω))
is called the Laplacian with Robin boundary condition.
We shall come back to the forms defined above in Chapters 3 and 4. In

particular, we shall prove that it is (always) possible to define the Laplacian with
Robin boundary conditions for an arbitrary open set Ω.

We give some examples of forms which are not always closable. For more
details, see [55, Theorem 3.1.6].

Example 1.3.9. a) Let µ be a Radon measure on R. We suppose that µ is not
absolutely continuous with respect to the Lebesgue measure. Then the fol-
lowing form

a(u, v) =
∫

R
u′(x)v′(x) µ(dx) u, v ∈ D(R)

is not closable on L2(R).

b) For a given Borel function b : R→ [0,∞] we let

R(b) :=
{
t ∈ R :

∫ t+ε

t−ε

1
b(y)

dy <∞ for some ε > 0
}

and
S(b) := R \R(b).

We say that b satisfies the Hamza condition if

b(x) = 0 a.e. on S(b). (1.2)

Consider again the form defined in a). Then a is closable on L2(R) if and
only if µ is absolutely continuous with respect to the Lebesgue measure and
its density function satisfies the condition (1.2).

Definition 1.3.10. Let (a,D(a)) and (b,D(b)) be two bilinear positive symmetric
forms on H. We say that a ≤ b if and only if D(b) ⊂ D(a) and a(u, u) ≤ b(u, u)
for all u ∈ D(b).

Since each symmetric form is not closable as the last example shows, the
following result shows that each positive symmetric form as a closable part. The
proof given here is taken from [84, Theorem S.15 p.373]
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Theorem 1.3.11 (Reed-Simon). Let (a,D(a)) be a bilinear positive symmetric form
on a Hilbert space H. Then there exists a largest closable symmetric form ar that
is smaller than a. We call ar the closable part of a.

Proof. 1) If a is closable, then ar = a.
2) If a is not closable, then we denote by D̃(a) the abstract completion of

D(a) with respect to the norm ‖·‖a. Let i : D̃(a) → H be the continuous extension
of the injection D(a) ↪→ H. Let P be the orthogonal projection onto ker i and let
Q = 1 − P . For ϕ ∈ D(a), let j(ϕ) be its natural range in D̃(a) so that i ◦ j = 1
and ‖j(ϕ)‖2a = ‖ϕ‖2a. For ϕ,ψ ∈ D(a) define

{
ar(ϕ,ψ) = a1(Qj(ϕ), Qj(ψ))− (ϕ,ψ)H
as(ϕ,ψ) = (Pj(ϕ), P j(ψ)).

We claim that ar is closable. Indeed,

(ar)1(ϕ,ψ) := ar(ϕ,ψ) + (ϕ,ψ)H = a1(Qj(ϕ), Qj(ψ))

for all ϕ,ψ ∈ D(a) = D(ar). The abstract completion of D(a) with respect to
the norm ‖ · ‖ar is RanQ (range of Q). Let ı̃ : RanQ → H be the continuous
extension of the injection D(a) ↪→ H. One has ı̃ = i|RanQ. By construction,
RanP ∩RanQ = {0}, so that ker ı̃ = {0} and ı̃ is injective and we obtain that ar
is closable.

3) Let us prove that ar ≥ 0. Since RanP ⊂ ker i, we have i◦Q = i(1−P ) = i
and for all ϕ ∈ D(a) we obtain

‖ϕ‖2H = ‖i ◦ j(ϕ)‖2H = ‖iQj(ϕ)‖2H = ‖ı̃Qj(ϕ)‖2H ≤ ‖Qj(ϕ)‖2ar
.

Then ar(ϕ,ϕ) ≥ 0 for all ϕ ∈ D(a).
4) Now we prove that ar is the largest closable part. Let h be closable such

that h ≤ a and D(h) = D(a). Since h is closable, there exists a unique operator
A on D̃(a) such that h1(ϕ,ψ) = (j(ϕ), Aj(ψ)). Let ϕ ∈ RanP ⊂ D̃(a). There
esists a sequence ηn ∈ D(a) such that j(ηn) := ϕn → ϕ as n → ∞. Since i is
continuous, we have i(ϕn) = ηn → i(ϕ) as n → ∞. Since ϕ ∈ RanP ⊂ ker i, it
follows that i(ϕ) = 0. Moreover, since ϕn is a Cauchy sequence in D̃(a), ηn is a
Cauchy sequence relatively to the norm ‖ · ‖h. Since h is closable, h(ϕn, ϕn) → 0;
i.e., (ϕ,Aϕ) = 0. It follows that

h(ϕ,ϕ) = h(Qϕ,Qϕ) ≤ ar(Qϕ,Qϕ)

so that h ≤ ar. Thus ar is the largest closable symmetric form smaller than a.

By the Reed-Simon construction, the closable part of (a,D(a)) is obtained
by conserving the form domain D(a) and changing a to a smaller form ar in the
sense that ar(u, u) ≤ a(u, u) for all u ∈ D(a).
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Throughout the rest of this chapter, we shall make the topological assumption
that {

X is a locally compact separable metric space
m is a Radon measure on X such that supp[m] = X.

(1.3)

Throughout this chapter and the following chapters for 1 ≤ p < ∞ and
u ∈ Lp(X,m), we denote by

‖u‖p :=
(∫

X

|u|p dm
)1/p

and ‖u‖∞ for the supremum norm of u ∈ L∞(X,m). We let

L2(X,m)+ := {u ∈ L2(X,m) : u ≥ 0 m-a.e.}

and F+ = F ∩ L2(X,m)+ if F is a subspace of L2(X,m).

Next, let (a,D(a)) be a positive symmetric closed form on L2(X,m) where
D(a) ↪→ L2(X,m) is assumed to be dense in L2(X,m). Let T := (etA)t≥0 be the
C0-semigroup on L2(X,m) associated with the operator A given by the form a.
We introduce the Beurling-Deny criteria which are contained in [39, Theorems
1.3.2 and 1.3.3]. For the non-symmetric case, these criteria have been established
by Ouhabaz (see [79, Théorèmes 1.2.2 and 1.2.5]).

Definition 1.3.12. Let B ∈ L(Lp(X,m)) where 1 ≤ p ≤ ∞.

a) The operator B is called positive and we write B ≥ 0 if Bϕ ≥ 0 m-a.e. for
all ϕ ∈ Lp(X,m) with ϕ ≥ 0 m-a.e.

b) The operator B is called L∞-contractive if

‖Bϕ‖∞ ≤ ‖ϕ‖∞
for all ϕ ∈ Lp(X,m) ∩ L∞(X,m).

Theorem 1.3.13 (Beurling-Deny 1). The following assertions are equivalent.

(i) etA ≥ 0 for every t ≥ 0.

(ii) u ∈ D(a) =⇒ u+ ∈ D(a) and a(u+, u−) ≤ 0.

Theorem 1.3.14 (Beurling-Deny 2). Assume that etA ≥ 0. Then the following
assertions are equivalent.

(i) etA is L∞-contractive for every t ≥ 0.

(ii) u ∈ D(a)+ ⇒ u ∧ 1 ∈ D(a)+ and a(u ∧ 1, u ∧ 1) ≤ a(u, u).
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Definition 1.3.15. a) A C0-semigroup T = (T (t))t≥0 on L2(X,m) is called sub-
markovian if T (t) is positive and L∞-contractive for every t ≥ 0.

b) A form (a,D(a)) is called a Dirichlet form if (a,D(a)) is closed and the
associated semigroup is submarkovian.

Let (a,D(a)) be a Dirichlet form on L2(X,m) and let

Cc(X) := {u ∈ C(X) : support of u is a compact set}.

Definition 1.3.16. The form (a,D(a)) is called a regular Dirichlet form on
L2(X,m) (or on X) if D(a)∩Cc(X) is dense in (D(a), ‖ ·‖a) and uniformly dense
in Cc(X).

The following result contained in [39, Theorem 1.4.1] is a direct consequence
of the submarkovian property.

Theorem 1.3.17. If T = (etA)t≥0 is a symmetric submarkovian semigroup on
L2(X,m) then L1(X,m) ∩ L∞(X,m) is invariant under etA, and etA may be
extended from L1(X,m) ∩ L∞(X,m) to a positive contraction semigroup Tp(t)
on Lp(X,m) for all 1 ≤ p ≤ ∞. These semigroups are strongly continuous if
1 ≤ p <∞, and are consistent in the sense that

Tp(t)u = Tq(t)u

if u ∈ Lp(X,m) ∩ Lq(X,m). They are selfadjoint in the sense that

Tp(t)∗ = Tq(t)

if 1 ≤ p <∞ and 1
p + 1

q = 1.
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Chapter 2

Classical and Relative
Capacities

In this chapter, we will define two notions of capacities. The first one which we
call classical capacity is well-known and has been considered by many authors.
The second one which we call relative capacity is new and is the correct one for
studying the fine regularity of functions in some subspace of the first Sobolev space
H1(Ω) for some open set Ω in RN . Throughout this chapter the underlying field
is R.

2.1 Classical Capacity.

Consider the closed form (a,H1(RN )) defined by

a(u, v) =
∫

RN

∇u∇v dx.

Since D(RN ) is dense in H1(RN ) and uniformly dense in Cc(RN ), the symmetric
form (a,H1(RN )) is a regular Dirichlet form on L2(RN ). Thus we can define a
notion of capacity with some regularity properties.

Definition 2.1.1. a) The classical capacity which we denote by Cap is defined
on subsets of RN by: for A ⊂ RN open we set:

Cap(A) := inf{‖u‖2H1(RN ) : u ∈ H1(RN ) : u ≥ 1 a.e. on A}.

For arbitrary A ⊂ RN we set:

Cap(A) := inf{Cap(B) : B open : A ⊂ B ⊂ RN}.

b) A set N ⊂ RN is called polar if Cap(N) = 0.
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The classical capacity is an outer measure; i.e. it has the following properties.

• Cap(∅) = 0.

• If An is an arbitrary sequence of subsets of RN , then

Cap(
⋃

n≥1

An) ≤
∑

n≥1

Cap(An).

However, Cap is not a Borel measure.

Theorem 2.1.2. The classical capacity is a Choquet capacity; i.e. it has the fol-
lowing properties.

a) A ⊂ B ⇒ Cap(A) ≤ Cap(B).

b) If (Kn) is a decreasing sequence of compact subsets of RN , then

Cap(
⋂

n≥1

Kn) = inf
n

Cap(Kn).

c) If (An) is an increasing sequence of arbitrary subsets of RN , then

Cap(
⋃

n≥1

An) = sup
n

Cap(An).

It holds that for every Borel set A ⊂ RN

Cap(A) = sup{Cap(K) : K compact ,K ⊂ A}. (2.1)

Let A be a subset of RN . A statement depending on x ∈ A is said to hold
quasi-everywhere (q.e.) on A if there exists a polar set N ⊂ A such that the
statement is true for every x ∈ A \N .

We call a function u quasi-continuous (q.c.) if for every ε > 0 there exists an
open set G ⊂ RN such that Cap(G) < ε and u|RN\G is continuous.

Theorem 2.1.3. a) Every u ∈ H1(RN ) admits a quasi-continuous version ũ such
that ũ = u a.e. on RN .

b) If limn→∞ un = u in H1(RN ), then there exist a subsequence (unk
) such that

limk→∞ ũnk
(x) = ũ(x) q.e.

c) Let O ⊂ RN be an open set and u be quasi-continuous. If u ≥ 0 a.e. on O,
then u ≥ 0 q.e. on O.

Remark 2.1.4. For u ∈ H1(RN ) the quasi-continuous version ũ of u is unique
q.e. Moreover ũ can be chosen Borel measurable (see the proof of [23, Proposition
8.2.1]).
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By definition of the classical capacity, it is clear that |A| ≤ Cap(A) for every
A ⊂ RN , where | · | denotes the Lebesgue measure. Therefore every polar set has
zero Lebesgue measure. The following result says that every polar set has zero
s-dimensional Hausdorff measure for all s > N − 2. In particular every polar set
has zero (N − 1)-dimensional Hausdorff measure.

Theorem 2.1.5. Let A ∈ B(RN ). If Cap(A) = 0, then Hs(A) = 0 for all s > N−2.

Proof. 1) Assume that Cap(A) = 0. Then for all n ≥ 1 there exists un ∈
H1(RN ) such that A ⊂ {un ≥ 1}o and ‖un‖2H1(RN ) ≤ 1

2n . By Theorem 2.1.3 a),
we may assume that the un are quasi-continuous. Let v :=

∑∞
n=1 un. Then

‖v‖H1(RN ) ≤
∞∑
n=1

‖un‖H1(RN ) <∞.

Thus v ∈ H1(RN ) and is quasi-continuous.
2) Note A ⊂ {v ≥ m}o for all m ≥ 1. Fix any a ∈ A. Then for r small enough

such that B(a, r) ⊂ {v ≥ m}o, (v)a,r ≥ m, therefore (v)a,r →∞ as r → 0 where

(v)a,r :=
1

|B(a, r)|
∫

B(a,r)

v(x) dx.

We claim that for each a ∈ A,

lim sup
r→0

1
rs

∫

B(a,r)

|∇v|2 dx = ∞.

In fact, let a ∈ A and suppose

lim sup
r→0

1
rs

∫

B(a,r)

|∇v|2 dx <∞.

Then there exists a constant M <∞ such that

1
rs

∫

B(a,r)

|∇v|2 dx ≤M

for all 0 < r ≤ 1. For 0 < r ≤ 1, the Poincaré inequality on balls (see [43, Theorem
2, p.141]) gives

1
|B(a, r)|

∫

B(a,r)

|v − (v)a,r|2 dx ≤ cr2
1

|B(a, r)|
∫

B(a,r)

|∇v|2 dx ≤ crθ
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where θ = s− (N − 2). Thus

|(v)a,r/2 − (v)a,r| =
1

|B(a, r/2)|

∣∣∣∣∣
∫

B(a,r/2)

(v − (v)a,r) dx

∣∣∣∣∣

≤ 2N
1

|B(a, r)|
∫

B(a,r)

|v − (v)a,r| dx

≤ 2N
(

1
|B(a, r)|

∫

B(a,r)

|v − (v)a,r|2 dx
)1/2

≤ cr
θ
2 .

Hence if k > j,

∣∣(v)a,1/2k − (v)a,1/2j

∣∣ ≤
k∑

l=j+1

∣∣(v)a,1/2l − (v)a,1/2l−1

∣∣

≤ c

k∑

l=j+1

(
1

2l−1

) θ
2

.

This last sum is the tail of a geometric series and so
{
(v)a,1/2k

}∞
k=1

is a Cauchy
sequence. Thus (v)a,1/2k 6→ ∞, a contradiction and the claim is proved.

3) Consequently,

A ⊂ {a ∈ RN : lim sup
r→0

1
rs

∫

B(a,r)

|∇v|2 dx = +∞}

⊂ {a ∈ RN : lim sup
r→0

1
rs

∫

B(a,r)

|∇v|2 dx > 0}.

But since |∇u|2 is integrable, by [43, Theorem 3, p.77], Hs(A) = 0.

2.2 Relative Capacity.

Throughout this section, Ω will denote an open set in RN and H̃1(Ω) the closure
of H1(Ω) ∩ Cc(Ω̄) in H1(Ω). To define a Choquet capacity with some regularity
properties, we need a regular Dirichlet form. If Ω is a set such that the Lebesgue
measure of its boundary LN (∂Ω) := |∂Ω| > 0, then we shall consider the measure
m with support Ω̄ defined by: for A ∈ B(Ω̄) we let m(A) := |A ∩ Ω|. With this
consideration, L2(Ω) = L2(Ω̄,m). Moreover, by Stone-Weierstrass’ Theorem the
space H1(Ω)∩Cc(Ω̄) is uniformly dense in Cc(Ω̄). Therefore the form (aN , H̃1(Ω))
is a regular Dirichlet form on L2(Ω̄,m) (or on Ω̄). Thus, throughout the following,
a.e. will mean m-a.e.



2.2. RELATIVE CAPACITY. 31

Definition 2.2.1. a) The relative capacity which we denote by CapΩ̄ is defined
on subsets of Ω̄ by: for A ⊂ Ω̄ relatively open (i.e. open with respect to the
topology of Ω̄) we set:

CapΩ̄(A) := inf{‖u‖2H1(Ω) : u ∈ H̃1(Ω) : u ≥ 1 a.e. on A}.
For arbitrary A ⊂ Ω̄ we set:

CapΩ̄(A) := inf{CapΩ̄(B) : B relatively open : A ⊂ B ⊂ Ω̄}.

b) A set N ⊂ Ω̄ is called relatively polar if CapΩ̄(N) = 0.

The relative capacity is also an outer measure (but not a Borel measure) and
a Choquet capacity. Then the properties in Theorem 2.1.2 are satisfied for CapΩ̄

in place of Cap and Ω̄ in place of RN .
Similarly to the classical capacity, a statement depending on x ∈ A ⊂ Ω̄ is

said to hold relatively quasi-everywhere (r.q.e.) on A if there exists a relatively
polar set N ⊂ A such that the statement is true for every x ∈ A \N .

Now we may consider functions in H̃1(Ω) as defined on Ω̄. We call a function
u : Ω̄ → R relatively quasi-continuous (r.q.c.) if for every ε > 0 there exists a
relatively open set G ⊂ Ω̄ such that CapΩ̄(G) < ε and u|Ω̄\G is continuous.

In Theorem 2.1.3, replacing Cap by CapΩ̄ and RN by Ω̄, all the properties
are satisfied.

For B ⊂ Ω̄, we let

LB := {u ∈ H̃1(Ω) : ũ ≥ 1 r.q.e. on B}
where ũ denote the relatively quasi-continuous version of u. By Theorem 2.1.3 c)
applied to the relative capacity, if B is relatively open, then

LB = {u ∈ H̃1(Ω) : ũ ≥ 1 a.e. on B}.
The following properties of the relative capacity are properties of a Choquet

capacity. The proof we give here is an adaptation of the proof contained in [55,
Theorem 2.1.5] for a general abstract Choquet capacity.

Lemma 2.2.2. Fix an arbitrary set B ⊂ Ω̄.

a) If LB 6= ∅, then there exists a unique element eB ∈ LB minimizing the norm
of H̃1(Ω) and eB satisfies

CapΩ̄(B) = ‖eB‖2H1(Ω). (2.2)

b) eB is a unique element of H̃1(Ω) satisfying

0 ≤ eB ≤ 1 a.e. and ẽB = 1 r.q.e. on B (2.3)

and
a1(eB , v) ≥ 0 ∀ v ∈ H̃1(Ω), ṽ ≥ 0 r.q.e. on B. (2.4)
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Proof. a) First case. Assume that B is relatively open. Then LB is a closed
convex subset of H̃1(Ω). Since for all u, v ∈ H̃1(Ω),

∥∥∥∥
u− v

2

∥∥∥∥
2

H1(Ω)

+
∥∥∥∥
u+ v

2

∥∥∥∥
2

H1(Ω)

=
1
2
‖u‖2H1(Ω) +

1
2
‖v‖2H1(Ω) , (2.5)

we have that any minimizing sequence (limn→∞ ‖un‖2H1(Ω) = CapΩ̄(B)) is conver-
gent to an element eB ∈ LB satisfying ‖eB‖2H1(Ω) = CapΩ̄(B) and that such eB is
unique.

Second case. Assume that B is arbitrary. If LB is nonempty, it is a closed
convex subset of H̃1(Ω) on account of properties in Theorem 2.1.3 for the relative
capacity. As in the first case, we find a unique element eB ∈ LB such that

‖eB‖2H1(Ω) ≤ ‖u‖2H1(Ω) ∀ u ∈ LB .

For every ε > 0, there exists A ⊂ Ω̄ relatively open such that B ⊂ A and
CapΩ̄(A) < CapΩ̄(B) + ε. Since eA ∈ LB , we have that

CapΩ̄(A) = ‖eA‖2H1(Ω) ≥ ‖eB‖2H1(Ω).

Thus
‖eB‖2H1(Ω) ≤ CapΩ̄(B).

To prove the converse inequality, fix a r.q.c. version ẽB of eB . For every ε > 0,
choose a relatively open set Aε such that CapΩ̄(Aε) < ε, ẽB |Ω̄\Aε

is continuous
and ẽB ≥ 1 on B ∩ (Ω̄ \Aε). Now the set

Gε := {x ∈ Ω̄ \Aε : ẽB > 1− ε}
⋃
Aε

is relatively open and B ⊂ Gε. Moreover, eB + eAε ≥ 1− ε a.e. on Gε. Therefore

CapΩ̄(B) ≤ CapΩ̄(Gε) ≤ (1− ε)2‖eB + eAε‖2H1(Ω)

≤ (1− ε)2
(‖eB‖H1(Ω) + ‖eAε‖H1(Ω)

)2

≤ (1− ε)2
(‖eB‖H1(Ω) +

√
ε
)2
.

By letting ε ↓ 0, we obtain that

CapΩ̄(B) ≤ ‖eB‖2H1(Ω)

and the proof of a) is complete.
b) By the submarkovian property of the form (aN , H̃1(Ω)), u := (0∨eB)∧1 ∈

LB and
‖u‖2H1(Ω) ≤ ‖eB‖2H1(Ω) = CapΩ̄(B).
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Thus u = eB which proves (2.3). To prove (2.4), if v has the stated property, then
eB + εv ∈ LB and ‖eB + εv‖2H1(Ω) ≥ ‖eB‖2H1(Ω) for every ε > 0. Then

‖eB + εv‖2H1(Ω) = ‖eB‖2H1(Ω) + ε2‖v‖2H1(Ω) + 2εa1(eB , v) ≥ ‖eB‖2H1(Ω)

and we obtain that
a1(eB , v) ≥ 0.

Conversely, suppose that u ∈ H̃1(Ω) satisfies (2.4). Then u ∈ LB and w̃ − ũ ≥ 0
r.q.e. on B for every w ∈ LB since u is minimal. Hence

‖w‖2H1(Ω) = ‖u+ (w − u)‖2H1(Ω) ≥ ‖u‖2H1(Ω)

for every w ∈ LB proving that u = eB .

It follows from the preceding lemma that for every B ⊂ Ω̄,

CapΩ̄(B) = inf{‖u‖2H1(Ω) : u ∈ LB}.
The next two results give an equivalent definition of CapΩ̄ for compact subsets

of Ω̄.

Proposition 2.2.3. Let K ⊂ Ω̄ be a compact set. Then

CapΩ̄(K) = inf{‖u‖2H1(Ω) : u ∈ H1(Ω) ∩ Cc(Ω̄) : u(x) ≥ 1 ∀ x ∈ K}.
Proof. Let

M := {u ∈ H1(Ω) ∩ Cc(Ω̄) : u(x) ≥ 1 ∀ x ∈ K}.
Consider a sequence un ∈ M minimizing the norm of H1(Ω) . By virtue of (2.5),
un converges to some u0 ∈ H̃1(Ω). In view of Lemma 2.2.2, it is sufficient to
prove that u0 = eK by checking the conditions (2.3) and (2.4) for u0. By [55,
Lemma 2.2.6], for (2.4), it is sufficient to verify the inequality for all functions
v ∈ H1(Ω) ∩ Cc(Ω̄) satisfying v ≥ 0 on K. Let v satisfy this condition. For every
ε > 0,

‖un + εv‖2H1(Ω) ≥ ‖u0‖2H1(Ω),

and we see that u0 satisfies

a1(u0, v) ≥ 0 ∀ v ∈ H1(Ω) ∩ Cc(Ω̄), v ≥ 0 on K,

by letting n→∞ and ε ↓ 0. Thus u0 satisfies (2.4). Noting that vn := (0∨un)∧1 ∈
M is also a minimizing sequence, we obtain (2.3) and the proof is complete.

Theorem 2.2.4. Let K ⊂ Ω̄ be a compact set and

N :=
{
u ∈ H1(Ω) ∩ Cc(Ω̄) : u = 1 on K, 0 ≤ u ≤ 1

}
.

Then
CapΩ̄(K) = inf{‖u‖2H1(Ω) : u ∈ N}. (2.6)
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Proof. Let

M :=
{
u ∈ H1(Ω) ∩ Cc(Ω̄) : u ≥ 1 on K

}
.

By Proposition 2.2.3,

CapΩ̄(K) = inf{‖u‖2H1(Ω) : u ∈M}. (2.7)

Set
Ca(K) := inf{‖u‖2H1(Ω) : u ∈ N}.

It suffices to prove that Ca(K) = CapΩ̄(K) where CapΩ̄(K) is given by (2.7).
Since N ⊂ M , it suffices to prove that Ca(K) ≤ CapΩ̄(K). Let ε ∈ (0, 1) and
u ∈M be such that

‖u‖2H1(Ω) ≤ CapΩ̄(K) + ε.

Let (λm) be a sequence of functions in C∞(R) such that




0 ≤ λ′m(t) ≤ 1 + 1
m ,

λm(t) = 0 if t ≤ 0,
λm(t) = 1 if t ≥ 1,
0 ≤ λm(t) ≤ 1 ∀ t.

(2.8)

Since λm ◦ u ∈ N , it follows that

Ca(K) ≤
∫

Ω

[
(λ′m(u(x)))2|∇u|2 + |λm(u(x))|2] dx

≤
(

1 +
1
m

) ∫

Ω

[|∇u|2 + |u|2] dx.

Passing to the limit as m→∞, we obtain

Ca(K) ≤ ‖u‖2H1(Ω) ≤ CapΩ̄(K) + ε.

Passing to the limit as ε ↓ 0 we conclude that Ca(K) ≤ CapΩ̄(K).

The following two results give some inequalities which are a consequence of
the definition of the relative capacity.

Proposition 2.2.5. Assume that Ω is bounded. Let u ∈ H1(Ω) ∩ C(Ω̄) and

Et :=
{
x ∈ Ω̄ : |u(x)| ≥ t

}
.

Then there exists a constant c > 0 such that
∫ ∞

0

CapΩ̄(Et) d(t2) ≤ c‖u‖2H1(Ω). (2.9)
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Proof. Let u ∈ H1(Ω) ∩ Cc(Ω̄) and j ∈ Z. Since CapΩ̄(Et) is a decreasing
function of t, it suffices to prove that

S :=
+∞∑

j=−∞
22j CapΩ̄(E2j ) ≤ c‖u‖2H1(Ω).

Note that for j ∈ Z, E2j is a compact subset of Ω̄ and E2j = ∅ for j large
enough. Let ε ∈ (0, 1) and λε be as in (2.8). Set uj(x) := λε

(
21−j |u(x)| − 1

)
. Then

uj ∈ H1(Ω) ∩ C(Ω̄). Moreover, uj = 1 on E2j , 0 ≤ u ≤ 1 and supp[uj ] ⊂ E2j−1 .
Thus

S ≤
+∞∑

j=−∞
22j

∫

E2j−1

[|∇uj |2 + |uj |2
]
dx.

We obtain

+∞∑

j=−∞
22j

∫

E2j−1

[|∇uj |2 + |uj |2
]
dx =

+∞∑

j=−∞
22j

∫

E2j−1\E2j

|∇uj |2 dx+

+
+∞∑

j=−∞
22j

∫

E2j

1 dx.

Since ∇uj = λ′ε
(
21−j |u(x)| − 1

)
21−j∇u(x) sgnu, we have

+∞∑

j=−∞
22j

∫

E2j−1\E2j

|∇uj |2 dx =
+∞∑

j=−∞
22j22−2j .

.

∫

E2j−1\E2j

(
λε(21−j |u(x)| − 1)

)2 |∇u|2 dx

≤ 2(1 + ε)2
+∞∑

j=−∞

∫

E2j−1\E2j

|∇u|2 dx.

Setting Aj := E2j−1 \ E2j , we have Aj ∩ Ai = ∅ for i 6= j and
⋃+∞
j=−∞Aj = Ω̄.

Then
+∞∑

j=−∞
22j

∫

E2j−1\E2j

|∇uj |2 dx ≤ 2(1 + ε)2
∫

Ω

|∇u(x)|2 dx.

Moreover,

+∞∑

j=−∞
22j

∫

E2j

1 dx =
+∞∑

j=−∞
22j |E2j | ≤ c

∫ ∞

0

|Et| d(t2)

≤ c

∫

Ω

|u(x)|2 dx.
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Thus ∫ ∞

0

CapΩ̄(Et) d(t2) ≤ 2(1 + ε)2‖∇u‖22 + c‖u‖22.

Letting ε→ 0 we obtain (2.9).

Proposition 2.2.6. Assume that Ω is bounded. Let µ be a finite Borel measure on
∂Ω and p ≥ 2. Then the following assertions are equivalent.

(i) There exists a constant c > 0 such that

µ(K)2/p ≤ cCapΩ̄(K) (2.10)

for every compact set K ⊂ ∂Ω.

(ii) There exists a constant c1 > 0 such that

‖u‖Lp(∂Ω,µ) ≤ c1‖u‖H1(Ω) (2.11)

for all u ∈ H1(Ω) ∩ C(Ω̄).

The proof uses the following lemma whose is taken from [33, Lemma 7.2.6].

Lemma 2.2.7. Suppose that p ≥ 1 and g is a nonnegative nonincreasing function
on (0,∞). Then (∫ ∞

0

[g(s)]p d(sp)
)1/p

≤
∫ ∞

0

g(s) ds. (2.12)

Proof. To prove (2.12), observe that

sg(s) =
∫ s

0

g(s) dt ≤
∫ s

0

g(t) dt

where we use that g is nonnegative and nonincreasing. Moreover, the function
defined by s 7→ ∫ s

0
g(t) dt is absolutely continuous and hence

p

(∫ s

0

g(t) dt
)p−1

g(s) =
d

ds

(∫ s

0

g(t) dt
)p

for almost all s ≥ 0. Therefore,
∫ ∞

0

[g(s)]p d(sp) = p

∫ ∞

0

[sg(s)]p−1g(s) ds

≤ p

∫ ∞

0

(∫ s

0

g(t) dt
)p−1

g(s) ds

=
(∫ ∞

0

g(t) dt
)p
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proving (2.12).

Proof of Proposition 2.2.6. (i)⇒ (ii). Let p ≥ 2, u ∈ H1(Ω) ∩ C(Ω̄) and
Et := {x ∈ ∂Ω : |u(x)| ≥ t}. Then Et is a compact subset of ∂Ω and by (2.10),
µ(Et)2/p ≤ cCapΩ̄(Et). Using Lemma 2.2.7 and Proposition 2.2.5, we obtain the
following estimates:

(∫

∂Ω

|u(x)|p dµ
)2/p

=
(∫ ∞

0

µ(Et) d(tp)
)2/p

≤
∫ ∞

0

µ(Et)2/p d(t2)

≤ c

∫ ∞

0

CapΩ̄(Et) d(t2)

≤ c21‖u‖2H1(Ω).

(ii) ⇒ (i). Assume that (2.11) holds and let K ⊂ ∂Ω be a compact set. Let
u ∈ H1(Ω)∩C(Ω̄) be such that u ≥ 1 on K. Minimizing the inequality (2.11) over
such u, we obtain (2.10).

2.3 Relation Between the two Notions of Capacity.

By definition of the two capacities, we have

CapΩ̄(A) ≤ Cap(A) (2.13)

for every A ⊂ Ω̄. Indeed, let A ⊂ Ω̄ and set

M := {u ∈ H1(RN ) : u ≥ 1 a.e. in a neighborhood of A}
N := {u ∈ H̃1(Ω) : u ≥ 1 a.e. in a relatively neighborhood of A}.

We claim that M ⊂ N . In fact, let U ∈ M . Since U ∈ H1(RN ), there exists a
sequence Un ∈ D(RN ) such that Un converges to U in H1(RN ) as n → ∞. Let
un := Un|Ω and u := U |Ω. Then un ∈ C∞c (Ω̄) ⊂ H1(Ω) ∩ Cc(Ω̄) and

‖un − u‖H1(Ω) ≤ ‖Un − U‖H1(RN )

which converges to 0 as n → ∞ and thus u ∈ H̃1(Ω). Since U ≥ 1 a.e. in a
neighborhood of A, there exists an open set O ⊂ RN such that A ⊂ O and U ≥ 1
a.e. on O. Finally we obtain that u ≥ 1 a.e. on O ∩ Ω̄ and A ⊂ O ∩ Ω̄ which is a
relatively neighborhood of A and thus u ∈ N .

Since M ⊂ N , it follows that

inf{‖u‖2H1(Ω) : u ∈ N} ≤ inf{‖u‖2H1(Ω) : u ∈M}. (2.14)
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Since for every u ∈M we have ‖u‖H1(Ω) ≤ ‖u‖H1(RN ), it follows that

inf{‖u‖2H1(Ω) : u ∈M} ≤ inf{‖u‖2H1(RN ) : u ∈M}. (2.15)

Now (2.14) and (2.15) give (2.13). As a consequence, if A ⊂ Ω̄ and Cap(A) = 0
then CapΩ̄(A) = 0. We prove in this section that the converse is always true for
subsets of Ω, but if Ω is irregular there may exist relatively polar subsets of ∂Ω
which are not polar.

Proposition 2.3.1. Let A ⊂ Ω. Then CapΩ̄(A) = 0 if and only if Cap(A) = 0.

Proof. We show that if CapΩ̄(A) = 0 then Cap(A) = 0 for every A ⊂ Ω.
First case. Assume that there exists an open bounded set ω such that A ⊂

ω̄ ⊂ Ω. Since CapΩ̄(A) = 0 there exist open sets Ok ⊂ Rn, uk(x) ≥ 1 on Ok ∩ Ω
and ‖uk‖2H1(Ω) ≤ 1

k . Let ϕ ∈ D(Rn) be such that supp[ϕ] ⊂ Ω and ϕ = 1 on ω.
Let vk = ϕuk on Ω and vk = 0 on Rn \ Ω. Then vk ∈ H1(Rn), vk = 1 on Ok ∩ ω
and ‖vk‖H1(Rn) → 0 as k →∞. Thus Cap(A) = 0.

Second case. Assume that A ⊂ Ω is arbitrary. Take open bounded sets ωk
such that ω̄k ⊂ ωk+1 ⊂ Ω and

⋃
k∈N ωk = Ω. It follows from the first case that

Cap(A ∩ ωk) = 0. Hence Cap(A) = limk→∞ Cap(A ∩ ωk) = 0 by the property c)
of Theorem 2.1.2 for the relative capacity.

Definition 2.3.2. a) We say that H̃1(Ω) has the extension property if for each
u ∈ H̃1(Ω) there exists U ∈ H1(RN ) such that U |Ω = u.

b) We say that H̃1(Ω) has the continuous extension property if for each u ∈
H̃1(Ω) ∩ Cc(Ω̄) there exists U ∈ H1(RN ) ∩ C(RN ) such that U |Ω = u and
‖U‖H1(RN ) ≤ c‖u‖H1(Ω) for some constant c > 0 independent of u.

Notice that in the preceding definition the existence of U ∈ H1(RN ) in a)
such that U |Ω = u implies automatically that ‖U‖H1(RN ) ≤ c‖u‖H1(Ω) for some
constant c > 0 independent of u.

In fact, let T : H1(RN ) → H̃1(Ω) be defined by TU := U |Ω. It is clear
that T |(kerT )⊥ : (kerT )⊥ → H̃1(Ω) is an isomorphism and hence (T |(kerT )⊥)−1 :
H̃1(Ω) → (kerT )⊥ ⊂ H1(RN ) is defined by (T |(kerT )⊥)−1u = U . Therefore

‖U‖H1(RN ) = ‖(T |(kerT )⊥)−1u‖H1(RN ) ≤ c‖u‖H1(Ω)

where c = ‖(T |(kerT )⊥)−1‖.

Remark 2.3.3. If H̃1(Ω) has the extension property in the sense of the preceding
definition, then it does not mean that H1(Ω) has the extension property. For ex-
ample, if Ω = (0, 1) ∪ (1, 2) then H̃1(Ω) = H1(0, 2) has the extension property but
H1(Ω) has not since it contains no continuous functions. Let Ω be the unit disk D
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centered at the origine slit along (−1, 0] × {0} in R2. Then H̃1(Ω) = H1(D) has
the extension property; whereas H1(Ω) does not (see [28, Example 2.1]).

Note that the converse is always true, since the extension property for H1(Ω)
implies that H̃1(Ω) = H1(Ω).

Notice that for the preceding two open sets H̃1(Ω) also has the continous
extension property.

Proposition 2.3.4. Assume that H̃1(Ω) has the continuous extension property.
Then Cap(A) = 0 if and only if CapΩ̄(A) = 0 for every A ⊂ Ω̄.

Proof. We show that if CapΩ̄(A) = 0 then Cap(A) = 0 for every A ⊂ Ω̄.
First case. Assume that A is a compact set. Let ε > 0. By Proposition 2.2.3

there exists u ∈ H1(Ω) ∩ Cc(Ω̄) = H̃1(Ω) ∩ Cc(Ω̄) such that u ≥ 1 on A and
‖u‖2H1(Ω) ≤ ε. Since H̃1(Ω) has the continuous extension property there exists
U ∈ H1(RN ) ∩ C(RN ) such that U |Ω = u and ‖U‖2H1(RN ) ≤ c‖u‖2H1(Ω). This
implies that U ≥ 1 on A and we obtain that

Cap(A) ≤ ‖U‖2H1(RN ) ≤ c‖u‖2H1(Ω) ≤ cε.

Since ε was arbitrary we conclude that Cap(A) = 0.
Second case. Assume that A is a Borel set. By the property (2.1) for the

relative capacity, we have that CapΩ̄(K) = 0 for every compact set K ⊂ A. By
the first case Cap(K) = 0 for every compact set K ⊂ A and by the property (2.1)
again we obtain that Cap(A) = 0.

Third case. Assume that A is arbitrary. Then by definition of the relative
capacity there exists a decreasing sequence of relatively open sets On verify-
ing A ⊂ On for every n ≥ 1 and limn→∞ CapΩ̄(On) = 0. This implies that
CapΩ̄(

⋂
n≥1On) = 0. Since

⋂
n≥1On is a Borel set, by the second case

Cap(
⋂
n≥1On) = 0. Since A ⊂ ⋂

n≥1On it follows that Cap(A) = 0 and the proof
is complete.

Next we give some sufficient conditions on Ω for H̃1(Ω) to have the continuous
extension property. Before we introduce the following class of domain called Jones
domains (see [63]).

Definition 2.3.5. Let ε ∈ (0,∞) and δ ∈ (0,∞]. A domain D ⊂ RN is called an
(ε, δ)-domain if whenever x, y ∈ D and |x− y| < δ, there is a rectifiable arc γ ⊂ D
satisfying

l(γ) ≤ 1
ε
|x− y|,

and

dist(z, ∂D) ≤ ε|x− z| |y − z|
|x− y| ∀ z ∈ γ,

where l(γ) is the length of γ.
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Remark 2.3.6. a) If Ω is an open subset of R and H̃1(Ω) has the extension
property then it has the continuous extension property. This follows from the
fact that every function U ∈ H1(R) is continuous on R.

b) • Assume that Ω ⊂ RN is an (ε, δ)-domain for some ε ∈ (0,∞) and
δ ∈ (0,∞], then H̃1(Ω) = H1(Ω) and by the proof of [63, Theorem 1]
H̃1(Ω) has the continuous extension property.

• If Ω ⊂ R2 has the extension property (in the sense of H1(Ω)) then
H̃1(Ω) = H1(Ω) and by [63, Theorem 4] Ω is an (ε, δ)-domain for some
ε ∈ (0,∞) and δ ∈ (0,∞]. Thus H̃1(Ω) has the continuous extension
property.

• Let Ω be an open subset of R2. If there exists a domain D ⊂ R2 sat-
isfying Ω ⊂ D, Ω̄ = D̄, H̃1(Ω) = H1(D) and H̃1(Ω) has the exten-
sion property, then by [63, Theorem 4] D is an (ε, δ)-domain for some
ε ∈ (0,∞) and δ ∈ (0,∞] and therefore H̃1(Ω) has the continuous ex-
tension property. This is the case of the two domains given in Remark
2.3.3.

c) In particular, if Ω ⊂ RN is a bounded Lipschitz domain, then H̃1(Ω) has the
continuous extension property (see the proof of [87, Theorem 5’ p.184-188]).

The following examples show that if Ω is irregular, there may exist relatively
polar subsets of ∂Ω which are not polar.

First, we note that in the one-dimensional case a set N ⊂ R is polar if and
only if it is empty. This follows from the fact that each function u ∈ H1(R) is
continuous on R.

Example 2.3.7. Let 0 < an+1 < bn+1 < an < 1 (n ∈ N) be such that limn→∞ an =
0, and Ω = (0, 1) \ ⋃

n∈N[an, bn]. Then 0 ∈ ∂Ω and CapΩ̄({0}) = 0 whereas
Cap({0}) > 0. In fact, the characteristic function un = 1[0,an] of [0, an] is in
H̃1(Ω) and u′n = 0. Since un(x) ≥ 1 on (0, an) one has

CapΩ̄({0}) ≤ ‖un‖2H1(Ω) = ‖un‖2L2(Ω)

= ‖un‖2L2(0,an) → 0 (n→∞)

and therefore CapΩ̄({0}) = 0.

Next we modify the 1-dimensional example in order to produce a connected,
bounded open set Ω in R2 and a closed subset of ∂Ω which is relatively polar but
not polar.

Note that by [19, Corollary 5.8.9 p.155], if E is a polar subset of R2, then E
is totally disconnected; that is, every component of E is a singleton.
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Example 2.3.8. Let (ak) and (bk) be two nonincreasing sequences of real numbers
satisfying a0, b0 ∈ (0, 1] and ak, bk → 0 as k →∞ and 0 < ak+1 < bk+1 < ak < 1.
Define the following subsets of R2:

Ak := {(x, y) : ak < x < bk,
1
3
≤ y < 1}, k ≥ 0

D := {(x, y) : 0 < x < 1, 0 < y <
1
3
}

Let Ω := ∪k≥0 (Ak ∪D). Let f ∈ C∞[0, 1] be such that

f(t) :=

{
1 if t ≥ 2

3

0 if t ≤ 1
3 .

Let the sequence of functions uk be defined by:

uk(x, y) :=

{
f(y) if x < bk

0 elsewhere .

Then uk ∈ H1(Ω) ∩C(Ω̄), uk = 1 on F := {0} × [ 23 , 1] and 0 ≤ uk ≤ 1. Moreover,

‖uk‖2H1(Ω) =
∑

m≥k
(bm − am)

∫ 1

1/3

(|f(y)|2 + |f ′(y)|2) dy → 0 as k →∞.

This implies that CapΩ̄(F ) = 0 but Cap(F ) > 0 since H1(F ) = 1/3.

The domains of Examples 2.3.7 and 2.3.8 have the property thatHN−1(∂Ω) =
∞. Next we give examples where HN−1(∂Ω) <∞. In the following two examples
σ1 denotes the 1-dimensional and σ2 the 2-dimensional Hausdorff measure.

Example 2.3.9. Let Q ∩ (0, 1) = {q1, q2, . . .} where Q denotes the set of rational
numbers. It is clear that Q∩ (0, 1) is dense in [0, 1]. Consider the following Figure
2.1.

Let Ω :=
⋃∞
n=1 Ωn where Ωn =

⋃n
i=1 Ωn,i as in the Figure 2.1. We assume

that the breadth of each rectangle Ωn,i is 2−2n. Then Ω is an open bounded
subset of R2 but it is not connected. Since Q ∩ (0, 1) is dense in [0, 1], we have
E := {0} × [0, 1] ⊂ ∂Ω and

∂Ω ⊂ ∪∞n=1∂Ωn ∪ E.
Thus σ1(∂Ω) ≤ 1 +

∑∞
n=1 σ1(∂Ωn). Since the 1-dimensional Hausdorff measure of

a segment is its length, we have

σ1(∂Ωn) ≤ n(2−(n−1) + 2−(2n−1)).

Hence

σ1(∂Ω) ≤ 1 +
∞∑
n=1

n(2−(n−1) + 2−(2n−1)) <∞.
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Figure 2.1: Fractal type set

Let ρ ∈ C∞[0,∞) be such that





0 ≤ ρ(x) ≤ 1
ρ(x) = 1 if 0 ≤ x ≤ 1

2

ρ(x) = 0 if x > 3
4 .

We define the sequence of functions un on Ω by setting un(x, y) := ρ(2nx). Then
un ∈ H1(Ω) ∩ C(Ω̄) and 0 ≤ un(x, y) ≤ 1. Since un(0, y) = ρ(0) = 1, this implies
that un = 1 on E. Moreover,

lim
n→∞

un(x, y) = lim
n→∞

ρ(2nx) = 0.

Since |un(x, y)| = |ρ(2nx)| ≤ 1, Lebesgue’s Dominated Convergence Theorem
implies that the sequence un converges to 0 in L2(Ω). Furthermore, supp[∇un] ⊂
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{X : 2−n−1 ≤ x ≤ 2−n} and
∫

Ω

|∇un|2 dxdy = 22n

∫

Ω

|ρ′(2nx)|2 dxdy (2.16)

≤ 22n(n+ 1)2−2(n+1)

∫ 2−n

2−(n+1)
|ρ′(2nx)|2 dx

= (n+ 1)2−(n+2)

∫ 1

1/2

|ρ′(r)|2 dr

−→ 0 as n→∞.

This implies that CapΩ̄(E) = 0 but clearly, σ1(E) = 1. Thus Cap(E) > 0.

Next we modify Example 2.3.9 to obtain a bounded connected open subset
of R3 and a relatively polar subset of the boundary which is not polar.

Example 2.3.10. Let D ⊂ R3 be given by D := Ω× (0, 1)
⋃∪∞n=1Pn where Ω is the

set of Example 2.3.9 and Pn is a tube of radius rn = r−2n connecting the walls
(2−(n+1), 2−n)×{0}× (0, 1) and (2−(n+1), 2−n)×{1}× (0, 1). Thus D is an open,
connected, bounded subset of R3. Since the 2-dimensional Hausdorff measure of a
rectangle in R3 is its surface, we have

σ2(∂D) ≤ σ2(∂Ω× [0, 1]) +
∞∑
n=1

σ2(∂Pn)

≤ σ1(∂Ω) +
∞∑
n=1

2π2−2n <∞.

Let un(x, y, z) = ρ(2nx). Then un converges to 0 in L2(Ω) as n → ∞. Moreover,
since supp[∇un] ⊂ {x : 2−n−1 ≤ x ≤ 2−n}, by (2.16) we have,

∫

D

|∇un|2 dxdydz ≤ c1(n+ 1)2−(n+1) + 22n

∫

Pn+1

|ρ′(2nx)|2 dxdydz

≤ c1(n+ 1)2−(n+2) + ‖ρ′‖2∞|22nπr2n

−→ 0 as n→∞.

Thus limn→∞ un = 0 in H1(D). Since un ∈ H1(D)∩C(D̄), 0 ≤ un ≤ 1 and un = 1
on Ẽ := {0} × [0, 1] × [0, 1] ⊂ ∂D, it follows that CapΩ̄(Ẽ) = 0 but σ2(Ẽ) = 1.
Thus Cap(Ẽ) > 0.

2.4 Another Characterization of H1
0(Ω).

Let Ω ⊂ RN be an open set. It is well-known (see [15, Theorem 1.1] or [55, Example
2.3.1]) that

H1
0 (Ω) = {u ∈ H1(RN ) : ũ = 0 q.e. on RN \ Ω}. (2.17)
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The following result gives a characterization of H1
0 (Ω) in term of the relative

capacity.

Theorem 2.4.1. Let Ω ⊂ RN be an open set. Then

H1
0 (Ω) = {u ∈ H̃1(Ω) : ũ = 0 r.q.e. on ∂Ω}.

To prove the theorem, we need the following abstract result which is contained
in [55, Theorem 4.4.3].

Theorem 2.4.2. Let (a,D(a)) be a regular Dirichlet form on L2(X,m) where X
and m satisfy (1.3). For each Borel set B ⊂ X, the space

D(a)B := {u ∈ D(a) : ũ = 0 q.e. on B}

is a closed subspace of (D(a), ‖ · ‖a), where the capacity is taken with respect to the
regular form (a,D(a)).

If B is closed then the restriction of the form a to the domain D(a)B is a
regular Dirichlet form on L2(X \B,m). In particular, the space

CB(X) := {u ∈ D(a) ∩ Cc(X) : supp[u] ⊂ X \B}

is dense in D(a)B.

Proof of Theorem 2.4.1. Let

H̃1
0 (Ω) := {u ∈ H̃1(Ω) : ũ = 0 r.q.e. on ∂Ω}.

Let u ∈ H1
0 (Ω). Then u ∈ H1(RN ) and ũ = 0 q.e. on RN \ Ω (where ũ denotes

the q.c. version of u). Since for every A ⊂ Ω̄, CapΩ̄(A) ≤ Cap(A), it follows that
u ∈ H̃1(Ω), ũ is r.q.c. and ũ = 0 r.q.e. on ∂Ω. This implies that u ∈ H̃1

0 (Ω) and
thus H1

0 (Ω) ⊂ H̃1
0 (Ω).

To prove the converse inclusion, let

D := {u ∈ H1(Ω) ∩ Cc(Ω̄) : u|∂Ω = 0}.

Then D ⊂ H̃1(Ω). Since ∂Ω is relatively closed in Ω̄, by Theorem 2.4.2, the closure
of D in H̃1(Ω) is H̃1

0 (Ω). Since H1
0 (Ω) contains D (see the proof of Proposition

3.2.1 below) and is a closed subspace of H̃1(Ω), it follows that H̃1
0 (Ω) ⊂ H1

0 (Ω)
which completes the proof.

Next we ask the following question. Is it possible that for an open set Ω
we have H̃1(Ω) = H1

0 (Ω)? The following results say that this is not possible for
bounded sets, but is well possible for unbounded sets.

Proposition 2.4.3. Let Ω ⊂ RN be a bounded open set. Then CapΩ̄(∂Ω) > 0.
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Proof. Assume that CapΩ̄(∂Ω) = 0. Then, by Theorem 2.4.1, the spaceH1
0 (Ω)

is equal to H̃1(Ω). Since Ω is bounded, it follows that the constant function
1 ∈ H1(Ω) ∩ C(Ω̄) and we obtain that 1 ∈ H̃1(Ω). But 1 6∈ H1

0 (Ω) which is a
contradiction and thus CapΩ̄(∂Ω) > 0.

Theorem 2.4.4. Let Ω ⊂ RN be an open set. Then the following assertions are
equivalent.

(i) CapΩ̄(∂Ω) = 0.

(ii) Ω̄ = RN and Cap(∂Ω) = 0.

(iii) H1
0 (Ω) = H1(RN ).

Proof. (i) ⇒ (ii). Assume that CapΩ̄(∂Ω) = 0. Then by Theorem 2.4.1,
H1

0 (Ω) = H̃1(Ω) and thus H̃1(Ω) has the extension property (since H1
0 (Ω) has the

extension property by [41, p.252]). By Theorem 2.3.4, this implies that Cap(∂Ω) =
0. Next, since Cap(∂Ω) = 0 and RN \ ∂Ω is an open subset of RN , it follows from
[7, Proposition 3.10] that RN \ ∂Ω is connected and thus Ω̄ = RN .

(ii) ⇒ (iii). Assume that Ω̄ = RN and Cap(∂Ω) = 0. Then RN \Ω = Ω̄ \Ω =
∂Ω and this implies that Cap(RN \Ω) = 0. By the characterization of H1

0 (Ω) given
by (2.17), this implies that H1

0 (Ω) = H1(RN ).
(iii) ⇒ (i). Since we assume that H1

0 (Ω) = H1(RN ), it follows that Cap(RN \
Ω) = 0. As Ω̄ ⊂ RN and ∂Ω := Ω̄ \Ω ⊂ RN \Ω, we obtain that Cap(∂Ω) = 0 and
therefore by (2.13) CapΩ̄(∂Ω) = 0 which completes the proof.

2.5 Comments.

Section 2.1.
The classical capacity has been introduced in [2], [23], [43], [53], [55], [69], [73],
[75] and of course many other authors. We can find a proof of Theorems 2.1.2 and
2.1.3 in [2], [43], [53] and [55]. The proof of Theorem 2.1.5 given here is taken from
[43, Theorem 4 p.156].

Section 2.2.
We have defined the relative capacity with the Sobolev space H̃1(Ω). Here we have
used the form (aN , H̃1(Ω)) defined by

aN (u, v) =
∫

Ω

∇u∇v dx

which is a regular Dirichlet form on Ω̄.
In general, without any geometric condition on Ω, the form (aN ,H1(Ω)) is

not a regular Dirichlet form on Ω̄ sinceH1(Ω)∩Cc(Ω̄) is not always dense inH1(Ω).
The domain Ω of Remark 2.3.3 is an example, but for this domain, ∂Ω 6= ∂Ω̄. For
domains in RN where ∂Ω = ∂Ω̄ and H̃1(Ω) 6= H1(Ω) we refer to [73, Section 1.1.6].
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Chen [29] has proved that there exists a regularizing space Ω̃ containing Ω
as a dense open subset such that (aN ,H1(Ω)) is a regular Dirichlet form on Ω̃.
Such Ω̃ is obtained by compactification. Moreover, each domain Ω may have many
regularizing spaces and if Ω is regular (for example Lipschitz) then one may take
Ω̃ to be Ω̄. Note that the regularizing space Ω̃ is not always a subset of RN .

It is possible to define a notion of capacity with respect to every Dirichlet
form. We have used regular Dirichlet forms because we need some kind of regularity
of functions in the Dirichlet space. For example the fact that every function has
a quasi-continuous version (Theorem 2.1.3) is true if the capacity is defined with
respect to a regular Dirichlet form or (weaker) a quasi-regular Dirichlet form (see
[69]). The notion of regular measures with respect to a given capacity which we
will introduce in Chapter 3, is also true for a capacity defined with respect to a
regular Dirichlet form or (weaker) a quasi-regular Dirichlet form.

The notion of relative capacity will be used to obtain a necessary and suffi-
cient condition for the closability of a class of bilinear forms which we will define
in Chapter 3.

Section 2.3.
By Proposition 2.3.4 and Theorem 2.1.5, if H̃1(Ω) has the continuous extension
property, then the restriction σ of HN−1 to ∂Ω does not charge relatively polar
sets in B(∂Ω). Examples 2.3.8, 2.3.9 and 2.3.10 say that the measure σ charges
sometimes relatively polar Borel subsets of ∂Ω. In particular, this says that rel-
atively polar subsets of ∂Ω are not always polar. We shall see in Chapter 4 that
for some subsets Ω of RN as in Examples 2.3.9 and 2.3.10, we can find some se-
quence of functions un ∈ H1(Ω) ∩C(Ω̄) such that un converges to zero in H̃1(Ω),
un|∂Ω is a Cauchy sequence in L2(∂Ω, σ) but un|∂Ω converges to some function
h ∈ L2(∂Ω, σ) which is not zero σ a.e.

Example 2.3.8 will also be used in Chapter 4 to prove that the embedding
H̃1(Ω) ↪→ L2(Ω) is not always compact.

Section 2.4.
Another proof of Theorem 2.4.1 is contained in [17]. Since H1

0 (Ω) can be character-
ized in terms of the relative capacity, it is also possible to give a characterization in
terms of the Hausdorff measure for some regular sets. If Ω is regular (for example
Lipschitz), since each function u ∈ H̃1(Ω) = H1(Ω) has a trace u|∂Ω ∈ L2(∂Ω, σ)
it is easy to see that u ∈ H1

0 (Ω) if and and only if u ∈ H̃1(Ω) and u|∂Ω = 0 σ-a.e.
on ∂Ω. Therefore, in that case, assuming that u is r.q.c., we have that u = 0 r.q.e.
on ∂Ω is equivalent to u|∂Ω = 0 σ-a.e. on ∂Ω.



Chapter 3

General Boundary Conditions
for the Laplacian

Let Ω ⊂ RN be an open set. We will define a realization of the Laplacian on L2(Ω)
with boundary conditions containing the cases Dirichlet, Neumann and Robin.
Throughout this chapter the underlying field is R.

3.1 Presentation of the Problem.

Let µ be a Borel measure on ∂Ω and let

E := {u ∈ H1(Ω) ∩ Cc(Ω̄) :
∫

∂Ω

|u|2 dµ <∞}.

Define the bilinear symmetric form aµ with domain E on L2(Ω) by

aµ(u, v) :=
∫

Ω

∇u∇v dx+
∫

∂Ω

uv dµ. (3.1)

It is natural to ask when (aµ, E) is closable on L2(Ω)? Let un ∈ E be such that
un → 0 in L2(Ω) as n→∞ and limn,m→∞ aµ(un−um, un−um) = 0. Since un → 0
in L2(Ω) and is a Cauchy sequence in H1(Ω), it follows that un → 0 in H1(Ω) as
n→∞. The following example shows that un|∂Ω does not always converge to zero
in L2(∂Ω, µ).

Example 3.1.1. Let Ω be a bounded domain in RN where N ≥ 2. Suppose that
H1(Ω) ∩ C(Ω̄) is dense in H1(Ω). Fix z ∈ ∂Ω and let µ := δz the Dirac measure
at z. Since H1(Ω)∩C(Ω̄) is dense in H1(Ω), there exists un ∈ H1(Ω)∩C(Ω̄) such
that un → 0 in H1(Ω) as n→∞ and un(z) = 1 for all n ≥ 1. For a such sequence,
we have limn,m→∞ aµ(un−um, un−um) = 0 but limn→∞ aµ(un, un) = 1 and thus
aµ is not closable.
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Since (aµ, E) is a symmetric bilinear positive form, by Theorem 1.3.11, there
exists a largest closable form ((aµ)r, E) which is smaller than (aµ, E). Using Theo-
rem 1.3.11 and the characterization of closed ideals in Lp-spaces given in Theorem
1.2.4, we will construct the closure of the largest closable part of (aµ, E) and we
will denote its domain by V . Since this closed form ((aµ)r, V ) is symmetric and
densely defined, we can then associate with it a selfadjoint operator ∆µ on L2(Ω)
with domain D(∆1/2

µ ) = V . We will obtain that ∆µ = ∆D (the Laplacian with
Dirichlet boundary conditions) if µ is locally infinite everywhere on ∂Ω. If µ = 0 or
if µ is concentrated on a subset B of ∂Ω such that CapΩ̄(B) = 0, then ∆µ = ∆N

(the Laplacian with Neumann boundary conditions). The case µ = σ (the re-
striction to ∂Ω of the (N − 1)-dimensional Hausdorff measure) or more generally,
the case where µ is absolutely continuous with respect to σ corresponds to ∆R

(the Laplacian with Robin boundary conditions) which we will study in detail in
Chapter 4.

We will also show that in all cases, the operator ∆µ generates a holomorphic
submarkovian C0-semigroup on L2(Ω) which is sandwiched between (et∆D )t≥0 and
(et∆N )t≥0.

The relative capacity defined in Chapter 2 will play an important role here.
We shall prove that we always have the following situation:

1. If µ is locally infinite everywhere, then (aµ, E) is always closable on L2(Ω).

2. If µ is a Radon measure, then (aµ, E) is closable on L2(Ω) if and only if
the measure µ does not charge relatively polar Borel subsets of ∂Ω; i.e., µ is
absolutely continuous with respect to the relative capacity.

It follows from 1. and 2. that if µ is locally finite on a part of ∂Ω, then (aµ, E)
is closable on L2(Ω) if and only if the restriction of µ to the part on which it is
locally finite does not charge relatively polar Borel subsets of this part.

3.2 Closable Part by Reed-Simon’s Method.

This section is devoted to the construction of the closable part of the form (aµ, E)
defined in Section 3.1. This method of construction has been used by Daners [34]
for the case where µ = σ. Throughout this section Ω will denote an open subset
of RN .

Proposition 3.2.1. Let µ be a Borel measure on ∂Ω and assume that µ is locally
infinite everywhere on ∂Ω; i.e.,

∀x ∈ ∂Ω and r > 0 µ(B(x, r) ∩ ∂Ω) = ∞. (3.2)

Then the form aµ is closable and its closure which we denote by a∞ is given by

a∞(u, v) =
∫

Ω

∇u∇v dx
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with domain H1
0 (Ω).

Proof. Let u ∈ E. Since u is continuous on Ω̄, it follows from (3.2) that
u|∂Ω = 0 and thus E = {u ∈ H1(Ω) ∩ Cc(Ω̄) : u|∂Ω = 0}. One obtains that for all
u, v ∈ E,

a∞(u, v) := aµ(u, v) =
∫

Ω

∇u∇v dx.

It is clear that (a∞, E) is closable on L2(Ω).
Next we prove that E ⊂ H1

0 (Ω). Let u ∈ E and fix a function G ∈ C1(R)
such that

|G(t)| ≤ |t| ∀ t ∈ R and G(t) :=

{
0 if |t| ≤ 1
t if |t| ≥ 2.

Set un := 1
nG(nu). Then |un(x)| ≤ 1

n |nu(x)| = |u(x)| ∈ L2(Ω). Similarly,

|Diun(x)| ≤ |G′(nu(x))| |Diu| ≤ |Diu| ∈ L2(Ω).

Thus un ∈ H1(Ω). It follows from the Lebesgue Dominated Convergence Theorem
that un → u in H1(Ω). Moreover supp[un] ⊂ {x ∈ Ω : |u(x)| ≥ 2

n} which is a
compact subset of Ω. Then un ∈ H1

0 (Ω) and we obtain that u ∈ H1
0 (Ω). Since

E ⊂ H1
0 (Ω) and it contains D(Ω), it is dense in H1

0 (Ω) and it follows that the
closure of (a∞, E) is given by

a∞(u, v) =
∫

Ω

∇u∇v dx

with domain H1
0 (Ω) which corresponds to the form of the Laplacian with Dirichlet

boundary conditions.

Example 3.2.2. Assume that the measure µ = 0. Then E = H1(Ω) ∩Cc(Ω̄). Thus
the closure of (a0, E) is given by

a0(u, v) =
∫

Ω

∇u∇v dx

with domain H̃1(Ω) which corresponds to the form of the Laplacian with Neumann
boundary conditions.

It is also possible to have a measure µ which is locally finite only on a subset
of ∂Ω. In this case, we set

Γ∞ := {z ∈ ∂Ω : µ(B(z, r) ∩ ∂Ω) = ∞ ∀ r > 0}.

Note that Γ∞ is a relatively closed subset of ∂Ω. As above, u|Γ∞ = 0 for each
function u ∈ E. Since Γ := ∂Ω \ Γ∞ is a locally compact metric space, it follows
from [85, Theorem 2.18 p.48] that µ|Γ (the restriction of µ to Γ) is automatically
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a regular Borel measure. Therefore µ is a Radon measure on Γ. Without any
restriction we may assume that if µ is not locally infinite everywhere on ∂Ω, then
it is Radon measure on ∂Ω; i.e. Γ = ∂Ω.

In the following, we proceed as in the construction of the closable part in
Theorem 1.3.11. Let L : H1(Ω) → L2(Ω)⊕L2(Ω)N be defined by L(u) := (u,∇u).
It is clear that L is an isometry. We then identify the first order Sobolev space
H1(Ω) with L2(Ω)⊕ L2(Ω)N by the isometry L. Let

E0 := {(u,∇u, u|∂Ω) : u ∈ E} ⊂ L2(Ω)⊕ L2(Ω)N ⊕ L2(∂Ω, µ).

Let Ṽ be the closure of E0 in the Hilbert space L2(Ω)⊕L2(Ω)N⊕L2(∂Ω, µ). Then Ṽ
is a Hilbert space and for (u, v, h) ∈ Ṽ , we have u ∈ H1(Ω) and∇u = v. Let i be the
natural embedding from E into L2(Ω) and j : Ṽ → L2(Ω) its continuous extension.
We know that (u, v, h) ∈ Ṽ if and only if there exists un ∈ E ⊂ H1(Ω) ∩ Cc(Ω̄)
satisfying: un → u in H1(Ω), ∇u = v and un|∂Ω → h in L2(∂Ω, µ). Since (u, v, h) ∈
Ṽ if and only if u ∈ H1(Ω) and ∇u = v, it follows that ker j = {(0, 0, h) ∈ Ṽ }. Let

F := {h ∈ L2(∂Ω, µ) : (0, 0, h) ∈ Ṽ }.

Proposition 3.2.3. There exists a measurable set S ⊂ ∂Ω such that

F = {h ∈ L2(∂Ω, µ) : h = 0 µ-a.e. on S}. (3.3)

The proof uses the following two lemmas. Let

C0(∂Ω) := {b ∈ C(∂Ω) : lim
|x|→∞

b(x) = 0}.

Lemma 3.2.4. We have C0(∂Ω)F ⊂ F .

Proof. 1) Let ψ ∈ C1
c (RN ), then ψ|∂Ωh ∈ F for every h ∈ F . In fact, let

h ∈ F . Then there exists un ∈ H1(Ω) ∩ Cc(Ω̄) such that un → 0 in H1(Ω) and
un|∂Ω → h in L2(∂Ω, µ). It is clear that ψun ∈ H1(Ω) ∩ Cc(Ω̄). Moreover,

‖ψun‖2H1(Ω) = ‖ψun‖22 + ‖∇(ψun)‖22
≤ ‖ψ‖2∞‖un‖2H1(Ω) + ‖∇ψ‖2∞‖un‖22
→ 0 as n→∞.

We also have

‖(ψun)|∂Ω − ψ|∂Ωh‖L2(∂Ω,µ) ≤ ‖ψ|∂Ω‖∞‖un − h‖L2(∂Ω,µ)

→ 0 as n→∞.

Thus ψ|∂Ωh ∈ F .
2) By the Stone-Weierstrass Theorem, the space {Ψ|∂Ω, Ψ ∈ C1

c (RN )} is
dense in C0(∂Ω). We obtain the lemma by passing to the limit.
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Lemma 3.2.5. Let G be a closed subspace of L2(∂Ω, µ) such that C0(∂Ω)G ⊂ G.
Then L∞(∂Ω, µ)G ⊂ G.

Proof. Let b ∈ L∞(∂Ω, µ) and v ∈ G. We want to prove that bv ∈ G. For
k ∈ N∗ := N \ {0} let

Ak := {x ∈ ∂Ω : |v(x)| ≥ 1
k
} and A0 := {x ∈ ∂Ω : |v(x)| 6= 0}.

Then, A0 =
⋃
k≥1Ak. As v ∈ L2(∂Ω, µ), it follows that µ(Ak) < ∞. By Lusin’s

Theorem ([43, Theorem 1, p.15]), for every k ∈ N∗ there exists a compact set
Ck ⊂ Ak such that µ(Ak \ Ck) < 1

k and b|Ck
is continuous. By Tietze’s Theorem

[43, Theorem 1 p.13], there exists gk ∈ C0(∂Ω) such that gk|Ck
= b and

‖gk‖∞ ≤ ‖b‖∞. (3.4)

We can suppose that Ck ⊂ Ck+1 (since Ak ⊂ Ak+1). Now we prove that gk → b µ
a.e. on A0. Let

Bn := {x ∈ A0 : |gk(x)− b(x)| ≤ 1
n

for almost all k}

(for “almost all k ” signifies for all k except a finite number of k). Then Bn+1 ⊂ Bn
and

⋂
n∈NBn = {x ∈ A0 : limk→∞ gk(x) = b(x)}. Suppose that (

⋂
n∈N∗ Bn)

c =⋃
n∈N∗ B

c
n is of positive measure. Then there exists n ∈ N∗ such that µ(Bcn) > 0.

Set ε = 1
n , then

C := Bcn = {x ∈ A0 : |gk(x)− b(x)| > ε for an infinite number of k}

satisfies µ(C) > 0. As Ak ↑ A0, there exist k0 ∈ N∗, δ > 0 such that µ(C∩Ak0) ≥ δ.
For all k ≥ k0 we have

µ(C ∩Ak) = µ(C ∩ Ck) + µ(C ∩ (Ak \ Ck)) ≤ µ(C ∩ Ck) +
1
k

which implies that for all k ≥ k0,

µ(C ∩ Ck) ≥ µ(C ∩Ak)− 1
k
≥ δ − 1

k

and therefore
µ(C ∩ Ck) > 0

for k large enough. Since b = gk on Ck this is a contradiction. It follows that
gk → b µ-a.e. on ∂Ω. Since by Lemma 3.2.4 C0(∂Ω)G ⊂ G, it follows that gkv ∈
G. Using the inequality (3.4) we obtain that |gkv|2 ≤ ‖b‖∞|v|2. It follows from
Lebesgue’s Dominated Convergence Theorem that gkv → bv in L2(∂Ω, µ). Since
G is closed in L2(∂Ω, µ), we have that bv ∈ G.
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Proof of Proposition 3.2.3. It follows from Lemma 3.2.5 that F is a closed
ideal of L2(∂Ω, µ). In fact, let u ∈ F and v ∈ L2(∂Ω, µ) satisfying

0 ≤ |v| ≤ |u|. (3.5)

We have to show that v ∈ F . The inequality (3.5) implies that v
u ∈ L∞(∂Ω, µ).

Since v = v
uu and by hypothesis v

u ∈ L∞(∂Ω, µ), this implies that v ∈ F .
Finally, since µ is a Radon measure which is σ-finite, the result is a conse-

quence of Theorem 1.2.4.

Next we define the following subspace of H1(Ω)

V := {u ∈ H1(Ω) : ∃ h ∈ L2(S, µ) : (u,∇u, h) ∈ Ṽ }

where
L2(S, µ) := {h ∈ L2(∂Ω, µ) : h = 0 µ-a.e. on Sc}.

It is clear that H1
0 (Ω) ⊂ V , and thus V is a dense subspace of L2(Ω). It is also a

Hilbert space for the norm

‖u‖V :=
(
‖u‖2H1(Ω) +

∫

S

|h|2 dµ
)1/2

.

Proposition 3.2.6. For u ∈ V , the function h ∈ L2(S, µ) is unique.

Proof. Let h1, h2 ∈ L2(S, µ) be such that (u,∇u, h1), (u,∇u, h2) ∈ Ṽ . Then
(0, 0, h1 − h2) ∈ Ṽ which implies that h1 − h2 ∈ F and thus (h1 − h2)|S = 0 µ a.e.
But h1 = h2 = 0 µ a.e. on Sc and therefore h1 = h2 µ a.e.

Definition 3.2.7. We call h the trace of u and we note u|S := h.

Lemma 3.2.8. The following assertions are satisfied.

a) If u ∈ V then u+ ∈ V and the mapping u 7−→ u+ : V → V is continuous.

b) If u ∈ V+ then (u − 1)+ ∈ V+ and the mapping u 7−→ (u − 1)+ : V+ → V+

is continuous.

c) If u ∈ V then u+|S = (u|S)+.

d) If u ∈ V+ then (u− 1)+|S = (u|S − 1)+.

Proof. The Sobolev space H1(Ω) is a lattice and satisfies the properties a)
and b) (see Comments). The space E is also a sublattice of H1(Ω) and is dense in
V and satisfies the properties c) and d). We obtain the lemma by passing to the
limit.
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Next, let the bilinear form which we denote by ((aµ)r, V ) be defined by

(aµ)r(u, v) =
∫

Ω

∇u∇v dx+
∫

S

uv dµ.

It is clear that ((aµ)r, V ) is closed on L2(Ω). We will denote by ∆µ the selfadjoint
operator on L2(Ω) associated with ((aµ)r, V ); i.e.,

{
D(∆µ) := {u ∈ V : ∃ v ∈ L2(Ω) : (aµ)r(u, ϕ) = (v, ϕ) ∀ ϕ ∈ V }
∆µu := −v. (3.6)

Since for each u ∈ D(∆µ) we have
∫

Ω

∇u∇ϕ dx+
∫

S

uϕ dµ =
∫

Ω

vϕ dx (3.7)

for all ϕ ∈ V , if we choose ϕ ∈ D(Ω), the equality (3.7) can be written

〈−∆u, ϕ〉 = 〈v, ϕ〉

where 〈, 〉 denotes the duality between D(Ω)′ and D(Ω). Since ϕ ∈ D(Ω) is arbi-
trary, it follows that

−∆u = v in D(Ω)′.

Thus ∆µ is a realization of the Laplacian on L2(Ω). By the Reed-Simon construc-
tion (Theorem 1.3.11), ((aµ)r, V ) is the closure of the closable part of (aµ, E).
Since Ω is arbitrary (without any regularity assumption), we need some further
results to characterize the notion of trace given in Definition 3.2.7. We shall give
this characterization in Section 3.3.

3.3 Relative Capacity and Closability.

Let Ω ⊂ RN be an open set. By the results of Section 3.2, we know that if µ is
locally infinite everywhere on ∂Ω, then (aµ, E) is always closable on L2(Ω) and its
closure is the form of the Laplacian with Dirichlet boundary conditions. We can
have a problem of closability of (aµ, E) if µ is locally finite on ∂Ω or locally finite
only on a part Γ ⊂ ∂Ω. Let

M0 := {µ : Borel measure on ∂Ω : CapΩ̄(N) = 0 ⇒ µ(N) = 0 ∀ N ∈ B(∂Ω)}.

Theorem 3.3.1. Let µ be a Radon measure on ∂Ω. Then the following assertions
are equivalent.

(i) The form (aµ, E) is closable on L2(Ω).

(ii) µ ∈M0.
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Proof. (ii) ⇒ (i). The condition that µ is locally finite is not necessary for this
part. Let uk ∈ E be such that uk → 0 in L2(Ω) and limn,k→∞ aµ(un−uk, un−uk) =
0. It is clear that uk → 0 in H1(Ω). By Theorem 2.1.3 applied to the relative
capacity, the sequence (uk) contains a subsequence (wk) which converges to zero
r.q.e. on Ω̄. Since µ ∈ M0, it follows that wk|∂Ω → 0 µ a.e. Without lost the
generality, we may assume that uk|∂Ω → 0 µ a.e. Since uk is a Cauchy sequence
in L2(∂Ω, µ), it follows that uk → 0 in L2(∂Ω, µ) and thus the form (aµ, E) is
closable on L2(Ω).

(i) ⇒ (ii). Assume that there exists a Borel set K ⊂ ∂Ω such that
CapΩ̄(K) = 0 and µ(K) > 0. We may assume that K is a compact set. Since
CapΩ̄(K) = 0, by Theorem 2.2.4, there exists a sequence uk ∈ H1(Ω)∩Cc(Ω̄) such
that

0 ≤ uk ≤ 1, uk = 1 on K and ‖uk‖H1(Ω) → 0 as k →∞.

Let (Ai) be a sequence of relatively open sets with compact closure satisfying

K ⊂ Ai+1 ⊂ Ai ⊂ ∂Ω,
⋂

i

Ai = K and µ(Ai) → µ(K) as i→∞.

There then exists a sequence vi ∈ D(RN ) such that supp[vi] ⊂ Ai, vi = 1 on K
and 0 ≤ vi ≤ 1. Clearly, vi|Ω ∈ H1(Ω) ∩ Cc(Ω̄) and ‖ukvi‖H1(Ω) → 0 as k → ∞.
For all i ≥ 1 we have ukvi ∈ H1(Ω) ∩ Cc(Ω̄). Moreover, for all i, k, 0 ≤ ukvi ≤ 1
and ukvi = 1 on K. For all i ≥ 1, we choose ki ∈ N such that ‖ukivi‖H1(Ω) ≤ 1

2i .
Let wi = ukivi. Then wi → 0 in H1(Ω) as i → ∞, 0 ≤ wi ≤ 1 and wi = 1 on K.
Moreover wi → χK pointwise since supp[wi] ⊂ Ai. We choose I large enough such
that for i > I we have |wi(x)|2 ≤ ε for all x ∈ ∂Ω \K. Then for i, j > I we obtain

∫

∂Ω

|wi − wj |2 dµ =
∫

K

|wi − wj |2 dµ+
∫

∂Ω\K
|wi − wj |2 dµ

=
∫

∂Ω\K
|wi − wj |2 dµ

≤ 2ε.

Thus wi is a Cauchy sequence in L2(∂Ω, µ). Since wi = 1 on K it follows that

‖wi‖2L2(∂Ω,µ) ≥ µ(K) > 0.

The existence of a such sequence contradicts the closability of aµ.

Corollary 3.3.2. Let µ be a Borel measure on ∂Ω and let

Γ := {z ∈ ∂Ω : ∃ r > 0 : µ(B(z, r) ∩ ∂Ω) <∞}
be the relatively open subset of ∂Ω on which µ is locally finite. Then the following
assertions are equivalent.

(i) The form (aµ, E) is closable on L2(Ω).
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(ii) The measure µ does not charge relatively polar Borel subsets of Γ.

It follows from the preceding corollary that the class M0 can be defined

M0 = {µ : Borel measure on ∂Ω : CapΩ̄(N) = 0 ⇒ µ(N) = 0 ∀ N ∈ B(Γ)}
where Γ denotes the relatively open subset of ∂Ω on which µ is locally finite.

Example 3.3.3. a) Consider the form (aµ, E) defined in Example 3.1.1 by

aµ(u, v) :=
∫

Ω

∇u∇v dx+ u(z)v(z), z ∈ ∂Ω.

We have shown that this form is not closable on L2(Ω). Since CapΩ̄({z}) = 0
and µ({z}) > 0, it follows that µ 6∈ M0 and by Theorem 3.3.1, (aµ, E) is not
closable on L2(Ω).

b) Assume that Ω ⊂ R is a bounded domain; i.e., Ω = (a, b). Then for every
x ∈ [a, b], we have CapΩ̄({x}) > 0. This follows from the fact that H̃1(a, b) =
H1(a, b) ↪→ C[a, b]. We consider the form (aµ, E) defined by

aµ(u, v) :=
∫ b

a

u′v′ dx+ u(a)v(a)

with E = H1(a, b)∩C[a, b] = H1(a, b). Since µ ∈M0, it follows that (aµ, E)
is closable on L2(Ω).

Let µ be a Borel measure on ∂Ω in M0. By definition, the domain V of the
closure of the form (aµ, E) is the completion of E with respect to the aµ-norm.
The following result gives a characterization of V . Before, note that, throughout
the following, for u ∈ H̃1(Ω), we will always choose the r.q.c. version ũ which is
Borel measurable.

Proposition 3.3.4. Let µ be a Borel measure on ∂Ω in M0. Then

V = {u ∈ H̃1(Ω) : ũ ∈ L2(∂Ω, µ)} (3.8)

where ũ denotes the r.q.c. version of u.

Proof. Let
W := {u ∈ H̃1(Ω) : ũ ∈ L2(∂Ω, µ)}.

Recall that
E = {u ∈ H1(Ω) ∩ Cc(Ω̄) :

∫

∂Ω

|u|2 dµ <∞}.

It suffices to prove that E is aµ-dense in W . Let Γ∞ be the relatively closed subset
of ∂Ω on which µ is locally infinite. Set Γ := ∂Ω \ Γ∞ and X := Ω∪ Γ. Then X is
relatively open and

H1(Ω) ∩ Cc(X) ⊂ E ⊂ {u ∈ H̃1(Ω) : ũ = 0 r.q.e. on Γ∞} := Ẽ
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where
Cc(X) := {u ∈ C(Ω̄) : supp[u] ⊂ X}.

Note that, in general, Cc(X) is defined differently. If µ is a Radon measure on ∂Ω
then Γ∞ = ∅. Notice that Ẽ is a closed subspace of H̃1(Ω) (see Theorem 2.4.2).

a) We claim thatW is dense in Ẽ. Indeed, sinceX is relatively open, it follows
from Theorem 2.4.2 that H1(Ω) ∩ Cc(X) is dense in Ẽ. Since H1(Ω) ∩ Cc(X) ⊂
W ⊂ Ẽ, the claim is proved.

b) Let Γk be an increasing sequence of relatively open subsets of Γ such that
Γk ⊂ Γ and

⋃
k Γk = Γ and let Xk := Ω ∪ Γk. Then Xk is relatively open for each

k ∈ N. Let

Ẽk := {u ∈ Ẽ : ũ = 0 r.q.e. on Γ \ Γk}
= {u ∈ H̃1(Ω) : ũ = 0 r.q.e. on ∂Ω \ Γk}.

Since H1(Ω) ∩ Cc(X) ⊂ ⋃
k Ẽk, it follows that

⋃
k Ẽk is dense in Ẽ. Since Xk is

relatively open, by Theorem 2.4.2, the space

H1(Ω) ∩ Cc(Xk) := {u ∈ H1(Ω) ∩ Cc(Ω̄) : supp[u] ⊂ Xk}

is dense in Ẽk. Let

Ẽµk := {u ∈ Ẽk : ũ ∈ L2(Γk, µ)}
= {u ∈ H̃1(Ω) : ũ = 0 r.q.e. on ∂Ω \ Γk : ũ ∈ L2(Γk, µ)}

be equipped with the aµ-norm. We claim that H1(Ω)∩Cc(Xk) is aµ-dense in Ẽµk .
Indeed, let u ∈ Ẽµk . Without restriction, we assume that u is r.q.c. By considering
u+ and u− separetely and making truncations if necessary, we may assume that
0 ≤ u ≤ γ for some constant γ. Since u ∈ Ẽk, it follows from the above that
there exists a sequence un ∈ H1(Ω) ∩ Cc(Xk) such that un → u in Ẽk (i.e. in
H̃1(Ω)). Put u(γ)

n := (0 ∨ un) ∧ γ for each n. Clearly u
(γ)
n ∈ H1(Ω) ∩ Cc(Xk)

and it converges to u in H̃1(Ω) as n → ∞. By Theorem 2.1.3 applied to the
relative capacity, there exists a subsequence which we also denote by u

(γ)
n such

that u(γ)
n → u r.q.e. and in particular µ a.e. (since µ ∈ M0). Since µ(Γk) < ∞,

we have that u(γ)
n → u in L2(Γk, µ) by the Lebesgue Dominated Convergence

Theorem proving that u(γ)
n → u in Ẽµk and the claim is proved.

c) Let

Wk := {u ∈W : ũ = 0 r.q.e. on ∂Ω \ Γk}
= {u ∈ H̃1(Ω) : ũ = 0 r.q.e. on ∂Ω \ Γk : ũ ∈ L2(Γk, µ)}.

It is clear that for each k ∈ N we have Wk = Ẽµk . We claim that
⋃
kWk =

⋃
k Ẽ

µ
k

is dense in W . Indeed, let u ∈ W and suppose u ≥ 0 a.e. so that ũ ≥ 0 r.q.e.
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Let un ∈
⋃
k Ẽk be a sequence which converges to u in Ẽ. Let vn := (u ∧ un) ∨ 0.

Then vn → u in Ẽ. Taking a subsequence we may assume that ṽn → ũ r.q.e. Thus
ṽn → ũ µ-a.e. and also 0 ≤ ṽn ≤ ũ µ-a.e. so that ṽn → ũ in L2(Γ, µ) by the
Lebesgue Dominated Convergence Theorem. Since vn already converges to u in Ẽ,
we have that vn → u in W . Moreover, vn = 0 whenever un = 0 and so vn ∈ Wk

for some k ∈ N. For arbitrary u ∈ W , we apply this argument separetely to the
positive and negative parts, u+, u− which completes the proof of the claim.

d) Now, since H1(Ω)∩Cc(X) =
⋃
kH

1(Ω)∩Cc(Xk) and Wk = Ẽµk , it follows
from b) and c) that H1(Ω) ∩ Cc(X) is dense in W and therefore E is dense in W
and the proof is complete.

It follows from the preceding proposition that for a given Borel measure on
∂Ω in M0, the closed form (aµ, V ) is given by

aµ(u, v) =
∫

Ω

∇u∇v dx+
∫

∂Ω

ũṽ dµ,

where V is given by (3.8).

Next we give the following decomposition of Radon measures.

Lemma 3.3.5. Let R be the set of all Radon measures on ∂Ω. For each µ ∈ R there
exists a unique pair (µr, µs) of measures on (∂Ω,B(∂Ω)) such that

a) µ = µr + µs.

b) µr(A) = 0 for every A ∈ B(∂Ω) with CapΩ̄(A) = 0.

c) µs = χNµ for some N ∈ B(∂Ω) with CapΩ̄(N) = 0.

Proof. 1) We prove the uniqueness of the decomposition. Assume that there
exist µ̃r and µ̃s such that µ = µ̃r + µ̃s with µ̃s = χÑµ for some relatively polar
Borel set Ñ . Then µr − µ̃r = µ̃s − µs. Let M := N ∪ Ñ . Then M is a relatively
polar Borel set. By definition, for every A ∈ B(∂Ω), we have that

(µr − µ̃r)(A) = (µ̃s − µs)(A) = (µ̃s − µs)(A ∩M) = (µr − µ̃r)(A ∩M) = 0.

Thus µr(A) = µ̃r(A) and µs(A) = µ̃s(A) for every A ∈ B(∂Ω) with completes the
proof of the uniqueness.

2) We see the existence of µr and µs.
(i) Let K ⊂ ∂Ω be a compact set. We show that there exists S ⊂ K such

that χSµ ∈M0 and CapΩ̄(K \ S) = 0. Since µ(K) <∞, it follows that

α := sup{µ(A) : A ∈ B(∂Ω), A ⊂ K and CapΩ̄(A) = 0} <∞.

Take an increasing sequence An ∈ B(∂Ω) with An ⊂ K such that CapΩ̄(An) = 0
for all n and limn→∞ µ(An) = α. Let N := ∪∞n=1An. Then N ∈ B(∂Ω), N ⊂ K,

CapΩ̄(N) ≤
∞∑
n=1

CapΩ̄(An) = 0 ⇒ CapΩ̄(N) = 0
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and
µ(N) = µ(∪∞n=1An) = lim

n→∞
µ(An) = α.

We show that µ(B \ N) = 0 if B ⊂ K is a Borel set such that CapΩ̄(B) = 0.
Assume that µ(B \ N) > 0. Let A = B ∪ N . Then CapΩ̄(A) = 0 but µ(A) =
µ(B \N) + µ(N) > α contradicting the definition of α. Now let S = K \N . Then
χSµ ∈M0 and CapΩ̄(K \ S) = 0.

(ii) Let Kn ⊂ Kn+1 be compact sets such that Kn ⊂ Kn+1 and
⋃
n∈NKn =

∂Ω. By (i) there exist sets Sn ⊂ Kn such that χSnµ ∈M0 and CapΩ̄(Kn\Sn) = 0.
Let S :=

⋃
n∈N Sn and N := ∂Ω \ S. Then

µ(A \N) = 0 for every A ∈ B(∂Ω) with CapΩ̄(A) = 0. (3.9)

We then define µr, µs by

µr := χSµ and µs := χNµ.

Obviously, (µr, µs) enjoys the properties a) and c). Moreover, (3.9) implies that
b) is satisfied.

Definition 3.3.6. We call the measure µr the regular part of µ with respect to the
relative capacity.

Remark 3.3.7. If µ is not a Radon measure on ∂Ω, since its restriction to the
part Γ on which it is locally finite is a Radon measure, we can also decompose
µ|Γ = µr + µs as in Lemma 3.3.5. For simplicity, we assume throughout the
following that Γ = ∂Ω.

Proposition 3.3.8. Let µ be a Radon measure on ∂Ω and µ = µr + µs be its
decomposition as in Lemma 3.3.5. Then the closure (aµr , V ) of the closable part
of (aµ, E) is given by

aµr (u, v) =
∫

Ω

∇u∇v dx+
∫

∂Ω

ũṽ dµr (3.10)

=
∫

Ω

∇u∇v dx+
∫

S

ũṽ dµ

with domain
V = {u ∈ H̃1(Ω) : ũ ∈ L2(∂Ω, µr)}

where S := ∂Ω \N .

Proof. a) We show that the form (aµr , V ) is closed on L2(Ω). It suffices to
prove that (V, ‖ · ‖aµr

) is a Hilbert space. Let un ∈ V be a aµr -Cauchy sequence.
We assume that the un are relatively quasi-continuous. Then

lim
n,m→∞

‖un − um‖H1(Ω) + lim
n,m→∞

‖un − um‖L2(∂Ω,µr) = 0.
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Since un is a Cauchy sequence in H̃1(Ω), it converges to an element u ∈ H̃1(Ω).
By Theorem 2.1.3 b), after taking a subsequence if necessary, we may assume that
u is r.q.c. and un converges to u r.q.e. on Ω̄. Since µr ∈ M0, this implies that
un|∂Ω converges to u|∂Ω µr-a.e. Since un|∂Ω is a Cauchy sequence in L2(∂Ω, µr),
it converges to an element h ∈ L2(∂Ω, µr). After a subsequence, we may assume
that un|∂Ω converges to h µr-a.e. Now the uniqueness of the limit implies that
h = u|∂Ω µr-a.e. Therefore u|∂Ω ∈ L2(∂Ω, µr) and thus (V, ‖ · ‖aµr

) is complete.
b) Let (ar, D(ar)) be the closure of the closable part of aµ. We have to prove

that ar = aµr
. Since aµr

is closed (by a)) and aµr
≤ aµ, it follows that aµr

≤ ar.
Let us prove that ar ≤ aµr . Since µs := χN · µ is a regular Borel measure, there
exists an increasing sequence of compact setsKn ⊂ N such that µs(N\∪nKn) = 0.
Since N is relatively polar, it follows that CapΩ̄(Kn) = 0 and as Kn is a compact
set, there exists a sequence ψn ∈ H1(Ω) ∩ Cc(Ω̄) such that:

0 ≤ ψn ≤ 1, ψn = 1 on Kn, ψn → 0 in H1(Ω) as n→∞.

(i) We show that ar(ϕ,ϕ) ≤ aµr
(ϕ,ϕ) for every ϕ ∈ E which is dense in V

and in D(ar). Let ϕ ∈ E and ϕn = (1 − ψn)ϕ. We claim that ϕn → ϕ in H1(Ω).
In fact,

∫

Ω

|ϕn − ϕ|2 dx =
∫

Ω

|ϕψn|2 dx

≤ ‖ϕ‖2∞
∫

Ω

|ψn|2 dx→ 0 (n→∞).

Thus ϕn → ϕ in L2(Ω). Moreover, it is clear that Djϕn = (1 − ψn)Djϕ −
(Djψn)ϕ → Djϕ (n → ∞) in L2(Ω) since ψn → 0 a.e. in Ω and Djψn → 0
in L2(Ω). We have shown that ϕn → ϕ in H1(Ω). By Theorem 2.1.3 b), the se-
quence ϕn contains a subsequence which we also denote by ϕn which converges
r.q.e. on Ω̄. Since µr ∈ M0, we have that ϕn|∂Ω → ϕ|∂Ω µr a.e. Since |ϕn| ≤ |ϕ|,
it follows from Lebesgue’s Dominated Convergence Theorem that ϕn|∂Ω → ϕ|∂Ω

in L2(∂Ω, µr). By construction ϕn|∂Ω → 0 µs a.e. and by Lebesgue’s Dominated
Convergence Theorem again,

∫

N

|ϕn|2 dµ→ 0 as n→∞. (3.11)

Thus we obtain that

lim
n,m→∞

aµ(ϕn − ϕm, ϕn − ϕm) = 0.

Using the fact that the form ar is closed and (3.11) we obtain that

ar(ϕ,ϕ) = lim
n→∞

ar(ϕn, ϕn) ≤ lim
n→∞

aµ(ϕn, ϕn) = lim
n→∞

aµr (ϕn, ϕn) = aµr (ϕ,ϕ),

where in the last equality, we use the fact that aµr is closed.
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(ii) We show that ar ≤ aµr
; i.e., V ⊂ D(ar) and ar(ϕ,ϕ) ≤ aµr

(ϕ,ϕ) for
every ϕ ∈ V . Let ϕ ∈ V . There then exists a sequence ϕn ∈ E such that ϕn → ϕ
in V . It follows from (i) that ar(ϕn − ϕm, ϕn − ϕm) ≤ aµr (ϕn − ϕm, ϕn − ϕm)
and this implies that ϕn is a Cauchy sequence in D(ar) and then converges to an
element ψ ∈ D(ar). Since ϕn → ϕ in L2(Ω), the uniqueness of the limit implies
that ψ = ϕ ∈ D(ar) and thus V ⊂ D(ar). Finally, since ar(ϕn, ϕn) ≤ aµr

(ϕn, ϕn),
taking the limit as n→∞ we obtain that ar(ϕ,ϕ) ≤ aµr (ϕ,ϕ) for all ϕ ∈ V . Thus
ar ≤ aµr

which completes the proof.

Remark 3.3.9. Since the closed form ((aµ)r, Vr) constructed in Section 3.2 is by
construction the closure of the closable part of the form (aµ, E), it follows from
the preceding proposition that ((aµ)r, Vr) = (aµr

, V ) and therefore the set S ⊂ ∂Ω
of Lemma 3.2.5 is exactly ∂Ω \N . In fact, recall that

Vr = {u ∈ H1(Ω) : ∃ h ∈ L2(S, µ) : (u,∇u, h) ∈ Ṽ }
where

L2(S, µ) := {h ∈ L2(∂Ω, µ) : h = 0 µ a.e. on ∂Ω \ S},
and Ṽ is defined in Section 3.2. Proof. Let u ∈ V . There then exists a sequence
un ∈ E such that un converges to u in H̃1(Ω) and un|∂Ω converges to ũ in
L2(∂Ω, µr) where ũ denotes the relatively quasi-continuous version of u. As in the
proof of Proposition 3.3.8, the sequence un can be chosen such that

∫
∂Ω\S |un|2 dµ

converges to zero as n → ∞. Now let h := ũχS . Then h ∈ L2(S, µ) and un|∂Ω

converges to h in L2(∂Ω, µ). We have shown that V ⊂ Vr.
To prove the converse inclusion, let u ∈ Vr. By definition, there exists h ∈

L2(S, µ) such that (u,∇u, h) ∈ Ṽ . This means that, there exists a sequence un ∈ E
such that un → u in H1(Ω) and un|∂Ω → h in L2(∂Ω, µ). Since

∫

∂Ω

|un − h|2 dy =
∫

S

|un − h|2 dµ+
∫

∂Ω\S
|un|2 dµ;

which converges to zero as n→∞, it follows that
∫

S

|un − h|2 dµ =
∫

∂Ω

|un − h|2 dµr

converges to zero as n→∞. Proceeding as the proof of the preceding proposition
we obtain that un|∂Ω → ũ|∂Ω µr-a.e. and the uniqueness of the limit implies that
h = ũ|∂Ω µr-a.e. We have shown that Vr ⊂ V .

It then follows that for every u ∈ V , the trace h of u defined in Definition
3.2.7 is in fact χS ũ.

Example 3.3.10. Let Ω ⊂ RN (N ≥ 2) be a bounded domain and let

Γ := {zn ∈ ∂Ω : n ∈ N}, zn 6= zm for n 6= m and µ :=
∑

n∈N

1
n2
δzn
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where we assume that Γ is dense in ∂Ω and δz denotes the Dirac measure at z.
Since N ≥ 2, for each n ∈ N we have CapΩ̄({zn}) = 0 and thus CapΩ̄(Γ) = 0.
But µ({zn}) > 0. We obtain that the regular part µr of µ is the measure 0 and a0

defined by

a0(u, v) =
∫

Ω

∇u∇v dx

with domain H̃1(Ω) is the closure of the closable part of (aµ, E).

Now, let ∆µ be the selfadjoint operator on L2(Ω) associated with the closure
(aµ, V ) of the closable part of (aµ, E) as defined in (3.6). It follows from Theorem
1.3.4 that the operator ∆µ generates a holomorphic C0-semigroup Tµ = (et∆µ)t≥0

on L2(Ω) . In the following sections, we shall give some properties of this semigroup
Tµ.

3.4 Some Properties of Tµ.

Throughout this section, (et∆D )t≥0 (resp. (et∆N )t≥0) will denote the submarkovian
semigroups on L2(Ω) generated by ∆D (resp. ∆N ). We shall prove in this section
that et∆µ is sandwiched between et∆N and et∆D . Moreover, under some additional
conditions, each symmetric semigroup sandwiched between et∆D and et∆N is of
the form et∆µ .

Theorem 3.4.1. Let µ be a Borel measure on ∂Ω in M0 and ∆µ be the closed
operator on L2(Ω) associated with the closure of the form (aµ, E). Then

0 ≤ et∆D ≤ et∆µ ≤ et∆N

for all t ≥ 0 in the sense of positive operators.

To prove this result, we need the following result characterizing domination
of positive semigroups due to Ouhabaz and contained in [79, Théorème 3.1.7].

Theorem 3.4.2 (Ouhabaz). Let T and S be two positive symmetric C0-semigroups
on L2(Ω). Let (a,D(a)) be the closed form associated with T and (b,D(b)) the
closed form associated with S. Then the following assertions are equivalent.

(i) T (t) ≤ S(t) for all t ≥ 0 in the sense of positive operators.

(ii) D(a) is an ideal of D(b) and b(u, v) ≤ a(u, v) for all u, v ∈ D(a)+.

Proof of Theorem 3.4.1. 1) We prove the inequality et∆D ≤ et∆µ . Recall that
the forms associated to ∆D and ∆µ are given respectively by

aD(u, v) =
∫

Ω

∇u∇v dx, u, v ∈ H1
0 (Ω)
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and
aµ(u, v) =

∫

Ω

∇u∇v dx+
∫

∂Ω

ũṽ, u, v ∈ V

where
V = {u ∈ H̃1(Ω) : ũ ∈ L2(∂Ω, µ)}.

By Theorem 3.4.2, it suffices to prove that H1
0 (Ω) is an ideal of V and aµ(u, v) ≤

aD(u, v) for all u, v ∈ H1
0 (Ω)+. We may assume that each u ∈ H̃1(Ω) is r.q.c.

a) We claim that H1
0 (Ω) is an ideal of V . In fact, let u ∈ H1

0 (Ω) and v ∈ V
be such that 0 ≤ |v| ≤ |u|. Since Ω̄ is relatively open, it follows from Theorem
2.1.3 c) that 0 ≤ |v| ≤ |u| r.q.e. on Ω̄. Using the characterization of H1

0 (Ω) given
by Theorem 2.4.1, we obtain that u = 0 r.q.e. on ∂Ω and thus v = 0 r.q.e. on ∂Ω.
Therefore v ∈ H1

0 (Ω) which proves the claim.
b) Let u, v ∈ H1

0 (Ω)+. By the characterization of H1
0 (Ω), we have that u =

v = 0 r.q.e. on ∂Ω. Since µ ∈ M0, it follows that u = v = 0 µ a.e. on ∂Ω. We
finally obtain that

aµ(u, v) =
∫

Ω

∇u∇v dx+
∫

∂Ω

uv dµ

=
∫

Ω

∇u∇v dx
= aD(u, v)

and the proof of this part is complete.
2) The proof of the inequality et∆µ ≤ et∆N is a simple modification of the

first part.

More generally, we have the following result.

Proposition 3.4.3. Let µ, ν be two Borel measures on ∂Ω in M0. Assume that
ν ≤ µ in the sense that ν(A) ≤ µ(A) for all A ∈ B(∂Ω). Let ∆ν and ∆µ denote
the selfadjoint operators on L2(Ω) associated respectively with the closure of the
forms (aν , E) and (aµ, E). Then

0 ≤ et∆D ≤ et∆µ ≤ et∆ν ≤ et∆N

for all t ≥ 0 in the sense of positive operators.

Proof. 1) We show that et∆µ ≤ et∆ν for all t ≥ 0 in the sense of positive
operator. Let

Eν := {u ∈ H1(Ω) ∩ Cc(Ω̄) :
∫

∂Ω

|u|2 dν <∞}

and
Eµ := {u ∈ H1(Ω) ∩ Cc(Ω̄) :

∫

∂Ω

|u|2 dµ <∞}.
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Recall that Vν (resp. Vµ) is the completion of Eν (resp. Eµ) with respect to the
aν-norm (resp. aµ-norm) and by Proposition 3.3.4, they are given by

Vν := {u ∈ H̃1(Ω) : ũ ∈ L2(∂Ω, ν)}

and
Vµ := {u ∈ H̃1(Ω) : ũ ∈ L2(∂Ω, µ)}.

Since ν ≤ µ, it is clear that Vµ is continuously embedded into Vν .
a) We claim that Vµ is an ideal of Vν . Let u ∈ Vµ and v ∈ Vν be such that

0 ≤ |v| ≤ |u|. We have to show that v ∈ Vµ. We may assume that u and v are r.q.c.
It is clear that v ∈ H̃1(Ω). Since 0 ≤ |v| ≤ |u| a.e., it follows that 0 ≤ |v| ≤ |u|
r.q.e. and therefore µ, ν a.e. (since µ, ν ∈M0). It then follows that

∫

∂Ω

|v|2 dµ ≤
∫

∂Ω

|u|2 dµ <∞

and therefore v ∈ L2(∂Ω, µ) which proves the claim.
b) Let 0 ≤ u, v ∈ Vµ. We have that 0 ≤ u, v r.q.e. on Ω̄ and thus µ a.e. on

∂Ω. Therefore

aν(u, v) =
∫

Ω

∇u∇v dx+
∫

∂Ω

ũṽ dν

≤
∫

Ω

∇u∇v dx+
∫

∂Ω

ũṽ dµ

= aµ(u, v)

which completes the proof.
2) The other inequalities follow from Theorem 3.4.1.

Remark 3.4.4. Theorem 3.4.1 implies that (et∆µ)t≥0 is a submarkovian semigroup
on L2(Ω). Then, by Theorem 1.3.17, it induces consistent positive contractive semi-
groups on Lp(Ω), 1 ≤ p ≤ ∞ which are strongly continuous for 1 ≤ p <∞.

Next we ask the following question. Let µ be a Borel measure on ∂Ω in M0.
Is the closed form (aµ, V ) always regular on Ω̄?

Proposition 3.4.5. Let µ be a Borel measure on ∂Ω in M0 and let (aµ, V ) be the
closure of the form (aµ, E). Then the following assertions are equivalent.

(i) (aµ, V ) is regular on Ω̄.

(ii) µ is a Radon measure.

Proof. (i) ⇒ (ii). Assume that (aµ, V ) is regular on Ω̄. Then we can define a
Choquet capacity Capµ

Ω̄
on Ω̄ with respect to the form (aµ, V ) as we have defined

the relative capacity. Since (aµ, V ) is regular on Ω̄, by a well-known result (see [55,
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p.6]), for every compact set K ⊂ Ω̄ and every relatively open set O ⊂ Ω̄ satisfying
K ⊂ O ⊂ Ω̄, there exists a function u ∈ V ∩ Cc(Ω̄) such that u = 1 on K, u = 0
on Ω̄ \ O and 0 ≤ u ≤ 1. This implies that Capµ

Ω̄
(K) < ∞ for every compact set

K ⊂ Ω̄. Let K ⊂ ∂Ω be an arbitrary compact set. Since for all u ∈ V ∩ Cc(Ω̄) we
have

‖u‖2L2(∂Ω,µ) ≤ ‖u‖2V ,
taking the infimum over all functions u ∈ V ∩ Cc(Ω̄) satisfying u ≥ 1 on K, we
obtain that

µ(K) ≤ Capµ
Ω̄
(K) <∞

and thus µ is a Radon measure on ∂Ω.
(ii) ⇒ (i). Assume that µ is a Radon measure. Since E = H1(Ω) ∩ Cc(Ω̄) ⊂

V ∩Cc(Ω̄) and is dense in V , it follows that V ∩Cc(Ω̄) is dense in V and uniformly
dense in Cc(Ω̄).

Corollary 3.4.6. Assume that Ω is a bounded open set. Let µ be a Borel measure
on ∂Ω in M0 and let (aµ, V ) be the closure of the form (aµ, E). Then the following
assertions are equivalent.

(i) 1 ∈ V .

(ii) µ is a finite Borel measure.

(iii) (aµ, V ) is regular on Ω̄.

(iv) V is dense in H̃1(Ω).

Proof. (i) ⇒ (ii). Assume that 1 ∈ V . Since

V = {u ∈ H̃1(Ω) : ũ ∈ L2(∂Ω, µ)},

it follows that µ(∂Ω) <∞ and therefore µ is a finite Borel measure.
(ii) ⇒ (i). Assume that µ is a finite Borel measure. Then 1 ∈ E = H1(Ω) ∩

C(Ω̄) ⊂ V .
(ii) ⇔ (iii). This part follows from Proposition 3.4.5.
(ii)⇒ (iv). Assume that µ is finite Borel measure. Then E = H1(Ω)∩C(Ω̄) ⊂

V ⊂ H̃1(Ω) and V is trivially dense in H̃1(Ω).
(iv) ⇒ (ii). Assume that V is dense in H̃1(Ω). We claim that E is dense in

H̃1(Ω). Let ε > 0 and u ∈ H̃1(Ω). By hypothesis, there exists v ∈ V such that

‖v − u‖H1(Ω) < ε.

Since E is dense in V , there exists w ∈ E such that

‖w − v‖V < ε.
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We obtain that

‖w − u‖H1(Ω) ≤ ‖w − v‖H1(Ω) + ‖v − u‖H1(Ω)

≤ ‖w − v‖V + ‖v − u‖H1(Ω)

≤ 2ε

and thus E is dense in H̃1(Ω). Assume that µ is not a finite measure. Then
µ(∂Ω) = ∞ and therefore µ is locally infinite on a relatively closed subset Γ∞ of
∂Ω. Therefore

H1(Ω) ∩ Cc(Ω ∪ (∂Ω \ Γ∞)) ⊂ E ⊂ {u ∈ H1(Ω) ∩ C(Ω̄) : u|Γ∞ = 0}.

By Theorem 2.4.2 the closure of E in H̃1(Ω) is given by

Ẽ = {u ∈ H̃1(Ω) : ũ = 0 r.q.e. on Γ∞}.

Since E is dense in H̃1(Ω), it follows that CapΩ̄(Γ∞) = 0 which is a contradiction.
Thus µ(∂Ω) <∞ and the proof is complete.

Remark 3.4.7. In Corollary 3.4.6, if we drop the hypothesis µ ∈ M0, then we
always have the following implications: (i) ⇒ (ii) ⇒ (iii) ⇒ (iv). But (iv) ⇒ (ii)
is not always true as the following example shows.

Let Ω ⊂ RN be a bounded open set and ν be a finite Borel measure on ∂Ω in
M0. We define a measure µ on ∂Ω as follows: for B ∈ B(∂Ω) we let

µ(B) :=

{
∞ if CapΩ̄(B) = 0, B 6= ∅
ν(B) otherwise .

Then µ is a Borel measure on ∂Ω. Let Γ∞ be the part of ∂Ω on which µ is locally
infinite. By the proof of Proposition 3.4.6, the closure of E in H̃1(Ω) is Ẽ. Since
CapΩ̄(Γ∞) = 0, it follows that Ẽ = H̃1(Ω) and thus V is dense in H̃1(Ω) but µ is
not a finite measure on ∂Ω.

By Proposition 3.4.5, for a given Borel measure µ on ∂Ω in M0, the closed
form (aµ, V ) is not always regular on Ω̄. The following result shows that it is always
regular on some relatively open subset of Ω̄.

Proposition 3.4.8. Let µ be a Borel measure on ∂Ω in M0 and (aµ, V ) be the
closure of the form (aµ, E). Then there exists a relatively open set X satisfying
Ω ⊂ X ⊂ Ω̄ such that the Dirichlet form (aµ, V ) is regular on X.

Proof. Let

X := Ω̄ \ {x ∈ Ω̄ : u(x) = 0 ∀ u ∈ V ∩ Cc(Ω̄)}.
Then X is relatively open in Ω̄. Since

{u ∈ H1(Ω) ∩ Cc(Ω̄) : u|∂Ω = 0} ⊂ V ∩ Cc(Ω̄) ⊂ H1(Ω) ∩ C(Ω̄),
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it follows that Ω ⊂ X ⊂ Ω̄. We show that (aµ, V ) is regular on X.
a) If µ is a Radon measure, then X = Ω̄ and by Proposition 3.4.5 (aµ, V ) is

regular on X = Ω̄.
b) If µ is not a Radon measure, let Γ∞ be the relatively closed subset of ∂Ω

on which µ is locally infinite. Then it is clear that

Γ∞ := {x ∈ ∂Ω : µ(B(x, r) = ∞ ∀ r > 0}
= {x ∈ Ω̄ : u(x) = 0 ∀ u ∈ V ∩ C(Ω̄)}

and therefore X = Ω̄ \ Γ∞. Recall that by Proposition 3.3.4,

V = {u ∈ H̃1(Ω) : ũ ∈ L2(∂Ω, µ)}.

By the proof of Proposition 3.3.4, the space H1(Ω) ∩ Cc(X) is aµ-dense in V . To
complete the proof, it suffices to show that H1(Ω) ∩ Cc(X) is uniformly dense
in Cc(X). Since (aN , H̃1(Ω)) is a regular Dirichlet form on Ω̄ having H1(Ω) ∩
Cc(Ω̄) as a core and since X is relatively open, it follows from Theorem 2.4.2 that
H1(Ω)∩Cc(X) is uniformly dense in Cc(X) (see also Lemma 3.4.22 below) which
completes the proof.

Next we investigate under which conditions two measures in M0 determine
the same semigroup. Before, we need some definitions.

Along with the relatively quasi-continuity of functions, we can introduce the
relative quasi notions of subsets of Ω̄.

Definition 3.4.9. a) A set O ⊂ Ω̄ is called relatively quasi-open if for every ε >
0 there exists a relatively open set Gε containing O with CapΩ̄(Gε \O) < ε.

b) A relatively quasi-closed set is by definition the complement of a relatively
quasi-open set.

Using an abstract result which is contained in [55, Lemma 4.6.1], we can
prove the following result.

Lemma 3.4.10. A set F ⊂ Ω̄ is relatively quasi-closed if and only if there exists
a nonnegative r.q.c. function u ∈ H̃1(Ω) with F = u−1({0}) r.q.e.; i.e., up to a
relatively polar set.

Definition 3.4.11. Let µ and ν be two Borel measures on ∂Ω in M0. We say that
µ is equivalent to ν (µ ∼ ν) if et∆µ = et∆ν for all t ≥ 0.

Proposition 3.4.12. Let µ and ν be two Borel measures on ∂Ω in M0. Then the
following assertions are equivalent.

(i) µ ∼ ν.

(ii)
∫
∂Ω
|u|2 dµ =

∫
∂Ω
|u|2 dν ∀ u ∈ H̃1(Ω), u r.q.c.
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(iii) µ(G) = ν(G) for each relatively quasi-open subset G of ∂Ω.

Proof. (i) ⇒ (ii). Assume that µ is equivalent to ν. Then Vµ = Vν and
aµ(u, v) = aν(u, v) for all u, v ∈ Vµ = Vν ; i.e.,

∫

Ω

∇u∇v dx+
∫

∂Ω

ũṽ dµ =
∫

Ω

∇u∇v dx+
∫

∂Ω

ũṽ dν.

In particular, ∫

∂Ω

|u|2 dµ =
∫

∂Ω

|u|2 dν

for all r.q.c. u ∈ Vµ = Vν . Let u ∈ H̃1(Ω) be r.q.c. but not in Vµ = Vν . Then
∫

∂Ω

|u|2 dµ = ∞ =
∫

∂Ω

|u|2 dν

and the proof of (ii) is complete.
(ii) ⇒ (i). Assume that (ii) holds. It suffices to show that Vµ = Vν and

aµ(u, u) = aν(u, u) for all u ∈ Vµ. We may assume that each function u ∈ H̃1(Ω)
is r.q.c. The condition (ii) implies that

∫

∂Ω

|u|2 dµ =
∫

∂Ω

|u|2 dν

for all u ∈ Vµ and for all u ∈ Vν . Then we obtain easily that Vµ = Vν and
aµ(u, u) = aν(u, u) and therefore µ ∼ ν.

(ii) ⇒ (iii). Let G ⊂ ∂Ω be relatively quasi-open. Then by Lemma 3.4.10,
there exists a nonnegative function u ∈ H̃1(Ω) which is r.q.c. such that G = {u >
0} up to a relatively polar set and then up to a µ, ν null set (since µ, ν ∈M0). Let
vk := (ku) ∧ 1 for k ∈ N. Then the functions vk ∈ H̃1(Ω) and are r.q.c. By (ii),

∫

∂Ω

|vk|2 dµ =
∫

∂Ω

|vk|2 dν.

Thus
lim
k→∞

∫

∂Ω

|vk|2 dµ = lim
k→∞

∫

∂Ω

|vk|2 dν.

It is also clear that v2
k ↑ χ{u>0} as k → ∞. Using the Monotone Convergence

Theorem (see [43, Theorem 2, p.20]), we obtain that
∫

∂Ω

lim
k→∞

|vk|2 dµ =
∫

∂Ω

lim
k→∞

|vk|2 dν;

i.e., ∫

{u>0}
dµ =

∫

{u>0}
dν
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and thus µ(G) = ν(G).
(iii) ⇒ (ii). Assume that (iii) holds. Let u ∈ H̃1(Ω) be r.q.c. By definition, for

every ε > 0 there exists Gε relatively open such that CapΩ̄(Gε) < ε and u|Ω̄\Gε
is

continuous. We may enlarge Gε to make it relatively quasi-closed without changing
its relative capacity. Let ϕ be an arbitrary nonnegative continuous function on R
and let f := ϕou. Then f is r.q.c. This implies that the inverse image under f of
an open set is r.q.e. quasi-open. So

∫ ∞

0

µ(f > t) dt =
∫ ∞

0

ν(f > t) dt

or ∫

∂Ω

f dµ =
∫

∂Ω

f dν.

Taking ϕ(x) = x2, we obtain (ii) and the proof is complete.

Remark 3.4.13. If one of the measure µ and ν is a Radon measure, then the
condition (iii) of Proposition 3.4.12 implies that µ = ν.

Proposition 3.4.14. Let µ and ν be two Borel measures on ∂Ω in M0. Let

Γµ := {z ∈ ∂Ω : ∃ r > 0 µ(B(z, ∂Ω) ∩ ∂Ω) <∞}

(resp. Γν) denote the part of ∂Ω on which µ is locally finite (resp. the part of ∂Ω
on which ν is locally finite). Then the following assertions are equivalent.

(i) µ ∼ ν.

(ii) Γµ ∼= Γν (i.e., CapΩ̄(Γµ4Γν) = 0) and µ = ν on Γ := Γµ ∩ Γν .

Proof. (i) ⇒ (ii). Assume that µ ∼ ν. Let (aµ, Vµ) (resp. (aν , Vν)) be the
closure of the form (aµ, Eµ) (resp. (aν , Eν)). Then Vµ = Vν . We may assume that
each function u ∈ H̃1(Ω) is r.q.c. Since each function u ∈ Vµ = Vν satisfies u = 0
r.q.e. on Γcµ and in Γcν , it follows that Γcµ ∼= Γcν and therefore Γµ ∼= Γν . Since Γ
is relatively open, it follows from Proposition 3.4.12 that µ(Γ) = ν(Γ). Moreover,
for every relatively quasi-open set O ⊂ Γ we have µ(O) = ν(O). Since µ|Γ and ν|Γ
are Radon measures, it follows that µ|Γ = ν|Γ.

(ii) ⇒ (i). Assume that (ii) holds. Let u ∈ Vµ. We may assume that u is r.q.c.
Since µ is locally infinite on Γc, we have that u = 0 r.q.e. on Γc and therefore µ
a.e. Since µ = ν on Γ, it follows that

∫

∂Ω

|u|2 dν =
∫

Γ

|u|2 dν =
∫

Γ

|u|2 dµ <∞

and thus Vµ ⊂ Vν . Similarly, we obtain the converse inclusion. It is easy to see
that aµ(u, v) = aν(u, v) for all u, v ∈ Vµ = Vν and therefore µ ∼ ν.
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Recall that, by Theorem 3.4.1, for each Borel measure µ on ∂Ω in M0, the
C0-semigroup (et∆µ)t≥0 on L2(Ω) given by µ is always between (et∆D )t≥0 and
(et∆N )t≥0. A very natural question is the following. Is the converse also true?
More precisely, if T = (T (t))t≥0 is a C0-semigroup on L2(Ω) satisfying

et∆D ≤ T (t) ≤ et∆N (3.12)

for all t ≥ 0 in the sense of positive operators, is T (t) always given by a measure
µ on ∂Ω? The following example shows that this is not always the case.

Example 3.4.15. Let Ω ⊂ RN be a bounded domain with Lipschitz boundary.
Let B be a bounded linear positive operator from H1(Ω) into L2(∂Ω, σ) where σ
denotes the usual Lebesgue surface measure. Consider the bilinear form aB with
domain H1(Ω) on L2(Ω) defined by

aB(u, v) :=
∫

Ω

∇u∇v dx+
∫

∂Ω

(Bu)v dσ.

Since for all u ∈ H1(Ω), we have

‖Bu‖L2(∂Ω,σ) ≤ c1‖u‖H1(Ω)

and
‖u‖L2(∂Ω,σ) ≤ c2‖u‖H1(Ω)

(since Ω has a Lipschitz boundary), it follows that the form aB is closed on L2(Ω).
Let ∆B be the closed operator on L2(Ω) associated with the closed form aB . The
operator ∆B generates a C0-semigroup on L2(Ω) and using Theorem 3.4.2, we
obtain easily that et∆B satisfies (3.12), but it is not given by a measure on ∂Ω in
general.

More precisely, let Ω = (0, 1). Define the form a with domain H1(0, 1) by,

a(u, v) =
∫ 1

0

u′v′ dx+ u(0)v(0) + u(1)v(0) + u(0)v(1) + u(1)v(1).

Then (a,H1(0, 1)) is a regular Dirichlet form on [0, 1]. Let T be the associated
semigroup on L2(0, 1). Then T (t) satisfies (3.12) but the semigroup T is not given
by a measure on ∂Ω.

Now we would like to determine under which conditions, each semigroup on
L2(Ω) between (et∆D )t≥0 and (et∆N )t≥0 is given by a measure µ on ∂Ω. For this
we need some preparations.

Let X and m satisfying (1.3) and (a,D(a)) be a symmetric closed form on
L2(X,m). Let A be the nonnegative selfadjoint operator on L2(X,m) associated
with (a,D(a)) and {Gα, α > 0} the resolvent corresponding to A. It is well-known
that Gα(L2(X,m)) ⊂ D(a) and if u ∈ L2(X,m) and v ∈ D(a)

aα(Gαu, v) = (u, v),
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where aα(u, v) := a(u, v) + α(u, v) for u, v ∈ D(a). We define a symmetric form
a(α) on L2(X,m) by: for u, v ∈ L2(X,m) we let

a(α)(u, v) := α(u− αGαu, v). (3.13)

Lemma 3.4.16. For every u ∈ L2(X,m), a(α)(u, u) is nondecreasing as α ↑ ∞ and
{
D(a) = {u ∈ L2(X,m) : limα→∞ a(α)(u, u) <∞}
a(u, v) = limα→∞ a(α)(u, v), u, v ∈ D(a).

Idea of the proof. In fact, the resolvent equation and the contraction prop-
erty of Gα imply that Gα is nonnegative definite and (Gαu, u) ≤ 1

α (u, u). Hence
a(α)(u, u) ≥ 0. By the resolvent equation again

{
d
dαa

(α)(u, u) = (αGαu− u, αGαu− u) ≥ 0
d2

dα2 a
(α)(u, u) = −2(v,Gαv) ≤ 0

where v = αGαu−u. We see in particular that a(α)(u, u) is nondecreasing as α ↑ ∞.
The second part of the lemma can be proved by using the Spectral Theorem (see
[55, Section 1.3]) or by a direct computation (see [69, Theorem I.2.13]).

Lemma 3.4.16 says that a(α) is an approximating form determined by Gα.
The following result is contained in [55, Lemma 1.4.1].

Lemma 3.4.17. If S is a positive symmetric linear operator on L2(X,m), then there
exists a unique positive Radon measure ν on the product space X ×X satisfying
the following property: for all u, v ∈ L2(X,m),

(u, Sv) =
∫

X×X
u(x)v(y) dν.

Next, for a measurable function u on X we let

supp[u] := supp[|u| ·m] (3.14)

and call supp[u] the support of u. Note that if u = v m-a.e., then supp[u] = supp[v].
Hence supp[u] is well-defined by (3.14) for all u ∈ L2(X,m). If u ∈ C(X), then
supp[u] is just the closure of {x ∈ X : u(x) 6= 0}.
Definition 3.4.18. Let (a,D(a)) be a symmetric Dirichlet form on L2(X,m). We
say that the form (a,D(a)) is local if a(u, v) = 0 for all u, v ∈ D(a) with disjoint
compact supports.

The following result shows that under the regularity asumption of the form
(a,D(a)), “supp[u], supp[v] compact” in the definition of local forms can be
dropped and gives another property which is equivalent with the local property.
The first part of the proof is contained in [69, Proposition V.1.2] and the second
part in [69, p.150].
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Proposition 3.4.19. Assume that (a,D(a)) is a symmetric regular Dirichlet form
on L2(X,m). Then the following assertions are equivalent.

(i) (a,D(a)) is local.

(ii) a(u, v) = 0 for all u, v ∈ D(a) with supp[u] ∩ supp[v] = ∅.
(iii) a(u, v) = 0 for all u, v ∈ D(a) ∩ Cc(X) with supp[u] ∩ supp[v] = ∅.

Now we return to the form (aµ, V ).

Proposition 3.4.20. Let µ be a Borel measure on ∂Ω in M0 and (aµ, V ) be the
closure of the form (aµ, E). Then the form (aµ, V ) is local.

Proof. Let Γ∞ be the part of ∂Ω on which µ is locally infinite and let X :=
Ω ∪ (∂Ω \ Γ∞). Since by Proposition 3.4.8, the form (aµ, V ) is regular on X and
has H1(Ω) ∩ Cc(X) as core and for u, v ∈ V we have

aµ(u, v) =
∫

Ω

∇u∇v dx+
∫

∂Ω

ũṽ dµ,

it is clear that aµ(u, v) = 0 whenever u, v ∈ H1(Ω)∩Cc(X) with supp[u]∩supp[v] =
∅ and by Proposition 3.4.19 the form (aµ, V ) is local.

Now we can give the following result which characterizes the semigroups
which are between (et∆D )t≥0 and (et∆N )t≥0.

Theorem 3.4.21. Let Ω ⊂ RN be an open set and T = (T (t))t≥0 be a symmetric
C0-semigroup on L2(Ω) satisfying

et∆D ≤ T (t) ≤ et∆N (3.15)

for all t ≥ 0 in the sense of positive operators. Let (a,D(a)) be the closed form on
L2(Ω) associated with T . Then the following assertions are equivalent.

(i) T (t) = et∆µ for some positive Borel measure µ on ∂Ω which does not charge
relatively polar Borel subsets of the part of ∂Ω on which it is locally finite.

(ii) (a) (a,D(a)) is local.

(b) D(a) ∩ Cc(Ω̄) is dense in D(a).

To prove this result, we need the following version of Stone-Weierstrass’ The-
orem which is contained in [31, Theorem D.23].

Lemma 3.4.22 (Stone-Weierstrass). Let X be a locally compact metric sapce, and
let F be a subalgebra of C0(X) such that

a) F separates the points of X, and
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b) for all x ∈ X there exists u ∈ F such that u(x) 6= 0.

Then F is uniformly dense in C0(X).

Proof of Theorem 3.4.21. (i) ⇒ (ii). This part follows from Corollary 3.3.2
and Propositions 3.4.8 and 3.4.20.

(ii) ⇒ (i). 1) Let

X := Ω̄ \ {x ∈ Ω̄ : u(x) = 0 ∀ u ∈ D(a) ∩ Cc(Ω̄)}.
It is clear that X is relatively open. Since H1

0 (Ω) ⊂ D(a), we have Ω ⊂ X ⊂ Ω̄. As
D(a) is a Dirichlet space, it follows from [55, Theorem 1.4.2 (ii)] that D(a)∩Cc(X)
is a subalgebra of Cc(X). It is also clear that D(a) ∩ Cc(X) separates the points
of X. Moreover, by definition of X, we have that for every x ∈ X there exists
u ∈ D(a) ∩ Cc(X) such that u(x) 6= 0. It then follows from Lemma 3.4.22 that
D(a) ∩ Cc(X) is uniformly dense in Cc(X).

2) Since T (t) satisfies (3.15), it follows from Theorem 3.4.2 that H1
0 (Ω) is an

ideal of D(a) and D(a) is also an ideal of H̃1(Ω). Moreover, for all u, v ∈ H1
0 (Ω),

a(u, v) =
∫

Ω

∇u∇v dx,

and for all u, v ∈ D(a)+,
∫

Ω

∇u∇v dx := aN (u, v) ≤ a(u, v).

For u, v ∈ D(a) ∩ Cc(X) we let

b(u, v) := a(u, v)− aN (u, v) = a(u, v)−
∫

Ω

∇u∇v dx.

Let {Gaβ : β > 0} be the resolvent of the operator associated with the closed form
(a,D(a)) and {GNβ : β > 0} be the resolvent of ∆N . Note that we regard Gaβ and
GNβ as operators on L2(X,m) (where m is defined in Section 2.2) which can be
identified in an obvious way with L2(Ω). With this consideration, the space X and
the measure m satisfy the conditions (1.3).

Let a(β) and a(β)
N be the approximating forms of a and aN as defined in (3.13)

and let

b(β)(u, v) := a(β)(u, v)− a
(β)
N (u, v)

= β(u− βGaβu, v)− β(u− βGNβ u, v)

= β(β(GNβ −Gaβ)u, v).

Since by the domination criterion, b(β)(u, v) ≥ 0 for all positive u, v ∈ D(a) ∩
Cc(X), we have that β(GNβ − Gaβ) is a positive symmetric operator on L2(X,m)
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and it then follows from Lemma 3.4.17 that there exists a positive Radon measure
νβ on X ×X such that for u, v ∈ D(a) ∩ Cc(X) we have

bβ(u, v) = β(β(GNβ −Gaβ)u, v) = β

∫

X×X
u(x)v(y) dνβ .

It is clear that bβ(u, v) → b(u, v) as β ↑ ∞ for all u, v ∈ D(a) ∩ Cc(X). Since for
each β > 0 and u ∈ D(a) ∩ Cc(X)

bβ(u, u) ≤ a(u, u),

it follows that the sequence of measures (βνβ) is uniformly bounded on each com-
pact subset of X×X and hence a subsequence βnνβn

converges as βn →∞ vaguely
on X ×X to a positive Radon measure ν. Moreover, since by 1) D(a) ∩ Cc(X) is
uniformly dense in Cc(X), we have that the measure ν is unique and therefore for
all u, v ∈ D(a) ∩ Cc(X) we have

b(u, v) =
∫

X×X
u(x)v(y) dν.

Since the forms a and aN are local, it follows that b(u, v) = 0 for all u, v ∈ D(a)∩
Cc(X) with supp[u] ∩ supp[v] = ∅. This implies that supp[ν] ⊂ {(x, x) : x ∈ X}
and therefore

b(u, v) =
∫

X

u(x)v(x) dν.

Since b(u, v) = 0 for all u, v ∈ D(Ω) ⊂ D(a), we have that supp[ν] ⊂ X \Ω := ∂X
and thus

b(u, v) =
∫

∂X

u(x)v(x) dν.

Define a measure µ on ∂Ω by: for B ∈ B(∂Ω) we let

µ(B) :=

{
ν(B) if B ∈ B(∂X) = B(∂Ω)∂X ,
∞ if B 6∈ B(∂X).

Then µ is a Borel measure on ∂Ω and for u, v ∈ D(a) ∩ Cc(X) we have

a(u, v) =
∫

Ω

∇u∇v dx+
∫

∂Ω

uv dµ. (3.16)

Since D(a) is an ideal of H̃1(Ω), it follows that D(a) ∩ Cc(X) = H1(Ω) ∩ Cc(X)
and therefore a = aµ on H1(Ω)∩Cc(X). Since (a,D(a)) is a closed form, it follows
that (a,H1(Ω)∩Cc(X)) = (aµ,H1(Ω)∩Cc(X)) is closable and by Corollary 3.3.2,
this is equivalent to the property that µ|∂X = ν does not charge relatively polar
Borel subsets of ∂X.

3) Let (aµ, V ) be the closure of the form (aµ,H1(Ω)∩Cc(X)). By definition,
V is the completion of H1(Ω)∩Cc(X) with respect to the aµ = a-norm. To finish,
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we have to show that V = D(a). It is clear that V is a closed subspace of D(a). It
suffices to show that

D(a) ∩ Cc(Ω̄) = {u ∈ H1(Ω) ∩ Cc(Ω̄) : u|∂Ω\∂X = 0,
∫

∂X

|u|2 dµ <∞} =: Eµ

(3.17)
and that (3.16) remains true for all u, v ∈ Eµ.

In order to prove (3.17) it suffices to consider positive functions. Let 0 ≤ u ∈
Eµ. Then (u− ε)+ ∈ H1(Ω) ∩ Cc(X) (by the fact that D(a) ∩ Cc(X) = H1(Ω) ∩
Cc(X)) for all ε > 0. Moreover, (u− ε)+ → u in H1(Ω) and (u− ε)+|∂X → u|∂X
in L2(∂X, µ) as ε ↓ 0. Hence (u− ε)+ is a Cauchy net in D(a). Thus u ∈ D(a) and

a(u, u) = lim
ε↓0

a((u− ε)+, (u− ε)+)

= lim
ε↓0

(∫

Ω

|∇(u− ε)+|2 dx+
∫

∂X

((u− ε)+)2 dµ
)

=
∫

Ω

|∇u|2 dx+
∫

∂X

|u|2 dµ.

Conversely, let 0 ≤ u ∈ D(a)∩Cc(Ω̄). Since a is a Dirichlet form, (u−ε)+ converges
to u in D(a) as ε ↓ 0. Moreover, (u− ε)+ ∈ Eµ. Hence

a(u, u) = lim
ε↓0

a((u− ε)+, (u− ε)+) =
∫

Ω

|∇u|2 dx+
∫

∂X

|u|2 dµ.

We have proved (3.17) and (3.16) for u = v. The polarization identity shows that
(3.16) holds for all u, v ∈ Eµ. Now Proposition 3.4.8 implies that a = aµ and
therefore V = D(a).

Next we characterize those semigroups which are given by finite measures.

Corollary 3.4.23. Let Ω ⊂ RN be a bounded open set and T = (T (t))t≥0 be a
symmetric C0-semigroup on L2(Ω) satisfying

et∆D ≤ T (t) ≤ et∆N

for all t ≥ 0 in the sense of positive operators. Let (a,D(a)) be the closed form on
L2(Ω) associated with T . Then the following assertions are equivalent.

(i) T (t) = et∆µ for a unique finite Borel measure µ on ∂Ω in M0.

(ii) (a) (a,D(a)) is local.

(b) 1 ∈ D(a) ∩ C(Ω̄).

Proof. (i) ⇒ (ii). This part follows from Theorem 3.3.1, Corollary 3.4.6 and
Proposition 3.4.20.

(ii) ⇒ (i). The proof is similar to the proof of Theorem 3.4.21.
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1) Since 1 ∈ D(a) andD(a) is an ideal of H̃1(Ω), it follows thatD(a)∩C(Ω̄) =
H1(Ω) ∩ C(Ω̄) which is uniformly dense in C(Ω̄).

2) The fact that 1 ∈ D(a) ∩ C(Ω̄) implies that X = Ω̄ which is a compact
set. Proceeding as in the proof of Theorem 3.4.21 by letting

b(u, v) = a(u, v)−
∫

Ω

∇u∇v dx

for u, v ∈ H1(Ω) ∩ C(Ω̄), we obtain that there exists a unique positive Radon
measure µ on ∂Ω; i.e., a finite measure such that for all u, v ∈ H1(Ω) ∩ C(Ω̄) we
have

b(u, v) =
∫

∂Ω

uv dµ

and therefore for all u, v ∈ H1(Ω) ∩ C(Ω̄) we have

a(u, v) =
∫

Ω

∇u∇v dx+
∫

∂Ω

uv dµ.

Since the form (a,D(a)) is closed, it follows that the form (a,H1(Ω) ∩ C(Ω̄)) =
(aµ,H1(Ω) ∩ C(Ω̄)) is closable on L2(Ω) and by Theorem 3.3.1 this is equivalent
to the property that µ ∈M0.

3) Let (aµ, V ) be the closure of (aµ,H1(Ω) ∩ C(Ω̄)). To finish, we have to
show that (a,D(a)) = (aµ, V ). Since µ ∈ M0, it follows from Proposition 3.3.4
that

V = {u ∈ H̃1(Ω) : ũ ∈ L2(∂Ω, µ)}.
It is clear that V is a closed subspace of D(a). Let u ∈ D(a). Without restriction,
we assume that u is r.q.c. By considering u+ and u− separately if necessary, we
may assume that 0 ≤ u. For k ∈ N we let uk := u ∧ k. Then uk ∈ H̃1(Ω) is r.q.c.
Since 0 ≤ uk ≤ k and µ(∂Ω) < ∞, it follows that uk ∈ L2(∂Ω, µ) and therefore
uk ∈ V . It is also clear that uk → u in H̃1(Ω) and thus after taking a subsequence
if necessary, we may assume that uk → u r.q.e on Ω̄. Since µ ∈ M0, it follows
that uk → u µ a.e. on ∂Ω. Finally, since 0 ≤ uk ≤ k, the Lebesgue Dominated
Convergence Theorem implies that uk → u in L2(∂Ω, µ) and thus uk → u with
respect to the aµ-norm and therefore u ∈ V which completes the proof.

3.5 Convergence of Forms.

Throughout this section, Ω will denote a bounded open set in RN . Let µn ∈ M0

be a sequence of measures on ∂Ω and µ ∈ M0 be a measure on ∂Ω. Consider
the submarkovian C0-semigroups (et∆µn )t≥0 and (et∆µ)t≥0 on L2(Ω) generated
respectively by ∆µn and ∆µ. The basic question which we address is, whether we
have

et∆µn → et∆µ as n→∞ (3.18)



76 3. GENERAL BOUNDARY CONDITIONS FOR THE LAPLACIAN

if the measures µn converge to µ in an appropriate sense. By the Trotter-Kato
Approximation Theorem (see [11, Theorem 3.6.1 p.149]), we have strong conver-
gence in (3.18) if the generators ∆µn → ∆µ as n → ∞ in the strong resolvent
sense. Before studying this notion, we recall the following well-known result [84,
Theorem S.17 p.374].

Proposition 3.5.1. Let A and B be two selfadjoint closed operators on a Hilbert
space H and let a and b be the corresponding forms. Then a ≤ b if and only if
(B + 1)−1 ≤ (A+ 1)−1.

We begin with a very simple case by considering µ ∈M0 to be a finite Borel
measure on ∂Ω. Before, we need the following notions.

Definition 3.5.2. Let µ be a Borel measure on ∂Ω which is in M0. A set F is said
to be a relative quasi-support of µ if the following two conditions are satisfied:

(i) F is relatively quasi-closed and µ(∂Ω \ F ) = 0.

(ii) If F̃ is another set with property (i) then F ⊂ F̃ r.q.e.

The relative quasi-support F of µ is unique up to the r.q.e. equivalence.
Moreover if Γ is the topological support of µ, since every relatively closed set is
relatively quasi-closed, we have that F ⊂ Γ r.q.e. and by deleting a set of zero
relative capacity from F if necessary, we can always assume that F ⊂ Γ.

Thoughout the following for a measure µ on ∂Ω in M0 we always denote by
(aµ, V ) the closed form on L2(Ω) as defined in the preceding section; i.e.

aµ(u, v) :=
∫

Ω

∇u∇v dx+
∫

∂Ω

ũṽ dµ

with domain
V := {u ∈ H̃1(Ω) :

∫

∂Ω

|ũ| dµ <∞}.

Proposition 3.5.3. Let µ ∈ M0 be a finite Borel measure on ∂Ω with relative
quasi-support ∂Ω and let k ∈ N. We define

aµk(u, v) :=
∫

Ω

∇u∇v dx+ k

∫

∂Ω

ũṽ dµ u, v ∈ V.

Then ∆µk → ∆D as k →∞ in the strong resolvent sense.

Proof. It is clear that 0 ≤ aµ1 ≤ aµ2 ≤ . . . ≤ aµk ≤ . . .. Let

V∞ := {u ∈ V : sup
k
aµk(u, u) <∞}

and
a∞(u, u) := lim

k→∞
aµk(u, u) = sup

k
aµk(u, u).
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1) First, we prove that (a∞, V∞) = (aD,H1
0 (Ω)). It is easy to see that

H1
0 (Ω) ⊂ V∞. Let us prove the converse inclusion. Let u ∈ V∞. Then

limk→∞ aµk(u, u) < ∞. Without restriction, we may assume that u is r.q.c. This
implies that

lim
k→∞

k

∫

∂Ω

|u|2 dµ <∞,

which is possible if and only if
∫
∂Ω
|u|2 dµ = 0 and then u = 0 µ a.e. on ∂Ω. Since

we suppose that the relative quasi-support of µ is ∂Ω, this implies that u|∂Ω = 0
r.q.e. (this follows from an abstract result contained in [55, Theorem 4.6.2]) which
implies that u ∈ H1

0 (Ω) by Theorem 2.4.1.
2) Now we show that ∆µk → ∆D as k → ∞ in the strong resolvent sense.

Since aµk ≤ a∞, by Proposition 3.5.1, for ϕ ∈ L2(Ω), we have

(ϕ, (∆D + 1)−1ϕ) ≤ (ϕ, (∆µk + 1)−1ϕ).

Since (ϕ, (∆µk + 1)−1ϕ) is monotone decreasing, it follows that

lim
k→∞

(ϕ, (∆µk + 1)−1ϕ) = inf
k

(ϕ, (∆µk + 1)−1ϕ)

has a nonzero value, so we can find a selfadjoint operator C with zero kernel so
that (ϕ, (∆µk+1)−1ϕ) → C weakly as k →∞ (see the proof of [84, Theorem S.14
p.376]). Let b be the form associated with B := C−1 − 1. Since

(∆D + 1)−1 ≤ C ≤ (∆µk + 1)−1,

by Proposition 3.5.1, we have that aµk ≤ b ≤ aD. Passing to the limit as k →∞,
we obtain a∞ = aD ≤ b ≤ aD. Then b = aD and B = ∆D. Thus (∆µk +
1)−1 → (∆D + 1)−1 weakly as k → ∞. By a similar argument this holds if 1 is
replaced by an arbitrary λ > 0 and by analyticity we have weak convergence of
the resolvent on C \ [0,∞) and since weak resolvent convergence implies strong
resolvent convergence (see [84, Section VIII.7]), this proves the claim.

Proposition 3.5.4. Let µ ∈M0 be a finite Borel measure on ∂Ω, k ∈ N∗ and define

aµk(u, v) :=
∫

Ω

∇u∇v dx+
1
k

∫

∂Ω

ũṽ dµ u, v ∈ V.

Then ∆µk → ∆N as k →∞ in the strong resolvent sense.

We do not give a proof of Proposition 3.5.4. We shall consider the case where
the measure on ∂Ω is the restriction to ∂Ω of the (N − 1)-dimensional Hausdorff
measure which we denote by σ. Then Proposition 3.5.4 becomes a particular case,
since σ is not always a Radon measure. For this we need some preparations.

Recall that, we call ∆N (the Laplacian with Neumann boundary conditions),
the selfadjoint operator on L2(Ω) associated with the closed form aN with domain
H̃1(Ω) defined by

aN (u, v) :=
∫

Ω

∇u∇v dx.



78 3. GENERAL BOUNDARY CONDITIONS FOR THE LAPLACIAN

If we replace H̃1(Ω) by the closed subspace DB of the form:

DB := {u ∈ H̃1(Ω) : ũ = 0 q.e. on B}
for some B ∈ B(∂Ω) with CapΩ̄(∂Ω\B) > 0, then the operator ∆B

N associated with
(aN , DB) is the Laplacian with Dirichlet boundary conditions on B and Neumann
boundary conditions on ∂Ω \B which we call Dirichlet-Neumann Laplacian.

In the following, without restriction, we assume that Ω is such that σ ∈M0.

Proposition 3.5.5. Let k ∈ N∗ and define

aσk(u, v) :=
∫

Ω

∇u∇v dx+
1
k

∫

∂Ω

ũṽ dσ, u, v ∈ V.

Let ∆σk be the operator associated with (aσk, V ). If σ(∂Ω) <∞, then ∆σk → ∆N

as k →∞ in the strong resolvent sense. If σ is locally infinite on a part Γ∞ ⊂ ∂Ω,
then ∆σk → ∆Γ∞

N as k →∞ in the strong resolvent sense.

Proof. We give a proof only for the case σ(∂Ω) <∞. The proof of the other
case is exactly the same.

a) We have aσ1 ≥ aσ2 ≥ . . . ≥ aσk ≥ . . . ≥ 0. For u ∈ V define

a∞(u, u) := lim
k→∞

aσk(u, u) = inf
k
aσk(u, u).

It is clear that for such u,

a∞(u, u) =
∫

Ω

|∇u|2 dx.

Let ((a∞)r, V ) be the closable part of (a∞, V ). Since (a∞, V ) is closable on L2(Ω),
we have (a∞)r = a∞. Let V∞ be the completion of V with respect to the norm
‖u‖a∞ = ‖u‖H1(Ω). By Corollary 3.4.6, V∞ = H̃1(Ω). Thus the closed form
((a∞)r, V∞) is the form associated with the operator ∆N .

b) Let us prove that ∆σk → ∆N as k →∞ in the strong resolvent sense. Let
ϕ ∈ L2(Ω). Since (ϕ, (∆σk+1)−1ϕ) is monotone increasing and (ϕ, (∆σk+1)−1ϕ) ≤
(ϕ, (∆N + 1)−1ϕ), it follows as in the proof of Proposition 3.5.3 that there exists
a closed operator C with zero kernel such that

(∆σk + 1)−1 → C weakly.

Let s be the quadratic form of S := C−1 − 1. Then s ≤ aσk. Since s is a closed
form, it follows that s = sr. This implies that s ≤ (a∞)r and thus s ≤ (a∞)r. On
the other hand, since (a∞)r ≤ a∞ ≤ aσk, we have that (∆N +1)−1 ≥ (∆σk+1)−1.
Taking the limit as k → ∞, one obtains (∆N + 1)−1 ≥ (S + 1)−1 so s ≥ (a∞)r;
i.e., s = (a∞)r = aN . Now the statement follows from the fact that weak resolvent
convergence implies strong resolvent convergence.

Next we consider the case of a sequence of measures.
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Proposition 3.5.6. Let µn and µ be finite Borel measures on ∂Ω in M0. Assume
that µn is monotone and µn → µ vaguely. Then ∆µn

→ ∆µ in the strong resolvent
sense.

Proof. We give a proof only for the increasing case.
1) We have again 0 ≤ aµ1 ≤ aµ2 ≤ . . . ≤ aµn

≤ . . .. We will denote by Vn the
domain of the form aµn

. Let

V∞ := {u ∈ ∩nVn : sup
n
aµn(u, u) <∞}

and a∞(u, u) := limn→∞ aµn
(u, u). It is clear that

. . . ⊂ Vn+1 ⊂ Vn ⊂ . . . ⊂ V2 ⊂ V1.

We want to prove that a∞ = aµ. As H1(Ω) ∩ C(Ω̄) ⊂ Vn for all n ≥ 1 we have
that H1(Ω)∩C(Ω̄) ⊂ V∞. Let u ∈ H1(Ω)∩C(Ω̄). Since µn → µ vaguely, it follows
that limn→∞ aµn(u, u) = aµ(u, u). Since H1(Ω) ∩ C(Ω̄) is dense in V∞, we obtain
that

lim
n→∞

aµn(u, u) := a∞(u, u) = aµ(u, u) ∀ u ∈ V∞.
Then aµ(u, u) = a∞(u, u) for all u ∈ V∞. Since aµ ≤ a∞ we have that V∞ ⊂ Vµ.
Let u ∈ Vµ. It is clear that u ∈ ∩nVn. The density of H1(Ω) ∩ C(Ω̄) in Vµ implies
that supn aµn(u, u) = aµ(u, u) <∞ and thus u ∈ V∞ which implies that V∞ = Vµ.

2) The proof of ∆µn → ∆µ in the strong resolvent sense is the same as in
Proposition 3.5.3.

Next we introduce the following well-known notion of convergence.

Definition 3.5.7. Let X be a metric space. Let (Fn) be a sequence of functions from
X → R̄ := R ∪ {−∞,+∞} and F : X → R̄. We say that (Fn) Γ-converges to F
in X if the following conditions are satisfied.

a) For every u ∈ X and for every sequence un converging to u in X

F (u) ≤ lim inf
n→∞

Fn(un).

b) For every u ∈ X there exists a sequence un converging to u in X such that

F (u) = lim sup
n→∞

Fn(un).

For each µ ∈ M0 we associate the following functional Fµ defined on L2(Ω)
by letting

Fµ(u) :=

{∫
Ω
|∇u|2 dx+

∫
∂Ω
|ũ|2 dµ u ∈ V

∞ u ∈ L2(Ω) but not in V.

We only consider measures which do not charge relatively polar sets.
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Definition 3.5.8. Let µn, µ ∈M0. We say that µn γ-converges to µ if the sequence
of functionals Fµn

Γ-converges to the functional Fµ in L2(Ω).

Proposition 3.5.9. Let µn, µ ∈M0. Assume that µn γ-converges to µ. Then
∆µn

→ ∆µ in the strong resolvent sense.

Proof. Let f ∈ L2(Ω), un = λR(λ,∆µn
)f and u = λR(λ,∆µ)f where λ > 0.

We have to prove that un → u strongly in L2(Ω) as n→∞. Remark that un is a
weak solution of the equation −∆µn

un + λun = λf . The Dirichlet principle (see
[24, Proposition IX.22]) says that un is given by

min
u∈ eH1(Ω)

{
1
2

(∫

Ω

|∇u|2 dx+
∫

∂Ω

|ũ|2 dµ+ λ

∫

Ω

|u|2 dx
)
− λ

∫

Ω

fu dx

}
.

By the definition of Γ-convergence there exists a sequence vn converging to u in
L2(Ω) and

Fµ(u) = lim
n→∞

Fµn
(vn).

Set
Jµ(u) := Fµ(u) + λ

∫

Ω

|u|2 dx− 2λ
∫

Ω

fu dx.

Since un is minimum, we have

Jµn(un) ≤ Jµn(vn).

Therefore
Jµn(un) + λ

∫

Ω

|f |2 dx ≤ Jµn(vn) + λ

∫

Ω

|f |2 dx.

This means that

Fµn(un) + λ

∫

Ω

(un − f)2 dx ≤ Fµn(vn) + λ

∫

Ω

(vn − f)2 dx.

Hence,

lim sup
n→∞

(
Fµn(un) + λ

∫

Ω

(un − f)2 dx
)

≤ lim
n

(
Fµn(vn) + λ

∫

Ω

(vn − f)2 dx
)

= Fµ(u) + λ

∫

Ω

(u− f)2 dx.

It is clear that un is a bounded sequence in V . Then there exists a subsequence
which converges weakly in V to a function w ∈ V . We may assume that un → w
weakly in V . Then Fµ(w) ≤ lim infn→∞ Fµn(un). Moreover,

∫

Ω

(w − f)2 dx ≤ lim inf
n→∞

∫

Ω

(un − f)2 dx.
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Hence,

Fµ(w) + λ

∫

Ω

(w − f)2 dx ≤ lim inf
n→∞

(
Fµn

(un) + λ

∫

Ω

(un − f)2 dx
)

≤ lim sup
n→∞

(
Fµn

(un) + λ

∫

Ω

(un − f)2 dx
)

≤ Fµ(u) + λ

∫

Ω

(u− f)2 dx.

Since u is unique, we have that w = u and

Fµ(u) + λ

∫

Ω

(u− f)2 dx = lim
n→∞

(
Fµn

(un) + λ

∫

Ω

(un − f)2 dx
)
.

This implies that
∫
Ω
(u − f)2 dx = limn→∞

∫
Ω
(un − f)2 dx and thus un → u

strongly in L2(Ω) as n→∞.

3.6 Comments.

Sections 3.1 and 3.2.
A proof of Lemma 3.2.5 is given by Daners in [34] for the particular case where µ
is the restriction to ∂Ω of the (N − 1)-dimensional Hausdorff measure σ.

Now we prove the following result which says that the space H1(Ω) is a lattice
and the lattice operations are continuous. The first part of the proof is contained
in [59, Lemma 7.6 p.152] and the second part in [33, Lemma 6.4.1].

Theorem 3.6.1. The following statements are satisfied.

a) If u ∈ H1(Ω) then u+ ∈ H1(Ω) and the mapping u 7→ |u| is continuous from
H1(Ω) to H1(Ω).

b) If 0 ≤ u ∈ H1(Ω) then (u− 1)+ ∈ H1(Ω) and the mapping u 7→ (u− 1)+ is
continuous from H1(Ω)+ into H1(Ω)+.

Proof. a) Let u ∈ H1(Ω). It is clear that u+ ∈ L2(Ω). For every ε > 0 let

fε(ξ) :=

{
(ξ2 + ε2)1/2 − ε if ξ > 0
0 if ξ ≤ 0.

For every ε > 0, fε ∈ C1(R) and f ′ε is bounded since

f ′ε(ξ) = ξ(ξ2 + ε2)−1/2, ξ > 0.

Thus fε ◦ u ∈ H1(Ω) for all u ∈ H1(Ω). For ϕ ∈ D(Ω) we have
∫

Ω

(fε ◦ u)Diϕ dx = −
∫

u>0

ϕ
uDiu

(u2 + ε2)1/2
dx.
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Taking the limit as ε→ 0 we obtain
∫

Ω

u+Diϕdx = −
∫

u>0

ϕDiu dx

which implies that

Diu
+ =

{
Diu if u > 0
0 fi u ≤ 0

(3.19)

and thus Diu
+ ∈ L2(Ω). Notice that by (3.19) we have ∇|u| = sgnu∇u. Hence

‖ |u| ‖H1(Ω) = ‖u‖H1(Ω) for all u ∈ H1(Ω). To prove the continuity of the mapping,
let (un) be a sequence in H1(Ω) converging to v in H1(Ω). Then, by the reverse
triangle inequality

| ‖ |un| ‖ − ‖ |v| ‖ | = | ‖un|‖ − ‖v‖ | ≤ ‖un − v‖H1(Ω).

This implies that ‖ |un| ‖H1(Ω) converges to ‖ |v| ‖H1(Ω) as n→∞. On the other
hand, as ‖ |un| ‖H1(Ω) = ‖un‖H1(Ω) the sequence (|un|) is bounded in H1(Ω),
and therefore has a weakly convergent subsequence. As the mapping u 7→ |u| is
continuous in L2(Ω) its (unique) limit is |v| in L2(Ω), and therefore the whole
sequence converges weakly to |v| in H1(Ω). As we showed already that the norm
converges, we conclude that |un| → |v| in H1(Ω), proving the continuity of the
mapping u 7→ |u|.

b) The proof is similar as in a). Here we let

fε(ξ) =

{
((ξ − 1)2 + ε2)1/2 − ε if ξ > 1
0 if ξ ≤ 1

and use Stampacchia’s Lemma (∇u = 0 a.e. on {x : u(x) = c} for any constant
c).

Section 3.3.
The notion of perturbation of regular Dirichlet forms by measures has been con-
sidered in [55, Section 6.1] and [89].

Lemma 3.3.5 can be also proved by noticing that the set R∩M0 is an ideal in
R where R denotes the set of all Radon measures on ∂Ω. In fact, let µ ∈ R∩M0

and ν ∈ R be such that ν ≤ µ. Let A ∈ B(∂Ω) be such that CapΩ̄(A) = 0. Since
µ ∈ R ∩ M0, we have that µ(A) = 0. But ν ≤ µ implies ν(A) = 0 and thus
ν ∈ R ∩ M0. Using the Riesz Decomposition Theorem (see [86, Theorem 2.10
p.62]), the band orthogonal to R∩M0 (in the lattice sense) is the set of all such
measures µs. This technique has been used by Stollmann and Voigt in [89].

Section 3.4.
By Proposition 3.4.8, for a given Borel measure µ on ∂Ω in M0, there always
exists a relatively open set X satisfying Ω ⊂ X ⊂ Ω̄ such that (aµ, V ) is regular
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on X. Note that V is an ideal of H̃1(Ω) containing H1
0 (Ω) as a closed subideal. A

natural question is the following. Let I be an ideal of H̃1(Ω) containing H1
0 (Ω) as

a closed subideal. Is the space I regular on some subset Y of Ω̄? By [88, Theorem
1.1] if I is a closed subspace of H̃1(Ω) then there exists a Borel subset M of ∂Ω
such that

I = {u ∈ H̃1(Ω) : ũ = 0 r.q.e. on M}.
A closer look of the proof of [88, Theorem 1.1] shows that M is in fact relatively
quasi-closed and therefore Ω̄ \M is relatively quasi-open. If Ω̄ \M is relatively
open (i.e., if M is relatively closed) by Theorem 2.4.2 I is regular on X := Ω̄ \M .
Since a relatively quasi-open set is not necessarily relatively open, we do not know
whether I is in general regular. Therefore we do not know if condition (ii) (b) of
Theorem 3.4.21 can be omitted. By Example 3.4.15, the local condition on the
form can not be omitted.

Finally, the notion of local forms is contained in [55] and [69]. It is well-known
that if (a,D(a)) is a regular local symmetric Dirichlet form on L2(Ω) where Ω is
an open subset of RN and if D(Ω) ⊂ D(a) then the restriction of a to D(Ω) is of
the form

a(u, v) =
N∑

i,j=1

∫

Ω

DiuDjv dνij +
∫

Ω

uv dk

where for 1 ≤ i, j ≤ N , νij is a Radon mesure on Ω such that for every compact set
K ⊂ Ω, νij(K) = νji(K) and

∑N
i,j=1 ξiξjνij(K) ≥ 0 for all ξ = (ξ1, . . . , ξN ) ∈ RN

and here k is a positive Radon measure on Ω (see [69, II Theorem 2.8 p.47]).

Section 3.5.
The monotone convergence of forms is contained in [84]. For more information on
the notion of Γ-convergence we refer to [21] or [32].
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Chapter 4

Robin and Neumann Boundary
Conditions

In this chapter, we examine two particular cases of Chapter 3. The first one, Robin
boundary conditions, corresponds to the case where µ is the restriction to ∂Ω of
the (N − 1)-dimensional Hausdorff measure HN−1 which we denote by σ, or more
generally it corresponds to the case where µ is absolutely continuous with respect
to σ. The second one, Neumann boundary conditions, corresponds to the cases
where µ = 0 or µ is concentrated on a relatively polar Borel subset of ∂Ω. We
need some preparations to examine these cases.

4.1 Maz’ya Inequality.

Before giving the very remarkable inequality due to Maz’ya (Theorem 4.1.7) and
called Maz’ya inequality, we need some preparations. The proof of the Maz’ya
inequality is based on Theorem 4.1.1, and on the well-known coarea formula (The-
orem 4.1.4) and on the isoperimetric inequality. The proof of Theorem 4.1.1 given
here is taken from [43, Remark p.192].

Theorem 4.1.1. Let Ω ⊂ RN be an open set and u ∈ C∞(Ω). Let

Et := {x ∈ Ω : u(x) ≥ t}, t ∈ R.
Then

‖u‖ N
N−1

≤
∫ ∞

0

|Et|
N−1

N dt. (4.1)

Proof. We can assume that u ≥ 0. Let

ut := min(t, u) and F (t) :=
(∫

Ω

u
N

N−1
t dx

)N−1
N

.
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Then F is nondecreasing on (0,∞) and

lim
t→∞

F (t) = ‖u‖ N
N−1

.

Moreover, for h > 0,

0 ≤ F (t+ h)− F (t) =
[∫

Ω

u
N

N−1
t+h dx

]N−1
N

−
[∫

Ω

u
N

N−1
t dx

]N−1
N

≤
[∫

Ω

|ut+h − ut|
N

N−1 dx

]N−1
N

≤ h|Et|
N−1

N .

Thus F (t+h)−F (t)
h ≤ |Et|N−1

N . Taking the limit as h→ 0 (since F is locally Lipschitz
it is differentiable a.e.) we obtain that F ′(t) ≤ |Et|N−1

N . Integrating, we obtain

(∫

Ω

u
N

N−1 dx

)N−1
N

=
∫ ∞

0

F ′(t) dt ≤
∫ ∞

0

|Et|
N−1

N dt

which gives (4.1).

Lemma 4.1.2. Let (X,B, µ) be a measure space and u : X → R a nonnegative
function. Then ∫

X

u(x) dµ =
∫ ∞

0

µ(Et) dt

where the integral over [0,∞) is an improper Riemann integral and Et := {x ∈
X : u(x) ≥ t}.

Proof. Let A := {(x, t) : u(x) ≥ t} and L1 be the Lebesgue measure on R.
Then

∫ ∞

0

µ(Et) dt =
∫ ∞

0

µ({x : (x, t) ∈ A}) dt

=
∫

X

L1({t ∈ [0,∞) : (x, t) ∈ A}) dµ

=
∫

X

L1([0, u(x)]) dµ

=
∫

X

u(x) dµ.

A proof of the following result due to Morse is contained in [73, Corollary
1.2.2].
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Lemma 4.1.3 (Morse). Let Ω ⊂ RN be an open set and u ∈ C∞(Ω). Then for
almost all t ∈ R the set {x ∈ Ω : u(x) = t} is a smooth manifold.

The following well-known result called Coarea Formula is contained in [43]
or [50]. The proof given here is taken from [73, Theorem 1.2.4].

Theorem 4.1.4 (Coarea formula). Let Ω ⊂ RN be an open set and ϕ ∈ C(Ω), ϕ ≥
0. Let u ∈ C∞(Ω). Then

∫

Ω

ϕ(x)|∇u(x)| dx =
∫ ∞

0

∫

At

ϕ(x) dHN−1 dt (4.2)

where At := {x ∈ Ω : |u(x)| = t}. Here we may assume HN−1 to be the usual
Lebesgue surface measure, since by Lemma 4.1.3, At is a smooth manifold.

Proof. Let ω ∈ D(Ω)N := D(Ω,RN ) and u ∈ C∞(Ω). Integrating by parts
yields, ∫

Ω

ω∇u dx = −
∫

Ω

udivω dx.

Since for u ≥ 0, u(x) =
∫∞
0
χ[u≥t](x) dt, we obtain

∫

Ω

udivω dx =
∫

Ω

(∫ ∞

0

χ[u≥t](x) dt
)

divω(x) dx

=
∫ ∞

0

(∫

Ω

χ[u≥t](x) divω(x) dx
)
dt

=
∫ ∞

0

dt

∫

u≥t
divω(x) dx.

For u ≤ 0, we have u(x) =
∫ 0

−∞(χ[u≥t](x)− 1) dt. Then

∫

Ω

udivω dx =
∫

Ω

(∫ 0

−∞

(
χ[u≥t](x)− 1

)
dt

)
divω(x) dx

=
∫ 0

−∞
dt

∫

u≥t
divω(x) dx

= −
∫ 0

−∞
dt

∫

u≤t
divω(x) dx.

Finally we obtain that
∫

Ω

ω∇u dx = −
∫

Ω

udivω dx

= −
∫ ∞

0

dt

∫

u≥t
divω dx+

∫ 0

−∞
dt

∫

u≤t
divω dx.
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Since At is a smooth manifold, integrating by parts yields,
∫

u≥t
divω dx = −

∫

u=t

ων dHN−1 = −
∫

u=t

ω
∇u
|∇u| dH

N−1

where ν is the normal to At directed into the set {x : u(x) ≥ t}. Similarly,
∫

u≤t
divω dx =

∫

u=t

ων dHN−1 =
∫

u=t

ω
∇u
|∇u| dσ.

Making a change of variable in the last integral by letting s := −t, we obtain
∫

Ω

ω∇u dx =
∫ ∞

0

dt

∫

u=t

ω
∇u
|∇u| dH

N−1 +
∫ ∞

0

dt

∫

u=−t
ω
∇u
|∇u| dH

N−1

=
∫ ∞

0

dt

∫

At

ω
∇u
|∇u| dH

N−1.

1) Letting

ω := ϕ
∇u

(|∇u|2 + ε)
1
2

where ϕ ∈ D(Ω), ϕ ≥ 0 and ε is a positive number, we obtain
∫

Ω

ϕ
(∇u)2

((∇u)2 + ε)
1
2
dx =

∫ ∞

0

dt

∫

At

ϕ
(∇u)2

|∇u|((∇u)2 + ε)
1
2
dHN−1.

Passing to the limit as ε ↓ 0 and making use of Beppo Levi’s Monotone Conver-
gence Theorem we obtain (4.2) for all ϕ ∈ D(Ω), ϕ ≥ 0.

2) Let ϕ ∈ C(Ω), ϕ ≥ 0, supp[ϕ] ⊂ Ω and let ηεϕ be a mollification of ϕ
(see [59, Section 2.7]) with radius ε. Since supp[ηεϕ] ⊂ Ω for small values of ε, we
have that ∫

Ω

(ηεϕ)∇u dx =
∫ ∞

0

dt

∫

At

ηεϕ dHN−1. (4.3)

Let α ∈ D(Ω) satisfy
α = 1 on

⋃
ε

supp[ηεϕ], α ≥ 0.

Obviously,
∫

At

ηεϕdHN−1 ≤ ‖ηεϕ‖∞
∫

At

α dHN−1 ≤ ‖ϕ‖∞
∫

At

α dHN−1. (4.4)

By (4.2) applied to ϕ = α, the integral in the right-hand side of (4.4) is a summable
function on (0,∞). Since ηεϕ → ϕ uniformly and HN−1(At ∩ supp[α]) < ∞ for
almost all t, it follows that

∫

At

ηεϕdHN−1 →
∫

At

ϕdHN−1 as ε→ 0
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for almost all t. Now, Lebesgue’s Dominated Convergence Theorem ensures the
possibility of passing to the limit as ε→ 0 in (4.3) and we obtain

∫

Ω

ϕ∇u dx =
∫ ∞

0

dt

∫

At

ϕdHN−1

for all ϕ ∈ C(Ω), ϕ ≥ 0 and supp[ϕ] ⊂ Ω.
3) Further, we remove the restriction supp[ϕ] ⊂ Ω. Let ϕ ∈ C(Ω), ϕ ≥ 0 and

αm be a sequence of nonnegative functions in D(Ω) such that:
⋃
m

supp[αm] = Ω, 0 ≤ αm ≤ 1,

αm = 1 for x ∈ supp[αm−1].

Then supp[αmϕ] ⊂ Ω and
∫

Ω

αmϕ|∇u| dx =
∫ ∞

0

dt

∫

At

αmϕ dHN−1.

Since the sequence (αmϕ) does not decrease, by Beppo Levi’s Theorem we may
pass to the limit as m→∞ which completes the proof.

Definition 4.1.5. Let Ω ⊂ RN be an open set.

a) A function u ∈ L1(Ω) is of bounded variation in Ω if

sup
{∫

Ω

u divϕ dx, ϕ ∈ C1
c (Ω,RN ) : |ϕ| ≤ 1

}
<∞.

We write BV (Ω) to denote the space of functions of bounded variation.

b) An LN -measurable set G ⊂ RN has a finite perimeter in Ω if χG ∈ BV (Ω).

Next we give a version of the well-known Isoperimetric inequality. For the
general case, we refer to [4, Theorem 3.46 p.149] or [73, Theorem 6.1.5 p.301].

Lemma 4.1.6 (Isoperimetric inequality). Let G be a bounded measurable set of
finite perimeter in RN . Then

|G|N−1
N ≤ C(N)HN−1(∂G). (4.5)

The constant C(N) is called the isoperimetric constant and is given by

C(N) :=
[Γ(N2 + 1)]1/N

N
√
π

where Γ denotes the usual gamma function.
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Next for an open subset Ω of RN and 1 ≤ p < ∞ we denote by W 1
p (Ω) the

space of all functions u ∈ Lp(Ω) such that ∇u ∈ Lp(Ω)N equipped with the norm

‖u‖W 1
p (Ω) :=

(‖u‖pp + ‖∇u‖pp
)1/p

.

Then H1(Ω) = W 1
2 (Ω).

Now we are in position to give and to prove the Maz’ya inequality.

Theorem 4.1.7 (Maz’ya). Let Ω ⊂ RN be an open set. For all u ∈W 1
1 (Ω)∩C∞(Ω)∩

Cc(Ω̄), the inequality

‖u‖ N
N−1

≤ C(N)(‖∇u‖1 + ‖u‖L1(∂Ω,σ)) (4.6)

holds. Here C(N) is the isoperimetric constant.

Proof. Let u ∈W 1
1 (Ω) ∩ C∞(Ω) ∩ Cc(Ω̄) and let

Et := {x ∈ Ω : |u(x)| ≥ t} and At := {x ∈ Ω : |u(x)| = t}.
Then Et is a bounded set of finite perimeter in RN . By Lemma 4.1.6,

|Et|
N−1

N ≤ C(N)HN−1(∂Et).

Here ∂Et is the boundary of Et in RN ; i.e., ∂Et = At ∪ (Ēt ∩ ∂Ω) where Ēt is the
closure of Et in RN . We obtain that,

|Et|
N−1

N ≤ C(N)
(HN−1(At) +HN−1(Ēt ∩ ∂Ω)

)
. (4.7)

Thus∫ ∞

0

|Et|
N−1

N dt ≤ C(N)
(∫ ∞

0

HN−1(At) dt+
∫ ∞

0

HN−1(Ēt ∩ ∂Ω) dt
)

≤ C(N)
(∫ ∞

0

dt

∫

At

dHN−1 +
∫ ∞

0

dt

∫

Ēt∩∂Ω

dHN−1

)
.

By Theorem 4.1.1, we have

‖u‖ N
N−1

≤
∫ ∞

0

|Et|
N−1

N dt. (4.8)

Applying Theorem 4.1.4 with ϕ = 1 we obtain

‖∇u‖1 =
∫ ∞

0

dt

∫

At

dHN−1. (4.9)

Remark that Ēt ∩ ∂Ω = {x ∈ ∂Ω : |u(x)| ≥ t}. Let σ be the restriction to
∂Ω of the measure HN−1. Then applying Lemma 4.1.2 with the measure space
(∂Ω,B(∂Ω), σ) we obtain that

∫

∂Ω

|u| dσ =
∫ ∞

0

σ(Ēt ∩ ∂Ω) dt. (4.10)

Now (4.8), (4.9) and (4.10) give (4.6).
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Corollary 4.1.8. Let Ω ⊂ RN be an open set. Then

‖u‖ 2N
N−1

≤ C(N)1/2
(
‖∇u‖22 + ‖u‖22 + ‖u‖2L2(∂Ω,σ)

)1/2

(4.11)

for all u ∈ H1(Ω) ∩ C∞(Ω) ∩ Cc(Ω̄).

Proof. Let u ∈ H1(Ω)∩C∞(Ω)∩Cc(Ω̄). Then u2 ∈W 1
1 (Ω)∩C∞(Ω)∩Cc(Ω̄).

By Theorem 4.1.7, one has that

‖u‖22N
N−1

= ‖u2‖ N
N−1

≤ C(N)
(‖∇(u2)‖1 + ‖u2‖L1(∂Ω,σ)

)

≤ C(N)
(
2‖u∇u‖1 + ‖u‖2L2(∂Ω,σ)

)

≤ C(N)
(
2‖∇u‖2‖u‖2 + ‖u‖2L2(∂Ω,σ)

)

≤ C(N)
(
‖∇u‖22 + ‖u‖22 + ‖u‖2L2(∂Ω,σ)

)

which is the inequality (4.11).

We will call the inequality (4.11) Maz’ya inequality for open sets with infinite
measure.

Corollary 4.1.9. Suppose that Ω ⊂ RN is an open set of finite measure. Then

‖u‖ 2N
N−1

≤ C(N, |Ω|)
(
‖∇u‖22 + ‖u‖2L2(∂Ω,σ)

)1/2

(4.12)

for all u ∈ H1(Ω) ∩ C∞(Ω) ∩ Cc(Ω̄).

Proof. Let u ∈ H1(Ω)∩C∞(Ω)∩Cc(Ω̄). Then u2 ∈W 1
1 (Ω)∩Cc(Ω̄)∩C∞(Ω)

and by Theorem 4.1.7, one obtains that

‖u‖22N
N−1

= ‖u2‖ N
N−1

≤ C(N)
(‖∇(u2)‖1 + ‖u2‖L1(∂Ω,σ)

)

≤ C(N)
(
2‖u∇u‖1 + ‖u‖2L2(∂Ω,σ)

)
. (4.13)

By Hölder’s inequality and the Young inequality 2ab ≤ εa2 + 1
ε b

2 for all a, b ≥ 0
and for every ε > 0, we obtain that

2‖u∇u‖1 ≤ 2‖u‖2‖∇u‖2 ≤ 2|Ω| 1
2N ‖u‖ 2N

N−1
‖∇u‖2

≤ ε‖u‖22N
N−1

+
1
ε
|Ω| 1

N ‖∇u‖22

for every ε > 0. Choosing ε := 1
2C(N) and substituting the above inequality in

(4.13) we obtain that

‖u‖22N
N−1

≤ 2C(N)max{1, 2|Ω| 1
N C(N)}

(
‖∇u‖22 + ‖u‖2L2(∂Ω,σ)

)
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and the proof is complete.

We will call the inequality (4.12) Maz’ya inequality for open sets with finite
measure.

Definition 4.1.10. Let Ω ⊂ RN be an open set. We denote by W 1
2,2(Ω, ∂Ω) the

completion of the set

Wσ :=
{
H1(Ω) ∩ C∞(Ω) ∩ Cc(Ω̄) :

∫

∂Ω

|u|2 dσ <∞
}

with respect to the norm

‖|u‖|1 := ‖u‖W 1
2,2(Ω,∂Ω) :=

(
‖∇u‖22 + ‖u‖22 + ‖u‖2L2(∂Ω,σ)

)1/2

. (4.14)

If Ω has a finite measure then this norm is equivalent to the norm

‖|u‖|2 :=
(
‖∇u‖22 + ‖u‖2L2(∂Ω,σ)

)1/2

. (4.15)

We call W 1
2,2(Ω, ∂Ω) the Maz’ya space.

Remark that in both cases (Ω of finite measure or not), by Corollary 4.1.8,
the space Wσ equipped with the norm defined by (4.14) satisfies

(Wσ, ‖| · ‖|1) ↪→ L
2N

N−1 (Ω) (4.16)

where the embedding constant just depends on the dimension N .
If Wσ is equipped with the norm defined by (4.15), then by Corollary 4.1.9,

(Wσ, ‖| · ‖|2) ↪→ L
2N

N−1 (Ω) (4.17)

for every open set with finite measure and in that case the embedding constant
depends on N and an upper bound for |Ω|. If Ω has an infinite measure, under
some geometric conditions on Ω, the embedding (4.17) is sometimes true (see [73,
Theorem 4.11.1.1]).

4.2 The Laplacian with Robin Boundary Conditions.

Throughout this section Ω ⊂ RN (N ≥ 2) is an open set not necessarily of finite
measure. Since

E := {u ∈ H1(Ω) ∩ Cc(Ω̄) :
∫

∂Ω

|u|2 dσ <∞}
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is a dense subspace of W 1
2,2(Ω, ∂Ω) we can replace Wσ by E in the definition of

W 1
2,2(Ω, ∂Ω). Let us denote by j the natural embedding from E into L

2N
N−1 (Ω). As

a bounded linear operator, it has a unique extension to an operator

̃ ∈ L(W 1
2,2(Ω, ∂Ω), L

2N
N−1 (Ω)).

Robin boundary conditions have been studied by Daners [34]. In particular, he
conjectured that the mapping ̃ is always injective provided that σ(∂Ω) <∞. We
shall prove in this section that this conjecture is not true. Letting V denote the
domain of the closure of the closable part of (aσ, E), the results of Chapter 3 imply
that V = (ker ̃)⊥. Therefore, the restriction of ̃ to V is injective, and since V is
a closed subspace of W 1

2,2(Ω, ∂Ω), it follows that

V ↪→ L
2N

N−1 (Ω). (4.18)

More precisely, to see that (4.18) holds, let σ = σr +σs be the decomposition of σ
as in Lemma 3.3.5 or as in Remark 3.3.7. Note that E is dense in V . Recall that
σr = χSσ and σs = χNσ for some relatively polar Borel set N and S := Γ \ N
where

Γ := {z ∈ ∂Ω : ∃ r > 0 : σ(B(z, r) ∩ ∂Ω) <∞}.

Since σs is a regular Borel measure, there exists an increasing sequence of compact
setsKn ⊂ N such that σs(N\∪nKn) = 0. Let u ∈ E. As in the proof of Proposition
3.3.8, we find a sequence un ∈ E such that un → u in H̃1(Ω), un|∂Ω → u|∂Ω in
L2(∂Ω, σr) = L2(S, σ) and un|∂Ω → 0 in L2(N, σ).

If Ω has a finite measure, inserting the sequence un in the Maz’ya inequality
(4.12) and taking the limit as n→∞, we obtain that

‖u‖ 2N
N−1

≤ C(N, |Ω|)
(
‖∇u‖22 + ‖u‖2L2(S,σ)

)1/2

= ‖u‖V . (4.19)

If Ω has an infinite measure, inserting the sequence un in the Maz’ya inequal-
ity (4.11) and taking the limit as n→∞, we obtain that

‖u‖ 2N
N−1

≤ C(N)
(
‖∇u‖22 + ‖u‖22 + ‖u‖2L2(S,σ)

)1/2

= ‖u‖V . (4.20)

In both cases, we denote by ∆R the selfadjoint operator on L2(Ω) associated
with the closure of the closable part of (aσ, E). The operator ∆R is the Laplacian
with Robin boundary conditions. Using the inequalities (4.19) and (4.20) we will
prove that the semigroup (et∆R)t≥0 on L2(Ω) generated by ∆R has a kernel which
satisfies some Gaussian estimates with modified exponents, a result obtained by
Daners [34] in the case where Ω is bounded.
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A. The Embedding W 1
2,2(Ω, ∂Ω) into L

2N
N−1 (Ω) is not always Injective.

In this subsection, we prove that the form (aσ, E) is not always closable.

Theorem 4.2.1. Let Ω ⊂ RN be a domain of finite measure. Let j be the natural
embedding from E into L2(Ω) and ̃ its continuous extension from W 1

2,2(Ω, ∂Ω)
into L2(Ω). Then ̃ is not always injective.

Proof. The results of Chapter 3 imply that the injectivity of ̃ is equivalent to
the closability of the form (aσ, E) which is also equivalent to the fact that σ ∈M0

in the case where σ(∂Ω) <∞. Let Ω ⊂ R3 be the domain constructed in Example
2.3.10. We have proved that for this domain, the 2-dimensional Hausdorff measure
on ∂Ω charges relatively polar subsets of ∂Ω; i.e., σ 6∈ M0. Since σ(∂Ω) <∞, this
implies that ̃ is not injective. To illustrate this, replacing µ by σ in the proof of
Theorem 3.3.1 ((i) ⇒ (ii)), we have a sequence wk ∈ H1(Ω)∩C(Ω̄) satisfying: wk
converges to zero in H1(Ω), wk|∂Ω is a Cauchy sequence in L2(∂Ω, σ) and wk|∂Ω

converges to χK pointwise where K is the subset of ∂Ω satisfying CapΩ̄(K) = 0
but σ(K) > 0. Since wk|∂Ω is a Cauchy sequence in L2(∂Ω, σ) and converges to
χK pointwise, the uniqueness of the limit implies that wk|∂Ω converges to χK in
L2(∂Ω, σ) but the function χK is not zero since σ(K) > 0.

Remark 4.2.2. It follows from Proposition 2.3.4 and Theorem 2.1.5 that if H̃1(Ω)
has the continuous extension property, then σ ∈M0 and therefore (aσ, E) is clos-
able. In particular if Ω is a bounded Lipschitz domain then (aσ, E) is closable
and in that case, since each u ∈ H̃1(Ω) has a trace in L2(∂Ω, σ) and the trace
application is continuous from H̃1(Ω) into L2(∂Ω, σ) (see below), it follows that
V = W 1

2,2(Ω, ∂Ω) = H̃1(Ω) = H1(Ω).

B. Characterization of the Domain of ∆R.

Let Ω ⊂ RN be a bounded domain with Lipschitz boundary. Let

TH1(Ω) := {f : f = u|∂Ω : u ∈ H1(Ω)}
be the trace space of H1(Ω) equipped with the norm

‖f‖TH1(Ω) := inf{‖u‖H1(Ω) : u ∈ H1(Ω) : u|∂Ω = f}.
Let

H1/2(∂Ω) := {u ∈ L2(∂Ω, σ) : ‖u‖1/2,∂Ω <∞},
where

‖u‖21/2,∂Ω := ‖u‖2L2(∂Ω,σ) +
∫

∂Ω×∂Ω\d

|u(x)− u(y)|2
|x− y|N d(σ ⊗ σ).

Then, it is clear that H1/2(∂Ω) is a Hilbert space. The following result due to
Gagliardo is contained in [75, Theorem 4.1.1].
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Theorem 4.2.3 (Gagliardo’s Theorem). Let Ω ⊂ RN be a bounded domain with
Lipschitz boundary. Then the space TH1(Ω) and H1/2(∂Ω) coincide with equivalent
norms. Furthermore, there is a bounded linear extension operator

E : H1/2(∂Ω) → H1(RN ).

By Gagliardo’s Theorem, the mapping

γ0 : H1(Ω) → H1/2(∂Ω) : u 7→ γ0(u) := u|∂Ω

is linear and for each w ∈ H1/2(∂Ω), there exists v ∈ H1(Ω) such that γ0(v) = w.
Moreover there exists a constant C > 0 such that,

‖v‖H1(Ω) ≤ C‖w‖H1/2(∂Ω). (4.21)

Let
H(∆,Ω) := {u ∈ H1(Ω) : ∆u ∈ L2(Ω)}

be equipped with the norm

‖u‖2H(∆,Ω) := ‖u‖2H1(Ω) + ‖∆u‖22.

Then H(∆,Ω) is a Hilbert space containing C∞(Ω̄) as a dense subspace (see [68,
Theorem 8.2 p.39]). We will denote by H−1/2(∂Ω) the dual space of H1/2(∂Ω)
where 〈u, v〉 =

∫
∂Ω
uv dσ if u, v ∈ L2(∂Ω, σ).

The proof of the following result given here is taken from [38, Chap. VII
Lemma 2.2.1 and Corollary 2.2.1].

Lemma 4.2.4. Let Ω ⊂ RN be a bounded domain with Lipschitz boundary. Then
the mapping γ1 : C∞(Ω̄) → C(∂Ω) defined by γ1(u) := ∂u

∂ν |∂Ω (where ν denotes
the exterior normal to ∂Ω) has an extension, again denoted by γ1, which is a
continuous mapping of H(∆,Ω) into H−1/2(∂Ω). Moreover, for every u ∈ H(∆,Ω)
and v ∈ H1(Ω), we have the generalized Green formula

〈γ1(u), v〉 =
∫

Ω

∆uv dx+
∫

Ω

∇u∇v dx (4.22)

where 〈, 〉 denotes the duality between H−1/2(∂Ω) and H1/2(∂Ω).

Proof. Let u ∈ C∞(Ω̄). For w ∈ H1/2(∂Ω), we let

l(w) :=
∫

∂Ω

∂u

∂ν
w dσ.

Let v ∈ H1(Ω) be such that γ0(v) = w. Since Ω has a Lipschitz boundary, it
follows that for u ∈ C∞(Ω̄) and v ∈ H1(Ω), we have the Green formula

l(w) =
∫

Ω

∆uv dx+
∫

Ω

∇u∇v dx.
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From Schwarz inequality and (4.21), we therefore have

l(w) ≤ ‖u‖H(∆,Ω)‖v‖H1(Ω) ≤ C‖u‖H(∆,Ω)‖w‖H1/2(∂Ω)

which proves that l ∈ H−1/2(∂Ω) and, in addition, that the mapping γ1 : u ∈
C∞(Ω̄) → l ∈ H−1/2(∂Ω) is bounded on C∞(Ω̄) equipped with the norm of
H(∆,Ω). Since C∞(Ω̄) is dense in H(∆,Ω), we have that γ1 can be extended by
density to a continuous linear mapping from H(∆,Ω) into H−1/2(∂Ω).

Finally, since for each u ∈ H(∆,Ω), γ1(u) is a linear continuous functional
on H1/2(∂Ω), we have the generalized Green formula (4.22).

The following result characterizes the domain of the operator ∆R.

Proposition 4.2.5. Let Ω ⊂ RN be a bounded domain with Lipschitz boundary.
Then the operator ∆R is given by

{
D(∆R) = {u ∈ H(∆,Ω) :

(
∂u
∂ν + u

) |∂Ω = 0}
∆Ru = ∆u.

(4.23)

Proof. Let us note that
(
∂u
∂ν + u

) |∂Ω = 0 means that
(
∂u
∂ν + u

) |∂Ω = 0 in
H−1/2(∂Ω); i.e., for all ϕ ∈ H1/2(∂Ω) we have 〈(∂u∂ν + u

) |∂Ω, ϕ〉 = 0. Since Ω
has a Lipschitz boundary, it follows that σ ∈ M0 (since H̃1(Ω) = H1(Ω) has the
extension property) and V = W 1

2,2(Ω, ∂Ω) = H1(Ω) with equivalent norm. By
definition

{
D(∆R) := {u ∈ H1(Ω) : ∃ v ∈ L2(Ω) : aσ(u, ϕ) = (v, ϕ) ∀ ϕ ∈ H1(Ω)}
∆Ru := −v.

Let

D := {u ∈ H(∆,Ω) :
(
∂u

∂ν
+ u

)
|∂Ω = 0}.

We have to show that D = D(∆R). Let u ∈ D and v := −∆u. Then v ∈ L2(Ω).
Using the generalized Green formula (4.22), we obtain that for all ϕ ∈ H1(Ω),

(v, ϕ) := (−∆u, ϕ) =
∫

Ω

∇u∇v dx− 〈γ1(u), ϕ〉.

Since u ∈ D, it follows that

〈γ1(u) + γ0(u), ϕ〉 = 0.

This implies that
〈γ1(u), ϕ〉 = −〈γ0(u), ϕ〉.
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Therefore,

(v, ϕ) =
∫

Ω

vϕ dx := −
∫

Ω

∆uϕ dx =
∫

Ω

∇u∇ϕ dx+ 〈γ0(u), ϕ〉

=
∫

Ω

∇u∇ϕ dx+
∫

∂Ω

uϕ dσ

= aσ(u, ϕ).

Thus u ∈ D(∆R) and ∆Ru = −v = ∆u.
To prove the converse inclusion, let u ∈ D(∆R). Then, by definition, there

exists v ∈ L2(Ω) such that for all ϕ ∈ H1(Ω) we have

aσ(u, ϕ) :=
∫

Ω

∇u∇ϕ dx+
∫

∂Ω

uϕ dσ =
∫

Ω

vϕ dx. (4.24)

If we choose ϕ ∈ D(Ω), (4.24) can be written

〈−∆u, ϕ〉 = 〈v, ϕ〉

where 〈, 〉 denotes the duality between D(Ω)′ and D(Ω). Since ϕ ∈ D(Ω) is arbi-
trary, it follows that

−∆u = v in D(Ω)′.

As v ∈ L2(Ω), this implies that ∆u ∈ L2(Ω) and then u ∈ H(∆,Ω). To finish, we
have to prove that γ1(u) + γ0(u) = 0 in H−1/2(∂Ω). Using the generalized Green
formula, we obtain that for all ϕ ∈ H1(Ω)

∫

Ω

vϕ dx :=
∫

Ω

(−∆u)ϕ dx =
∫

Ω

∇u∇ϕ dx− 〈γ1(u), ϕ〉

=
∫

Ω

∇u∇ϕ dx+
∫

∂Ω

uϕ dσ −
∫

∂Ω

uϕ dσ − 〈γ1(u), ϕ〉
= aσ(u, ϕ)− 〈γ1(u) + γ0(u), ϕ〉.

Since u ∈ D(∆R), it follows that
∫
Ω
vϕ dx = aσ(u, ϕ) and thus 〈γ1(u)+γ0(u), ϕ〉 =

0. Since ϕ|∂Ω ∈ H1/2(∂Ω) is arbitrary, this implies that

γ1(u) + γ0(u) = 0 in H−1/2(∂Ω)

and thus u ∈ D which completes the proof.

Next we assume that Ω ⊂ RN is an arbitrary bounded domain. We simply
denote by (aσ, V ) the closure of the closable part of (aσ, E). Let S be the subset
of ∂Ω obtained by decomposing σ as in Lemma 3.3.5 and let

V (∆,Ω) := {u ∈ V : ∆u ∈ L2(Ω)}
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be equipped with the norm

‖u‖2V (∆,Ω) := ‖u‖2V + ‖∆u‖22.
Then V (∆,Ω) is a Hilbert space. We claim that for each u ∈ V (∆,Ω), we can
define a “normal derivative” of u on S in the “generalized sense”.

It is well-known (see Chapters 2 and 3) that H1
0 (Ω) is a closed subspace of

V and by Theorem 2.4.1 it is given by

H1
0 (Ω) = {u ∈ V : ũ = 0 r.q.e. on ∂Ω}.

Throughout the following, without restriction, we assume that each function u ∈
H̃1(Ω) is r.q.c.

Let V (∂Ω) := V/H1
0 (Ω) be equipped with the quotient norm

‖u̇‖V (∂Ω) := inf
v∈H1

0 (Ω)
‖u− v‖V := inf

v∈H1
0 (Ω)

(
‖∇(u− v)‖22 + ‖u‖2L2(S,σ)

)1/2

.

It is then clear that V (∂Ω) is a Hilbert space and the mapping γ0 : V → V (∂Ω) :
u 7→ γ0(u) = u|S is linear continuous. In particular, the mapping γ0 : V (∆,Ω) →
V (∂Ω) : u 7→ γ0(u) is linear continuous. Let V ′ denotes the dual space of V . Since
the mapping γ0 defined above is linear continuous, it follows that the mapping L
defined by: for u ∈ V (∆,Ω),

Lu : V → R : v 7→ (Lu)v := 〈−∆u, v〉 − aσ(u, v),

where 〈, 〉 denotes the duality between V ′ and V , defines a linear continuous func-
tional on V . Moreover, since for each v ∈ H1

0 (Ω)

〈−∆u, v〉 =
∫

Ω

∇u∇v = aσ(u, v),

it follows that the functional (Lu) is zero on H1
0 (Ω) and hence it defines a linear

continuous functional on V (∂Ω). By Riesz’s Representation Theorem (see [24,
Théorème IV.11]), there exists a unique element G(u) ∈ V (∂Ω)′ (the dual space
of V (∂Ω)) such that for all v ∈ V ,

〈G(u), v〉V (∂Ω)′×V (∂Ω) = 〈−∆u, v〉V ′×V − aσ(u, v). (4.25)

We define

∂u

∂ν
:= −(G(u) + u) on S in the “generalized sense”

or
∂u

∂ν
:= −(G(u) + u) in V (∂Ω)′

and we call ∂u
∂ν the normal derivative of u ∈ V (∆,Ω) on S in the “generalized

sense”.
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Remark 4.2.6. The notion of the “normal derivative” of a function u in V (∆,Ω)
defined above is only formal since for an arbitrary domain the normal does not
always exists σ a.e.

Next, since the embedding from V (∂Ω) into L2(S, σ) is continuous, it follows
that every g ∈ L2(S, σ) defines a linear continuous functional on V (∂Ω). Therefore,
we can write

〈G(u), v〉V (∂Ω)′×V (∂Ω) =
∫

S

gv dσ ∀ v ∈ V ;

that is G(u) = g on S in the “generalized sense” or G(u) = g in V (∂Ω)′.
The following result characterizes the domain of the operator ∆R for an

arbitrary bounded domain as in the case where Ω has a Lipschitz boundary.

Proposition 4.2.7. Let Ω ⊂ RN be a bounded domain. Then the operator ∆R is
given by {

D(∆R) = {u ∈ V (∆, R) : G(u) = 0 on S}
∆Ru = ∆u.

Proof. By definition, the operator ∆R is given by
{
D(∆R) := {u ∈ V : ∃ v ∈ L2(Ω) : aσ(u, ϕ) = (v, ϕ) ∀ ϕ ∈ V }
∆Ru := −v.

Let
D := {u ∈ V (∆,Ω) : G(u) = 0 on S}.

Let u ∈ D and v := −∆u. Then v ∈ L2(Ω). Using (4.25), we have

(v, ϕ) := (−∆u, ϕ) = 〈−∆u, ϕ〉 = aσ(u, ϕ) ∀ ϕ ∈ V

and thus u ∈ D(∆R) and ∆Ru = −v = ∆u.
To prove the converse inclusion, let u ∈ D(∆R). By definition, there exists

v ∈ L2(Ω) such that for all ϕ ∈ V we have
∫

Ω

∇u∇ϕ dx+
∫

S

uϕ dσ =
∫

Ω

vϕ. (4.26)

As in the proof of Proposition 4.2.5, the equality (4.26) implies that ∆u ∈ L2(Ω)
and thus u ∈ V (∆,Ω). Finally, by (4.25), we obtain that for all ϕ ∈ V ,
∫

Ω

vϕ dx :=
∫

Ω

(−∆u)ϕ dx = 〈−∆u, ϕ〉V ′×V = 〈G(u), ϕ〉V (∂Ω)′×V (∂Ω) + aσ(u, ϕ).

Since u ∈ D(∆R), we have that

aσ(u, ϕ) =
∫

Ω

vϕ dx
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and thus
〈G(u), ϕ〉V (∂Ω)′×V (∂Ω) = 0.

Since ϕ|S ∈ V (∂Ω) is arbitrary, this implies that G(u) = 0 in V (∂Ω)′. Thus u ∈ D
and the proof is complete.

Next we give a very important remark.

Remark 4.2.8. Recall that the Laplacian with Robin boundary conditions is the
closed operator ∆R associated with the closed form (aσ, V ) where σ is the restric-
tion to ∂Ω of the (N − 1)-dimensional Hausdorff measure. We show that this
classical definition has some disadvantages and thus seems not to be the correct
definition.

Let Ω ⊂ R2 be the domain bounded by the von Koch curve as in Figure 4.1
It is well-known that σ is locally infinite on ∂Ω and thus the results of Chapter 3
imply that the closed form (aσ, V ) is given by V = H1

0 (Ω) and

aσ(u, v) =
∫

Ω

∇u∇v dx.

Thus the operator ∆R is the Laplacian with Dirichlet boundary conditions.
By [73, Section 1.5.1 Example 1], the boundary ∂Ω of Ω is a quasicircle

and then by [63, Theorem B and Theorem 4], H1(Ω) has the extension property.
Since Ω is a domain in R2, by Remark 2.3.6 H1(Ω) has the continuous extension
property. Let s be the Hausdorff dimension of ∂Ω. By [46, Example 2.7 p.31] and
[46, Section 9.2 p.117],

1 < s =
log 4
log 3

< 2 and 0 < Hs(∂Ω) <∞.

Since H̃1(Ω) = H1(Ω) has the continuous extension property, by Proposition 2.3.4
and Theorem 2.1.5, Hs ∈ M0. Let us still denote by Hs the restriction to ∂Ω of
Hs. Then the form (aHs , E) is closable on L2(Ω) and its closure is given by:

aHs(u, v) =
∫

Ω

∇u∇v dx+
∫

∂Ω

ũṽ dHs

with domain
V = {u ∈ H̃1(Ω) = H1(Ω) : ũ ∈ L2(∂Ω,Hs)}.

Thus, we see that in order to define the Robin boundary conditions, it is more
natural to take as measure the restriction of the s-dimensional Hausdorff measure
to ∂Ω where s is the Hausdorff dimension of the boundary, than taking the measure
σ. After this investigation, we can ask the following question.

Is the Maz’ya inequality also true if we consider the measure Hs in place of
σ?
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More precisely, let Ω ⊂ RN be an open set with finite Lebesgue measure and s
be the Hausdorff dimension of its boundary. Let W̃ be the completion of the space

EHs := {u ∈ H1(Ω) ∩ Cc(Ω̄) :
∫

∂Ω

|u|2 dHs <∞}

with respect to the norm

‖u‖2fW := ‖∇u‖22 + ‖u‖2L2(∂Ω,Hs).

Is it always possible to find q > 2 such that the space W̃ is continuously embedded
into Lq(Ω)?

Figure 4.1: von Koch curve

C. Kernel Estimates and p-Independence of the Spectrum.

The following inequality called Nash inequality is only a consequence of the two
Maz’ya inequalities. The proof given here is very easy and works also for an arbi-
trary Dirichlet space D(a) which embeds into Lp(X,m) for some p > 2 where X
and m satisfy the condition (1.3).

Proposition 4.2.9 (Nash inequality). There exists a constant c > 0 such that

‖u‖2+
2
N

2 ≤ c‖u‖2V ‖u‖
2
N
1 (4.27)
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for all u ∈ V ∩L1(Ω). The constant c depends only on N if |Ω| = ∞ and it depends
on N and |Ω| if |Ω| <∞.

Proof. Let u ∈ V ∩ L1(Ω). Using the Hölder inequality, one obtains the
following interpolation inequality:

‖u‖2 ≤ ‖u‖
1

N+1
1 ‖u‖

N
N+1
2N

N−1
. (4.28)

Using the Maz’ya inequality (4.11) if |Ω| = ∞ and (4.12) if |Ω| <∞, one has that

‖u‖
N

N+1
2N

N−1
≤ c1‖u‖

N
2(N+1)

V . (4.29)

Finally, replacing (4.29) in (4.28) we obtain that

‖u‖2 ≤ c1‖u‖
1

N+1
1 ‖u‖

N
2(N+1)

V .

Thus

‖u‖2+
2
N

2 ≤ c‖u‖2V ‖u‖
2
N
1 .

The Nash inequality implies that the operator et∆R has a kernel. To obtain an
estimate of this kernel, we shall use a technique of Arendt and Ter Elst. They have
proved in [16] Gaussian estimates of semigroups generated by elliptic differential
operators with general boundary conditions. Then the proof given here is only an
adaptation of the proof contained in [16, Theorem 4.4]. Finally, we note that this
technique uses Davies’ perturbation method which is contained in [39].

Next, let

W := {ψ ∈ C∞b (RN ) : ‖∇ψ‖∞ ≤ 1, ‖DiDjψ‖∞ ≤ 1 ∀ 1 ≤ i, j ≤ N}.

For a semigroup T on L2(Ω), ρ ∈ R and ψ ∈W we define the perturbed semigroup
Tρ on L2(Ω) by Tρ(t) = UρT (t)U−1

ρ where (Uρϕ)(x) = e−ρψ(x)ϕ(x).
To obtain the Gaussian estimates, we need the following result which is con-

tained in [16, Proposition 3.3].

Proposition 4.2.10. Let T be a semigroup on L2(Ω) and c, ω1 ∈ R. Then the
following assertions are equivalent.

(i) There exists a constant ω2 > 0 such that

‖Tρ(t)‖1→∞ ≤ ct−N/2eω1t+ω2ρ
2t

uniformly for all ρ ∈ R, t > 0 and ψ ∈W .
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(ii) There exists a constant b > 0 such that the operators T (t) have a kernel
Kt ∈ L∞(Ω× Ω) which verifies

|Kt(x, y)| ≤ ct−N/2e−b
|x−y|2

t eω2t

for (x, y) a.e. and for all t > 0.

The following is the main result of this subsection.

Theorem 4.2.11. There exists a constant C > 0 depending on the constant of the
inequality (4.27) such that

‖et∆R‖1→∞ ≤ Ct−N (4.30)

uniformly for all t > 0 if |Ω| <∞.
There exists a constant C > 0 depending only on N such that

‖et∆R‖1→∞ ≤ Cett−N (4.31)

uniformly for all t > 0 if |Ω| = ∞. Moreover, the operators et∆R have a kernel
Kt ∈ L∞(Ω× Ω) satisfying

0 ≤ Kt(x, y) ≤ Ct−Ne−b
|x−y|2

t (4.32)

for some constant b > 0, and for (x, y) a.e. and uniformly for all t > 0 if |Ω| <∞
and

0 ≤ Kt(x, y) ≤ Ct−Neωte−b
|x−y|2

t (4.33)

for some constants b, ω > 0, and for (x, y) a.e. and uniformly for all t > 0 if
|Ω| = ∞.

Proof. 1) First, we prove the inequality (4.30). Let 0 ≤ f ∈ L1(Ω)∩L2(Ω) =
L2(Ω) and let

ft := et∆Rf and u(t) := ‖ft‖22.
Then ft ∈ V ∩ L1(Ω) = V . As (et∆R)t≥0 is a holomorphic semigroup on L2(Ω)
then

−du
dt

= −(∆Rft, ft) = aσ(ft, ft).

Using the inequality (4.27), one has

−du
dt

= aσ(ft, ft) ≥ 1
c
‖ft‖2+

2
N

2 ‖ft‖
−2
N
1 =

1
c
u(t)1+

1
N ‖ft‖

−2
N
1 .

Therefore
d

dt

(
u(t)

−1
N

)
=

−1
N
u(t)−

1
N−1 d

dt
u(t)

≥ 1
N
u(t)−

1
N−1 1

c
u(t)

1
N +1‖ft‖

−2
N
1

≥ 1
cN

‖ft‖
−2
N
1 . (4.34)
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Since (et∆R)t≥0 is a submarkovian semigroup, one has the bound ‖ft‖1 ≤ ‖f‖1
and therefore

‖ft‖−
2
N

1 ≥ ‖f‖−
2
N

1 . (4.35)

Integrating (4.34) and using (4.35), we obtain
∫ t

0

d

ds

(
u(s)

−1
N

)
ds = u(t)−

1
N − u(0)−

1
N ≥ t

cN
‖f‖−

2
N

1 . (4.36)

Since u(0) := ‖f‖22 ≥ 0, the inequality (4.36) implies that

u(t)
1
N ≤ cN

t
‖f‖

2
N
1 .

Finally,

‖et∆Rf‖2 ≤
(
cN

t

)N
2

‖f‖1 = c1t
−N
2 ‖f‖1.

This bound extends to all 0 ≤ f ∈ L1(Ω) by an approximation argument and then
to all f ∈ L1(Ω) by the positivity of et∆R . By duality, we have

‖et∆Rf‖∞ ≤ c2t
−N

2 ‖f‖2.

Since et∆R = e
t
2∆Re

t
2∆R , we have

‖et∆R‖1→∞ ≤ ‖et/2∆R‖1→2‖et/2∆R‖2→∞ ≤ Ct−N

uniformly for all t > 0.
2) Next we prove the inequality (4.31). This is the case where |Ω| = ∞. For

f ∈ L1(Ω) ∩ L2(Ω), we put

ft := et(∆R−I)f and u(t) := ‖ft‖22.

Then ft ∈ V ∩ L1(Ω). Proceeding exactely as in 1), we obtain that

‖et(∆R−I)‖1→∞ ≤ Ct−N

uniformly for all t > 0. Thus

‖et∆R‖1→∞ ≤ Ct−Net

uniformly for all t > 0.
3) Next we prove the bounds (4.32) and (4.33). By (4.30), Dunford-Pettis’

Theorem (see [11, Theorem 1.2.6]) ensures that et∆R is an integral operator (see
Definition 4.3.2 below) with kernel Kt ∈ L∞(Ω× Ω) for all t > 0. Recall that we
assume that each function u ∈ V is r.q.c., and

‖u‖2V = ‖∇u‖22 + ‖u‖2L2(S,σ)
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if |Ω| <∞ and
‖u‖2V = ‖∇u‖22 + ‖u‖22 + ‖u‖2L2(S,σ)

if |Ω| = ∞. For each ρ ∈ R and ψ ∈W we define the perturbed semigroup Tρ(t) on
L2(Ω) by Tρ(t) := Uρe

t∆RU−1
ρ . This definition has a sense since e−ρψϕ ∈ Lp(Ω) if

ϕ ∈ Lp(Ω) for all 1 ≤ p ≤ ∞.
a) Let ϕ ∈ V , then Uρϕ ∈ V . Indeed, there exists a sequence ϕn ∈ E such

that ϕn → ϕ in V . It is clear that Uρϕn ∈ E and,

‖∇(Uρϕn − Uρϕ)‖2 = ‖∇(e−ρψ(ϕn − ϕ))‖2
≤ ‖e−ρψ∇(ϕn − ϕ)‖2 + ‖ρ(ϕn − ϕ)e−ρψ∇ψ‖2
≤ ‖e−ρψ‖∞‖∇(ϕn − ϕ)‖2 + ‖ρe−ρψ‖∞‖ϕn − ϕ‖2
→ 0 as n→∞.

Moreover,

‖Uρϕn − Uρϕ‖2 = ‖e−ρψ(ϕn − ϕ)‖2
≤ ‖e−ρψ‖∞‖ϕn − ϕ‖2 → 0 as n→∞.

Furthermore,

‖Uρϕn − Uρϕ‖L2(S,σ) ≤ ‖e−ρψ‖∞‖ϕn − ϕ‖L2(S,σ)

→ 0 as n→∞.

Thus Uρϕ ∈ V .
b) Let Aρ be the generator of the semigroup Tρ. The form aρ associated with

the operator Aρ is given by

aρ : V × V → R; aρ(u, v) = aσ(U−1
ρ u,Uρv).

Letting ψi := Diψ, a simple calculation gives

aρ(u, v) =
N∑

i=1

∫

Ω

(Di + ρψi)u(Di − ρψi)v dx+
∫

S

uv dσ.

Let u ∈ V , then

aρ(u, u) =
N∑

i=1

∫

Ω

(Di + ρψi)u(Di − ρψi)u dx+
∫

S

|u|2 dσ

=
∫

Ω

|∇u|2 dx− ρ2

∫

Ω

|∇ψ|2|u|2 dx+
∫

S

|u|2 dσ.

Since
ρ2

∫

Ω

|∇ψ|2|u|2 dx ≤ ρ2

∫

Ω

|u|2 dx,
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it follows that
aρ(u, u) + ρ2‖u‖22 ≥ 0

which implies that

‖Tρ(t)‖2→2 ≤ eρ
2t

for all t > 0.
c) Let p ∈ 2N and ϕ ∈ L2(Ω) ∩ L∞(Ω). Then (Tρ(t)ϕ)p ∈ V whenever t > 0.

In fact, let f = Tρ(t)ϕ. Then f ∈ V and therefore f ∈ V ∩ L∞(Ω). We show that
fp ∈ V . For p = 2, since f2 = f · f and f ∈ V ∩ L∞(Ω), by [55, Theorem 1.4.2
(ii)], f2 ∈ V . Now, by induction on p, one obtains easily that fp ∈ V .

d) Let ϕ ∈ L2(Ω) ∩ L∞(Ω), p ∈ 2N and ϕt := Tρ(t)ϕ. We claim that the
mapping t 7→ ‖Tρ(t)ϕ‖2p2p is differentiable on (0,∞) and

d

dt
‖Tρ(t)ϕ‖2p2p = −2p(Aρϕt, ϕ

2p−1
t ) = −2paρ(ϕt, ϕ

2p−1
t ). (4.37)

Indeed, consider the following mappings:

G : (0,∞) → L2(Ω) \ {0} : t 7→ ϕpt

F : L2(Ω) \ {0} → R+ : u 7→ ‖u‖22.

Clearly, ‖Tρ(t)ϕ‖2p2p = F ◦G(t). Since Tρ is a holomorphic semigroup on L2(Ω), it
follows that G is differentiable and

G′(t) = −pϕp−1
t Aρϕt.

It is also easy to verify that F is differentiable and for every u ∈ L2(Ω) \ {0}

F ′(u) · h = 2(u, h).

Thus the mapping t 7→ ‖Tρ(t)ϕ‖2p2p is differentiable on (0,∞) and

d

dt
‖Tρ(t)ϕ‖2p2p = (F ◦G)′(t) = F ′(G(t)) ·G′(t)

= −2p(Aρϕt, ϕ
2p−1
t ) = −2paρ(ϕt, ϕ

2p−1
t )

which proves the claim.
e) Next we show that there exists a constant c > 0 such that

d

dt
‖Tρ(t)ϕ‖2p2p ≤ −‖ϕpt ‖V + cp2ρ2‖ϕpt ‖22

uniformly for all t > 0, ρ ∈ R, ψ ∈ W,ϕ ∈ V ∩ L∞(Ω) and p ∈ 2N. By (4.37), a
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simple calculation gives

d

dt
‖Tρ(t)ϕ‖2p2p = −2p

(
N∑

i=1

∫

Ω

(Di + ρψi)ϕt(Di − ρψi)ϕ
2p−1
t dx+

∫

S

|ϕpt |2 dσ
)

= −2p
N∑

i=1

∫

Ω

DiϕtDiϕ
2p−1
t dx− 2p

N∑

i=1

∫

Ω

ρψiϕtDiϕ
2p−1
t dx

+ 2p
N∑

i=1

∫

Ω

ρψiϕ
2p−1
t Diϕt dx+ 2p

N∑

i=1

∫

Ω

ρ2ψ2
i ϕ

2p
t dx

− 2p‖ϕpt ‖L2(S,σ).

The first term can be estimated by

−2p
N∑

i=1

∫

Ω

DiϕtDiϕ
2p−1
t dx =

−2p(2p− 1)
p2

‖∇ϕpt ‖22 ≤ −2‖∇ϕpt ‖22.

In the following estimates, we shall use frequently the Hölder inequality and the
Young inequality. The second term can be estimated by

∣∣∣∣∣−2p
N∑

i=1

∫

Ω

ρψiϕtDiϕ
2p−1
t dx

∣∣∣∣∣ =

∣∣∣∣∣−2(2p− 1)ρ
N∑

i=1

∫

Ω

ψiϕ
p
tDiϕ

p
t dx

∣∣∣∣∣
≤ 4Np|ρ|‖∇ϕpt ‖2‖ϕpt ‖2
≤ ε‖∇ϕpt ‖22 + ε−1N2ρ2p2‖ϕpt ‖22

for every ε > 0. The third term can be estimated by
∣∣∣∣∣2p

N∑

i=1

∫

Ω

ρψiϕ
2p−1
t Diϕt dx

∣∣∣∣∣ ≤ 2|ρ|
∣∣∣∣∣
N∑

i=1

∫

Ω

ϕptDiϕ
p
t dx

∣∣∣∣∣
≤ 4Np|ρ|‖∇ϕpt ‖2‖ϕpt ‖2
≤ ε‖∇ϕpt ‖22 + ε−1N2ρ2p2‖ϕpt ‖22

for every ε > 0. The fourth term can be estimated by

2pρ2
N∑

i=1

∫

Ω

ψ2
i ϕ

2p
t dx ≤ 2N2p2ρ2‖ϕpt ‖22.

Finally, one has

d

dt
‖Tρ(t)ϕ‖2p2p ≤ −(2− 2ε)‖∇ϕpt ‖22 − ‖ϕpt ‖L2(S,σ) + p2ρ2N2(2 + 2ε−1)‖ϕpt ‖22.

Choosing ε = 1/2, one obtains that

d

dt
‖Tρ(t)ϕ‖2p2p ≤ −‖ϕpt ‖V + 6N2p2ρ2‖ϕpt ‖22
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if |Ω| <∞ and

d

dt
‖Tρ(t)ϕ‖2p2p ≤ −‖ϕpt ‖V + 6N2p2(ρ2 + 1)‖ϕpt ‖22

if |Ω| = ∞. Since ‖Tρ(t)‖2→2 ≤ eρ
2t uniformly for all t > 0, ρ ∈ R and ψ ∈ W ,

applying [16, Proposition 4.6], we obtain that

‖Tρ(t)‖2→∞ ≤ ct−
N
2 eρ

2te3N
2ρ2t = ct−

N
2 e(1+3N2)ρ2t

if |Ω| <∞ and

‖Tρ(t)‖2→∞ ≤ ct−
N
2 eρ

2te3N
2(1+ρ2)t = ct−

N
2 e3N

2te(1+3N2)ρ2t

if |Ω| = ∞. By duality we obtain

‖Tρ(t)‖1→2 ≤ ct−
N
2 e(1+3N2)ρ2t

if |Ω| <∞ and
‖Tρ(t)‖1→2 ≤ ct−

N
2 e3N

2te(1+3N2)ρ2t

if |Ω| = ∞. Hence
‖Tρ(t)‖1→∞ ≤ ct−Ne(1+3N2)ρ2t

for all t > 0 and ρ ∈ R if |Ω| <∞, and

‖Tρ(t)‖1→∞ ≤ ct−Ne3N
2te(1+3N2)ρ2t

for all t > 0 and ρ ∈ R if |Ω| = ∞. Now the claim follows by applying Proposition
4.2.10.

Now, since (et∆R) is a submarkovian semigroup on L2(Ω), by Theorem 1.3.17,
there exist consistent semigroups on all Lp(Ω), 1 ≤ p <∞. We denote by ∆p

R the
generator of the semigroup on Lp(Ω) for 1 ≤ p <∞. Notice that ∆2

R = ∆R

Proposition 4.2.12. Let Ω ⊂ RN be an open set. Then the spectrum of ∆p
R is

independent of p; i.e., σ(∆p
R) = σ(∆R) for all 1 ≤ p <∞.

The proof uses the following result due to Kunstmann and Vogt and contained
in [67, Proposition 5] which can be reformulated as follows.

Theorem 4.2.13 (Kunstmann-Vogt). Let Ω ⊂ RN be an open set and (etA)t≥0 be
a submarkovain C0-semigroup on L2(Ω) such that etA has a kernel Kt satisfying
the upper bound

|Kt(x, y)| ≤ c1t
−M/2e−c2

|x−y|2
t (t > 0, x, y ∈ Ω)

for some constants c1, c2 > 0 and M > N . Let Ap be the generator of the semi-
groups on Lp(Ω) for 1 ≤ p <∞. Then σ(Ap) = σ(A2) := σ(A).
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In fact, by [67, Proposition 5], R(λ,Ap)n is independent of p for all large λ
and for all n ≥ 1 + M−N

2 and by [64, Lemma 6.3] we obtain that σ(Ap) = σ(A2).

Proof of Proposition 4.2.12. By Theorem 4.2.11, the semigroup (et∆R)t≥0 is
ultracontractive; i.e. et∆R maps L2(Ω) into L∞(Ω) (see [39, Section 2.1]).

1) If |Ω| < ∞, by [39, Theorem 2.1.5], the ultracontractivity implies that
σ(∆p

R) = σ(∆R).
2) If |Ω| = ∞, then, by Theorem 4.2.11, the operator et∆R has a kernel Kt

satisfying the upper bound

0 ≤ Kt(x, y) ≤ Ct−Neωte−b
|x−y|2

t (t > 0, x, y ∈ Ω).

Thus the kernel e−ωtKt of et(∆R−ωI) satisfies

0 ≤ e−ωtKt(x, y) ≤ Ct−2N/2e−b
|x−y|2

t (t > 0, x, y ∈ Ω).

Since 2N > N , it follows from Theorem 4.2.13 that σ(∆p
R − ωI) = σ(∆R − ωI)

and therefore σ(∆p
R) = σ(∆R) which completes the proof.

4.3 The Laplacian with Neumann Boundary Conditions.

This section is devoted to the study of the Laplacian with Neumann boundary
conditions. We shall prove that et∆N is always an integral operator, but it is given
by a singular kernel; i.e., a kernel which is not bounded if Ω is irregular.

Recall that as in Section 3.5, in the definition of ∆N , if H̃1(Ω) is replaced by
the closed linear subspace DB of H̃1(Ω) of the form

DB := {u ∈ H̃1(Ω) : ũ = 0 r.q.e. on B}
for some B ∈ B(∂Ω) with CapΩ̄(∂Ω \B) > 0, we call the selfadjoint operator ∆B

N

on L2(Ω) associated to (aN , DB) the Laplacian with Dirichlet-Neumann boundary
conditions.

A. Characterization of the Domain of ∆N for Lipschitz Domains.

Similarly to the operator ∆R, we can also give a characterization of the domain
of ∆N in the case where Ω has a Lipschitz boundary. Note that if Ω is irregular, a
definition of a general notion of a “normal derivative” of a function u in H(∆,Ω)
as before Proposition 4.2.7 for functions in V (∆,Ω) is not possible, because, we
claim that, if the boundary of Ω is “bad” then, there is no p ≥ 1 such that the
space H̃1(Ω)/H1

0 (Ω) is continuously embedded into Lp(∂Ω, σ). Indeed, if for each
bounded domain Ω with σ(∂Ω) < ∞, the space H̃1(Ω)/H1

0 (Ω) is continuously
embedded into Lp(∂Ω, σ) for some p ≥ 1, this shall imply that there exists a
constant C > 0 such that

σ(K)2/p ≤ C CapΩ̄(K)
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for every compact set K ⊂ ∂Ω and then σ will be in M0. The domain of Example
2.3.10 says that this is not always the case.

Proposition 4.3.1. Let Ω ⊂ RN be a bounded domain with Lipschitz boundary.
Then the operator ∆N is given by

{
D(∆N ) = {u ∈ H(∆,Ω) : ∂u

∂ν |∂Ω = 0}
∆Nu = ∆u.

(4.38)

Proof. The proof is the same as for the operator ∆R. For convenience, we
shall repeat the proof. By definition

{
D(∆N ) := {u ∈ H1(Ω) : ∃ v ∈ L2(Ω) : aN (u, ϕ) = (v, ϕ) ∀ ϕ ∈ H1(Ω)}
∆Nu := −v.

Let
D := {u ∈ H(∆,Ω) :

∂u

∂ν
|∂Ω = 0}.

Let u ∈ D and v := −∆u. Then v ∈ L2(Ω). Using the formula (4.22) we obtain
that,

(v, ϕ) := (−∆u, ϕ) = aN (u, ϕ)− 〈γ1(u), ϕ〉 ∀ ϕ ∈ H1(Ω).

Since u ∈ D, it follows that 〈γ1(u), ϕ〉 = 0 for all ϕ ∈ H1(Ω). Therefore u ∈ D(∆N )
and ∆Nu = −v = ∆u.

To prove the converse inclusion, let u ∈ D(∆N ). By hypothesis, there exists
v ∈ L2(Ω) such that

∫

Ω

∇u∇ϕ dx =
∫

Ω

vϕ dx ∀ ϕ ∈ H1(Ω). (4.39)

As for the operator ∆R, the equality (4.39) implies that

−∆u = v in D(Ω)′

and ∆u ∈ L2(Ω) and thus u ∈ H(∆,Ω). Using again the generalized Green formula
(4.22), we obtain that 〈γ1(u), ϕ〉 = 0 for all ϕ ∈ H1(Ω). Since ϕ|∂Ω ∈ H1/2(∂Ω)
is arbitrary, this implies that γ1(u) := ∂u

∂ν |∂Ω = 0 in H−1/2(∂Ω) and thus u ∈ D
which completes the proof.

B. The Operator et∆N is always a Kernel Operator.

We introduce the following notion of integral operators. Let 1 ≤ p, q ≤ ∞ and
Ω ⊂ RN be an open set.

Definition 4.3.2. a) A linear operator T : Lp(Ω) → Lq(Ω) is called an integral
operator if there exists a measurable function K : Ω× Ω → C such that
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(i) K(x, ·)f(·) ∈ L1(Ω) x a.e. for all f ∈ Lp(Ω), and

(ii) (Tf)(x) =
∫
Ω
K(x, y)f(y) dy x a.e. for all f ∈ Lp(Ω).

b) The operator T is called regular if there exists a positive operator
S ∈ L(Lp(Ω), Lq(Ω)) such that |Tf | ≤ S|f | for all f ∈ Lp(Ω).

We denote by Lr(Lp(Ω), Lq(Ω)) the space of all regular operators and by
Ir(Lp(Ω), Lq(Ω)) the space of all regular integral operators. The following funda-
mental result is contained in [86, Chapter IV].

Theorem 4.3.3. a) The space Lr(Lp(Ω), Lq(Ω)) is a Banach lattice, the modulus
|T | of T ∈ Lr(Lp(Ω), Lq(Ω)) is given by |T |f = sup|g|≤f |Tg| and the norm
by ‖T‖r := ‖ |T | ‖ (the operator norm).

b) Ir(Lp(Ω), Lq(Ω)) is a closed subspace of Lr(Lp(Ω), Lq(Ω)).

c) Ir(Lp(Ω), Lq(Ω)) is a band in Lr(Lp(Ω), Lq(Ω)).

Now we assume that Ω ⊂ RN is an arbitrary bounded open set.

Theorem 4.3.4. Let TN (t) := et∆N . Then the following assertions hold.

a) If σ(∂Ω) <∞, then TN (t) is an integral operator.

b) If σ(∂Ω) = ∞, then et∆
Γ∞
N is an integral operator where Γ∞ denotes the part

of ∂Ω on which σ is locally infinite.

Proof. We give a proof only for the case σ(∂Ω) < ∞. Let Tσk := (et∆σk)t≥0

be the C0-semigroup on L2(Ω) generated by ∆σk. We have proved in Theorem
4.2.11 that for each k ≥ 1, Tσk(t) ∈ Ir(L2(Ω)). Denote by Kk(t, ·, ·) the kernel of
Tσk(t). Then

(Tσk(t)f)(x) =
∫

Ω

Kk(t, x, y)f(y) dy

for x a.e. and all f ∈ L2(Ω). Since σ(∂Ω) <∞, by Proposition 3.5.5, ∆σk → ∆N

as k → ∞ in the strong resolvent sense. Using the Second Trotter-Kato Approx-
imation Theorem, one obtains that Tσk(t) → TN (t) as k → ∞ strongly. Since
(Tσk(t)) is a directed family majorized by TN (t) (see Proposition 3.4.3); i.e.,

Tσ1(t) ≤ Tσ2(t) ≤ . . . Tσk(t) ≤ . . . ≤ TN (t)

one obtains that TN (t) = supk Tσk(t) and Theorem 4.3.3 c) completes the proof.

Let Kt be the kernel of TN (t). Then

(TN (t)f)(x) =
∫

Ω

Kt(x, y)f(y) dy



112 4. ROBIN AND NEUMANN BOUNDARY CONDITIONS

for x a.e. and all f ∈ L2(Ω). Note that Kt is not always in L∞(Ω × Ω). Indeed,
assume that 0 ≤ Kt(x, y) ≤ at <∞ a.e. Then for f ∈ L1(Ω) one has ‖TN (t)f‖∞ ≤
at‖f‖1; i.e.,

‖TN (t)‖1→∞ ≤ at. (4.40)

We obtain that
‖TN (t)‖2→∞ ≤ a

1/2
t

by interpolating between the inequality (4.40) and the bound

‖TN (t)‖∞→∞ ≤ 1.

Then one has that TN (t) is ultracontractive. If |Ω| <∞, this implies that TN (t) is
a compact semigroup on L2(Ω). Since (et∆N )t≥0 is norm continuous for t > 0, one
obtains that ∆N has a compact resolvent on L2(Ω); i.e., the embedding H̃1(Ω) ↪→
L2(Ω) is compact. The following example shows that this is not always the case.

Example 4.3.5. Let Ω ⊂ R2 be the domain defined in Example 2.3.8 and f ∈
C∞[0, 1] be the function defined in the same example. Let (uk) be the sequence of
functions defined by

uk(x, y) =

{
ckf(y) if ak < x < bk,

0 otherwise

where c2k(bk − ak) = 1. It is easy to see that uk ∈ H1(Ω) ∩ C(Ω̄). Moreover,

‖uk‖22 =
∫

Ak

c2k|f(y)|2 dy = (bk − ak)c2k

∫ 1

1/3

|f(y)|2 dy

=
∫ 1

1/3

|f(y)|2 dy.

Similarly,

‖∇uk‖22 =
∫ 1

1/3

|f ′(y)|2 dy.

Then (uk) is a bounded sequence in H̃1(Ω). Furthermore, we have

‖uk − ul‖22 =
∫ 1

1/3

|f(y)|2 dy > 0 if k 6= l.

Hence, there is no subsequence of (uk) convergent in L2(Ω). Thus, the embedding
H̃1(Ω) ↪→ L2(Ω) is noncompact.
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C. Continuity and Compactness of the Embedding H̃1(Ω) into Lp(Ω).

In this subsection, we give some necessary and sufficient conditions on the relative
capacity to have the compactness of the embedding H̃1(Ω) ↪→ L2(Ω). We also give
some sufficient conditions on the relative capacity to have a continuous embedding
from H̃1(Ω) into Lp(Ω) for some p > 2.

Proposition 4.3.6. Let Ω ⊂ RN be a bounded domain. For each compact set K ⊂ Ω
we let

γ(K) :=

{ |K|
CapΩ̄(K) if CapΩ̄(K) > 0

0 otherwise .

The following assertions are equivalent.

(i) The embedding H̃1(Ω) ↪→ L2(Ω) is compact.

(ii) lim supδ→0{γ(K) : K ⊂ Ω, |K| ≤ δ} = 0.

Proof. Recall that for each Borel set B ⊂ Ω̄ we have |B| ≤ CapΩ̄(B).
(i) ⇒ (ii). Assume that (i) holds. Then for every u ∈ H1(Ω)∩C(Ω̄), we have

∫

K

|u|2 dx ≤ ε(δ)‖u‖2H1(Ω) (4.41)

where ε(δ) → 0 as δ → 0 and K is an arbitrary Borel subset of Ω with |K| ≤ δ.
Let K to be a compact set. If we insert into (4.41) an arbitrary function u ∈
H1(Ω) ∩ C(Ω̄) with u|K ≥ 1 and pass to the infimum on the right part over such
functions, one obtains

|K| ≤ ε(δ)CapΩ̄(K)

which gives (ii).
(ii) ⇒ (i). Let u ∈ H1(Ω) ∩ C(Ω̄) and let δ ∈ (0, |Ω|2 ). Put

t(δ) := sup{t ≥ 0 : |Et| ≥ δ}
where Et := {x ∈ Ω : |u(x)| ≥ t}. Then t(δ) < ∞, |Et(δ)| ≥ δ and |Et| < δ for
t > t(δ). We have

∫

Ω

|u|2 dx =
∫

Et(δ)

|u|2 dx+
∫

Ec
t(δ)

|u|2 dx

≤
∫

Et(δ)

|u|2 dx+
∫

Ω

(t(δ))2 dx

≤
∫

Et(δ)

|u|2 dx+ |Ω|t(δ)2.

Let vδ(x) := max{|u(x)| − t(δ), 0}. Then

‖u‖2 ≤ ‖vδ‖2 + t(δ)|Ω|1/2. (4.42)
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Moreover, ∫

Ω

|vδ|2 dx =
∫ ∞

0

|{x ∈ Ω : vδ(x) ≥ t}| d(t2).

Since {vδ ≥ t} ⊂ Et(δ)+t for all t > 0, it follows that
∫ ∞

0

|{vδ ≥ t}| d(t2) ≤
∫ ∞

0

|Et(δ)+t| d(t2).

We have |Et(δ)+t| < δ for t > 0 and by hypothesis
∫ ∞

0

|Et(δ)+t| d(t2) ≤
∫ ∞

0

sup
|Et(δ)+t|

CapΩ̄(Et(δ)+t)
CapΩ̄(Et(δ)+t) d(t2)

≤ f(δ)
∫ ∞

0

CapΩ̄(Et(δ)+t) d(t2)

where f(δ) denotes the supremum in (ii). As Et(δ)+t ⊂ Et, this implies that
CapΩ̄(Et(δ)+t) ≤ CapΩ̄(Et). By Proposition 2.2.5 we obtain

‖vδ‖2 ≤ cf(δ)1/2
(∫ ∞

0

CapΩ̄(Et) d(t2)
)1/2

≤ cf(δ)1/2‖u‖H1(Ω).

Moreover, since |Et(δ)| ≥ δ, we have that
∫

Ω

|u| dx ≥
∫

Et(δ)

|u| dx ≥
∫

Et(δ)

t(δ) dx = t(δ)|Et(δ)| ≥ δt(δ).

Finally, one has
‖u‖2 ≤ cg(δ)‖u‖H1(Ω) + δ−1|Ω|1/2‖u‖1

where c > 0 and g(δ) → 0 as δ → 0. This inequality implies that every sequence
in H1(Ω) ∩ C(Ω̄) bounded in H1(Ω) and convergent in L1(Ω), is convergent in
L2(Ω). Since the injection H̃1(Ω) ↪→ L1(Ω) is compact, one obtains (i).

Proposition 4.3.7. Let Ω ⊂ RN be a bounded domain such that σ(∂Ω) < ∞.
Assume that there exists a constant C > 0 such that

σ(K) ≤ C CapΩ̄(K) (4.43)

for every compact set K ⊂ ∂Ω. Then there exists a constant M > 0 such that

‖u‖ 2N
N−1

≤M‖u‖H1(Ω) (4.44)

for all u ∈ H1(Ω) ∩ C(Ω̄).

Proof. Assume that the inequality (4.43) holds. By Proposition 2.2.6, this
implies that

‖u‖L2(∂Ω,σ) ≤ C‖u‖H1(Ω) (4.45)

for all u ∈ H1(Ω) ∩ C(Ω̄). Now replacing (4.45) in the Maz’ya inequality (4.12),
we obtain (4.44).
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Theorem 4.3.8. Let Ω ⊂ RN be a bounded domain such that σ(∂Ω) < ∞. Then
the following assertions are equivalent.

(i) There exists a constant C > 0 such that

σ(K) ≤ C CapΩ̄(K) (4.46)

for every compact set K ⊂ ∂Ω.

(ii) There exists a constant M > 0 such that

inf
c∈R

‖u− c‖L2(∂Ω,σ) ≤M‖∇u‖2 (4.47)

for all u ∈ H1(Ω) ∩ C(Ω̄).

Proof. (i) ⇒ (ii). Assume that the inequality (4.46) holds. By Proposition
2.2.6, this implies that (4.45) holds and in particular that the embedding H̃1(Ω) ↪→
L2(Ω) is compact. Therefore the Poincaré inequality,

inf
c∈R

‖u− c‖2 ≤ k‖∇u‖2 (4.48)

for all u ∈ H̃1(Ω), holds. Now replacing u by u − c in (4.45), taking the infimum
and using (4.48), we obtain

inf
c∈R

‖u− c‖L2(∂Ω,σ) ≤ c1‖∇u‖2 + inf
c∈R

‖u− c‖2
≤ c1‖∇u‖2 + k‖∇u‖2
≤ M‖∇u‖2

which gives (ii).
(ii) ⇒ (i). The inequality (4.47) implies that

inf
c∈R

‖u− c‖L2(∂Ω,σ) ≤M‖u‖H1(Ω). (4.49)

for all u ∈ H1(Ω) ∩ C(Ω̄). Let K ⊂ ∂Ω be a compact set and G a relatively open
subset of ∂Ω such that K ⊂ G. Let

N := {u ∈ H1(Ω) ∩ C(Ω) : u = 1 on K, 0 ≤ u ≤ 1 and u = 0 on ∂Ω \G}.

Substituting any function u of the class N into (4.49), we obtain

min
c∈R

(|1− c|2σ(K) + c2σ(∂Ω \G)
) ≤M2 CapΩ̄(K). (4.50)

Computing, the minimum is attained for

c =
σ(K)

σ(K) + σ(∂Ω \G)
.
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Now, replacing c in (4.50), we obtain that

σ(K)σ(∂Ω \G)
σ(K) + σ(∂Ω \G)

≤M2 CapΩ̄(K).

If we assume that 2σ(G) ≤ σ(∂Ω), then as σ(∂Ω) = σ(G) + σ(∂Ω \ G) one has
σ(G) ≤ σ(∂Ω \G) and since σ(K) ≤ σ(G), this implies that σ(K) + σ(∂Ω \G) ≤
2σ(∂Ω \G). Finally, we obtain

σ(K)σ(∂Ω \G)
2σ(∂Ω \G)

≤ σ(K)σ(∂Ω \G)
σ(K) + σ(∂Ω \G)

≤M2 CapΩ̄(K)

which gives the inequality (4.46) with C = 2M2.

4.4 Comments.

Section 4.1.
All the results of this section are well-known and contained in [73] except inequality
(4.11) which has been never considered by Maz’ya. Our definition of W 1

2,2(Ω, ∂Ω)
differs slightly from the Maz’ya one. In fact, for an arbitrary open set Ω, Maz’ya
defines W 1

2,2(Ω, ∂Ω) as the closure of Wσ with respect to the norm ‖| · ‖|2 given
by (4.15). With this definition, if Ω has an infinite measure, then W 1

2,2(Ω, ∂Ω) is
not always a subspace of L2(Ω) and in particular, it is not always embedded into
Lq(Ω) for some q > 2. Our definition seemed to be the natural candidate for the
study of forms for which subspaces of L2(Ω) are needed.

The proof of Maz’ya’s striking inequality (Theorem 4.1.7) given here is taken
from [73, Theorem 3.6.3].

Section 4.2.
Properly speaking, Robin boundary conditions correspond to the case where dµ =
βdσ for some positive measurable function β in L∞(S, σ). Here, we consider the
case β = 1, but all the results of this section are true if we take β ∈ L∞(S, σ)
with infS β(z) > 0. Writing ∆β for the operator associated with the closed form
(aβσ, V ), if β = 0 then ∆0 = ∆N and if β = ∞ then ∆∞ = ∆D.

Assume that Ω is an open subset of RN of class C1. Let µ be a Borel measure
on ∂Ω in M0. By [18, Proposition 5.2], if there exists u ∈ D(∆µ) ∩ C2(Ω̄) such
that u(z) > 0 for all z ∈ ∂Ω, then there exists β ∈ C(∂Ω)+ such that dµ = βdσ;
i.e. ∆µ = ∆β and we have the classical Robin boundary conditions.

Conversely, assuming that Ω is of class C2,α where 0 < α < 1, if β ∈ C1,α(∂Ω)
is such that 0 < β(z) (z ∈ ∂Ω), there always exists u ∈ D(∆β) ∩ C2,α(Ω̄) such
that infx∈Ω̄ u(x) > 0 (see [18, Proposition 5.3]).

By the results of this section, given an open set Ω in RN , there (always) exists
a natural subset S of ∂Ω where Robin boundary conditions are realized. First, we
note that σ(S) > 0 if Ω is bounded. In fact, replacing u by the constant function
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1 in the inequality (4.19) we obtain that |Ω|N−1
N ≤ Cσ(S) and thus σ(S) > 0.

Furthermore, we have shown that it is (always) possible to define a “normale
derivative” on S in the generalized sense for every u ∈ D(∆R). We then see that
the set S has some kind of regularity. Let

N := {x ∈ ∂Ω : a normal to ∂Ω at x exists}

be the reduced boundary of Ω (see [73, Section 6.2]). We don’t know if S = N .
To finish we note that Theorem 4.2.11 has been obtained by Daners [34] in

the case where Ω is bounded.

Section 4.3.
The characterization of D(∆N ) for bounded Lipschitz domains is well-known and
contained in [38, Example 2 p.380].

Theorem 4.3.4 can also be obtained by using some results of Arendt and
Bukhvalov [13]. In fact they have proved that for every bounded open set Ω in
RN the operator R(λ,∆N ) (the resolvent of ∆N ) is always an integral operator
for λ > 0. Since for each u ∈ L2(Ω) the function R(λ,∆N )u is the Laplace trans-
form of et∆Nu, Theorem 4.3.4 implies the result in [13]. Using the inverse Laplace
transform, we can obtain the converse implication.

The proof of Proposition 4.3.6 is based on some ideas of Maz’ya and Poborchi
[75, Theorem 8.6.3] where they give a similar equivalent condition to obtain the
compactness of the embedding L1

p(Ω) into Lq(Ω) for 1 < p ≤ q <∞ where L1
p(Ω)

is the space of distributions on Ω with derivatives of order 1 in Lp(Ω).
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Chapter 5

The Robin Laplacian on C(Ω̄)

Throughout this chapter, we assume that Ω ⊂ RN (N ≥ 3) is a bounded domain
with Lipschitz boundary. Recall that this means that ∂Ω is locally a graph of a
Lipschitz function.

We shall denote by σ the restriction to ∂Ω of the (N − 1)-dimensional Haus-
dorff measure which coincides with the usual Lebesgue surface measure (see Chap-
ter 1).

Let 0 < γ ≤ β ∈ L∞(∂Ω) and let f ∈ Lp(Ω), g ∈ Lq(∂Ω) where p > N and
q ≥ N .

We consider the elliptic boundary value problem given formally by

{
−∆u = f in Ω;
∂u
∂ν + βu = g on ∂Ω

(5.1)

where ν denotes the exterior normal to ∂Ω.

It is easy to see that this problem has a unique weak solution u ∈ H1(Ω)
(see Definition 5.1.1). The main result of this chapter (Theorem 5.2.7) says that
u ∈ C(Ω̄). This is surprising since β is merely supposed to be measurable. We
will use the method of De Giorgi applied by Murthy and Stampacchia [77] to
solve elliptic equations with Dirichlet boundary conditions and Neumann boundary
conditions if Ω is 1/2-admissible (see [77, Definition 9.7] for the definition). For
the Dirichlet boundary conditions see also [12], [59] or [70]. For the case β = 0
and g = 0, i.e. the homogeneous Neumann boundary conditions, Fukushima and
Tomisaki [58] prove that a weak solution is continuous on Ω̄. Biegert [22] gives
an example of an open subset in R2 on which a weak solution of the homogenous
Neumann problem (i.e., β = 0 and g = 0) is not continuous on Ω̄.
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5.1 Preliminary Results.

Recall that Ω always denotes a bounded Lipschitz domain. Therefore the results of
Chapter 4 imply that the Maz’ya space W 1

2,2(Ω, ∂Ω) is isomorphic to H1(Ω) with
equivalent norm. In particular, this implies that H1(Ω)∩C(Ω̄) is dense in H1(Ω).
Moreover, H1(Ω) is continuously embedded into L

2N
N−2 (Ω) and each function u ∈

H1(Ω) has a trace noted u|∂Ω which is in L
2(N−1)

N−2 (∂Ω); i.e. the trace application
defined by

H1(Ω) ∩ C(Ω̄) −→ L
2(N−1)

N−2 (∂Ω), u 7→ u|∂Ω (5.2)

has a continuous extension to H1(Ω). Throughout the following, we let s := 2(N−1)
N−2

and denote by s′ the real number verifying 1
s + 1

s′ = 1.

Definition 5.1.1. A function u ∈ H1(Ω) is called a weak solution of (5.1) if

aσ(u, v) =
∫

Ω

fv dx+
∫

∂Ω

gv dσ, ∀ v ∈ H1(Ω), (5.3)

where we recall that for u, v ∈ H1(Ω),

aσ(u, v) :=
∫

Ω

∇u∇v dx+
∫

∂Ω

βuv dσ.

It is clear that the closed bilinear form aσ is continuous on H1(Ω) and it is
coercive on H1(Ω) in the sense that there exists a constant c > 0 such that for all
u ∈ H1(Ω)

aσ(u, u) ≥ c‖u‖2H1(Ω).

Let L be the linear functional on H1(Ω) defined by: for v ∈ H1(Ω) we let

Lv :=
∫

Ω

fv dx+
∫

∂Ω

gv dσ.

Since p ≥ 2 and q ≥ 2, the functional L is well defined and continuous on H1(Ω).
Thus, by the coerciveness of the continuous bilinear form aσ on H1(Ω), the Lax-
Milgram Lemma (see [24, Corollaire V.8 p.84]) implies that there exists a unique
weak solution u ∈ H1(Ω) of the boundary value problem (5.1).

For simplicity, all the calculations will be carried out assuming that N ≥ 3.
However, all the results hold also for N = 2 with minor changes.

Before starting this study, we recall some fundamental lemmas which we will
use frequently.

Lemma 5.1.2. Let ϕ = ϕ(t) be a nonnegative, nonincreasing function on the half
line t ≥ k0 ≥ 0 such that there are positive constants c, α and δ (δ > 1) such that

ϕ(h) ≤ c(h− k)−αϕ(k)δ

for all h > k ≥ k0. Then we have:

ϕ(k0 + d) = 0, where d > 0 satisfies dα = cϕ(k0)δ−12δ(δ−1).
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The proof of the following result given here is taken from [70, Theorem 2.106].
Note that Lemma 5.1.2 can be proved similarly as the following lemma by keeping
r fixed in that case.

Lemma 5.1.3. Let ϕ = ϕ(t, r) be a nonnegative function on (t ≥ k0 ≥ 0) × (0 ≤
r < R0) such that:

a) for every fixed r, ϕ(·, r) is nonincreasing,

b) for every fixed h, ϕ(h, ·) is nondecreasing

and such that there exist positive constants c, α, δ and γ (δ > 1) with

ϕ(h, r) ≤ c(h− k)−α(R− r)−γϕ(k,R)δ (5.4)

for all h > k ≥ k0, r < R < R0. If σ is an arbitrary real number satisfying
0 < σ < 1, then

{
ϕ(k0 + d, (1− σ)R0) = 0,
where dα = c((1− σ)R0)−γϕ(k0, R0)δ−12δ

α+γ
δ−1 .

Proof. Let 0 < σ < 1, kj := k0 + d − 2−jd, rj := (1 − 2−j)(1 − σ)R0 and
ϕj := ϕ(kj , rj) where j ∈ N. By (5.4), we have the following estimates:

ϕj ≤ c(2−jd)−α(2−j(1− σ)R0)−γϕδj−1

≤ c2(α+γ)jd−α((1− σ)R0)−γϕδj−1

≤ 2(α+γ)(j−1− 1
δ−1 )ϕ(k0, R0)1−δϕδj−1.

By induction we obtain that,

ϕj ≤ 2−
α+γ
δ−1 jϕ(k0, R0).

Taking the limit as j →∞, we obtain the claim.

The proof of the following result is contained in [77, Lemma 3.13].

Lemma 5.1.4. Let ϕ be a nonnegative, nonincreasing function on a closed
bounded interval k0 ≤ t ≤M such that there exist positive constants c, α δ with

(h− k)αϕ(h)δ ≤ c(M − k)α(ϕ(k)− ϕ(h)) (5.5)

for all k0 ≤ k < h < M . Then limh→M ϕ(h) = 0.

The following well-known result is contained in [77, Lemma 11.3] (see also
[59, Lemma 8.23 p.201] or [70, Lemma 4.12 p.196]).
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Lemma 5.1.5. Let ω(r) be a nonnegative function defined on 0 < ρ < R satisfying
the condition that there exist constants η and c with 0 < η < 1, c ≥ 0 such that

ω(ρ) ≤ ηω(4ρ) + cρα, 0 < 4ρ < R, α > 0.

Then there exist two constants K > 0 and 0 < δ < 1 such that

ω(r) ≤ Krδ for 0 < r < R.

Remark 5.1.6. From the proof of the preceding lemma, we have that if α0 > 0 is a
real number such that 4α0η := c1 < 1 then δ = min(α, α0) and

K =
(

sup
r≤ρ≤4r

ω(ρ)
ρδ

+
c

1− c1

)
.

Throughout the following, for x0 ∈ Ω̄ and r > 0, we shall denote

Ω(x0, r) := Ω ∩B(x0, r) and Ω̄(x0, r) := Ω̄ ∩B(x0, r),

where
B(x0, r) := {x ∈ RN : |x− x0| < r}.

If D is a Lebesgue measurable subset of Ω and E a σ-measurable subset of ∂Ω,
we denote by |D| the Lebesgue measure of D and by [E] := σ(E) the (N − 1)-
dimensional Hausdorff measure of E.

To obtain the uniform continuity on Ω of the solution of the problem (5.1),
the following result will play an important role. It has been obtained by Fukushima
and Tomisaki (see [58, Sections 3 and 6]).

Theorem 5.1.7. Let 1 ≤ p < N and r be a real number satisfying p ≤ r ≤ pN
N−p .

Then for each x0 ∈ Ω̄ and each κ ∈ (0, 1], there exists a constant ρ0 := ρ0(x0) > 0
such that,

(∫

Ω(x0,ρ)

|u|r dx
)1/r

≤ c(κ, r)ρN( 1
r− 1

p )

(
ρp

∫

Ω(x0,ρ)

|∇u|p dx+
∫

D

|u|p dx
)1/p

(5.6)
for every u ∈ H1(Ω(x0, ρ)) and every measurable subset D of Ω(x0, ρ) such that
|D| ≥ κ|Ω(x0, ρ)| and 0 < ρ ≤ ρ0.

Remark 5.1.8. a) For each x0 ∈ Ω̄, we can always assume that 0 < ρ0 < 1.
Then, as pN(1/r − 1/p) + p ≥ 0, given a measurable subset D of Ω(x0, ρ)
such that |D| ≥ κ|Ω(x0, ρ)| for 0 < ρ < ρ0, the inequality (5.6) implies that

(∫

Ω(x0,ρ)

|u|r dx
)1/r

≤ c(κ, r)

(∫

Ω(x0,ρ)

|∇u|p dx
)1/p

for every u ∈ H1(Ω(x0, ρ)) such that u = 0 on D.
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b) The continuity of the trace application (5.2) gives that there exists a constant
C > 0 depending only on Ω such that

‖u‖s,∂Ω ≤ C‖u‖H1(Ω)

for every u ∈ H1(Ω). Then as in a), given a measurable subset D of Ω(x0, ρ)
such that |D| ≥ κ|Ω(x0, ρ)| for 0 < ρ < ρ0, we have that

‖u‖s,∂Ω∩B(x0,ρ) ≤ c(κ,Ω)‖∇u‖2,Ω(x0,ρ)

for every u ∈ H1(Ω(x0, ρ)) such that u = 0 on D.

5.2 Hölder Continuity of Weak Solutions.

Throughout the following, if E is a subset of Ω̄, u ∈ H1(Ω) and k a real number,
we say that u ≥ k on E in the generalized sense, if there exists a sequence of
functions un ∈ C1(Ω̄) such that un ≥ k on E and un converges to u in H1(Ω).
Since a sequence of functions converging in L2(Ω) has a subsequence converging
almost everywhere with respect to the Lebesgue measure, it follows that u ≥ k on
E in the generalized sense implies that u ≥ k on E a.e. Similarly we define u ≤ k
on E in the generalized sense. A function u ∈ H1(Ω) is said to be equal to k on
E in the generalized sense when u ≥ k and u ≤ k on E in the generalized sense.
If there is no confusion, we shall always omit the expression “generalized sense”.

Before proving the Hölder continuity, we show that for some values of p and
q the weak solution u ∈ H1(Ω) of (5.1) is bounded on Ω̄.

Proposition 5.2.1. Let u ∈ H1(Ω) be a weak solution of (5.1) and assume that
p > N and q > N − 1. Then there exists a constant C = c(N, p, q, |Ω|, [∂Ω]) > 0
such that

|u(x)| ≤ C(‖f‖p,Ω + ‖g‖q,∂Ω)

almost everywhere on Ω̄.

Proof. Let u ∈ H1(Ω) be a weak solution of (5.1) and k ≥ 0 be a real number.
Let v := (|u| − k)+ sgn(u). Then v ∈ H1(Ω) is given by

v(x) =





u(x)− k if u(x) ≥ k

0 if |u(x)| ≤ k

u(x) + k if u(x) ≤ −k.

Moreover,

∇v =

{
∇u in A(k)
0 otherwise
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where A(k) := {x ∈ Ω̄ : |u(x)| > k}. Calculating, we obtain,

aσ(u, v) =
∫

Ω

∇u∇v dx+
∫

∂Ω

βuv dσ

=
∫

A(k)

|∇v|2 dx+
∫

∂Ω∩A(k)

βv2 dσ + k

∫

∂Ω∩A(k)

β|v| dσ

= aσ(v, v) + k

∫

∂Ω∩A(k)

β|v| dσ

which implies that

aσ(v, v) ≤ aσ(u, v) =
∫

A(k)

fv dx+
∫

A(k)∩∂Ω

gv dσ. (5.7)

Using the Hölder inequality, the continuous embedding from H1(Ω) into L
2N

N−2 (Ω)
and the continuity of the trace application (5.2), we obtain the following estimates:

∫

A(k)

fv dx ≤ ‖f‖2,A(k)‖v‖2,A(k)

≤ |A(k)|1/2−1/p‖f‖p,Ω‖v‖H1(Ω). (5.8)

Similarly,
∫

A(k)∩∂Ω

gv dσ ≤ ‖g‖2,A(k)∩∂Ω‖v‖2,A(k)∩∂Ω

≤ [A(k) ∩ ∂Ω]1−1/q−1/s‖g‖q,∂Ω‖v‖H1(Ω). (5.9)

Letting

H(k) := |A(k)|1/2−1/p‖f‖p,Ω + [A(k) ∩ ∂Ω]1−1/s−1/q‖g‖q,∂Ω,

the inequalities (5.7), (5.8) and (5.9) imply that

‖v‖H1(Ω) ≤ cH(k).

It follows that there exist some constants c1, c2 > 0 such that

‖v‖ 2N
N−2 ,A(k) ≤ c1H(k) (5.10)

and
‖v‖s,A(k)∩∂Ω ≤ c2H(k). (5.11)

Let h > k ≥ 0. Then A(h) ⊂ A(k) and on A(h) we have |v| ≥ h − k. Thus the
inequalities (5.10) and (5.11) imply that

|A(h)|N−2
N ≤ c1(h− k)−2H(k)2 (5.12)
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and
[A(k) ∩ ∂Ω]

2
s ≤ c2(h− k)−2H(k)2. (5.13)

Next letting a(h) := |A(h)|+[A(h)∩∂Ω]
2N

s(N−2) , we obtain the following estimates:

a(h) ≤ (h− k)−2∗H(k)2
∗

≤ c(h− k)−2∗
(
|A(k)|1/2−1/p‖f‖p,Ω + [A(k) ∩ ∂Ω]1−1/s−1/q‖g‖q,∂Ω

)2∗

≤ c(h− k)−2∗
(
a(k)1/2−1/p‖f‖p,Ω + a(k)(1−1/s−1/q)2∗‖g‖q,∂Ω

)2∗

,

where 2∗ := 2N
N−2 . Let

δ := min{(1/2− 1/p)2∗, (1− 1/q − 1/s)s}. (5.14)

Then

a(h) ≤ c(h− k)−2∗
(
a(k)((1/2−1/p)2∗−δ) 1

2∗ ‖f‖p,Ω +

+a(k)((1−1/s−1/q)s−δ) 1
2∗ ‖g‖q,∂Ω

)2∗

a(k)δ

≤ c(h− k)−2∗
(
|Ω|((1/2−1/p)2∗−δ) 1

2∗ ‖f‖p,Ω +

+ [∂Ω]((1−1/s−1/q)s−δ) 1
2∗ ‖g‖q,∂Ω

)2∗

a(k)δ.

Let
c3 := cmax{|Ω|(1/2−1/p)2∗−δ, [∂Ω](1−1/q−1/s)s−δ}.

We finally obtain that

a(h) ≤ c3(h− k)−2∗ (‖f‖p,Ω + ‖g‖q,∂Ω)2
∗
a(k)δ.

Since p > N and q > N − 1, it follows that δ > 1. The function a(h) satisfies then
the conditions of Lemma 5.1.2 with α = 2∗ = 2N

N−2 and δ given by (5.14). Taking
k0 = 0, one obtains that a(d) = 0 with

dα ≤ c3 (‖f‖p,Ω + ‖g‖q,∂Ω)2
∗
a(0)δ−1 = c(‖f‖p,Ω + ‖g‖q,∂Ω)α

which implies that
|u(x)| ≤ C(‖f‖p,Ω + ‖g‖q,∂Ω)

almost everywhere on Ω̄.

For g = 0, the result of the preceding proposition has been obtained by Daners
(see [34, Theorem 4.2]) with a different proof and for an arbitrary bounded domain
Ω.

We obtain the following result as a corollary of the proof of the preceding
proposition.
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Corollary 5.2.2. Let fi ∈ Lp(Ω), i = 0, . . . , N, g ∈ Lq(Ω) and u ∈ H1(Ω) be such
that

aσ(u, ϕ) =
∫

Ω

f0ϕ dx+
N∑

i=1

∫

Ω

fiDiϕ dx+
∫

∂Ω

gϕ dσ

for all ϕ ∈ H1(Ω). Assume that p > N and q > N−1. Then there exists a constant
C = c(N, p, q, |Ω|, [∂Ω]) > 0 such that

|u(x)| ≤ C(
N∑

i=0

‖fi‖p,Ω + ‖g‖q,∂Ω)

almost everywhere on Ω̄.

Before giving the main result, we need some preparations. Recall that Ω
always denotes a bounded Lipschitz domain in RN (N ≥ 3).

Proposition 5.2.3. There exists a constant C > 0 such that for each x0 ∈ Ω̄, and
for all k ≥ 0 and for all 0 < ρ < R < ρ0, a weak solution u ∈ H1(Ω) of the
equation (5.1) satisfies

∫

A(k,ρ)

|∇u|2 dx ≤ C

{
(R− ρ)−2

∫

A(k,R)

|u− k|2 dx+G(k,R)

}
(5.15)

where for 0 < r < ρ0,

A(k, r) := {x ∈ Ω̄(x0, r) : u(x) > k},

and

G(k,R) := ‖f‖2p,∂Ω|A(k,R)|1−2/p+2/N + ‖g‖2q,∂Ω[A(k,R) ∩ ∂Ω]2/s
′−2/q.

Proof. Let x0 ∈ Ω̄ be fixed and ρ0 > 0 be the constant given by Theorem
5.1.7. Let ρ and R be two real numbers verifying 0 < ρ < R < ρ0 and let ψ ∈
C1
c (B(x0, ρ0)) be a function such that

{
0 ≤ ψ(x) ≤ 1
|∇ψ(x)| ≤ c(R− ρ)−1

ψ(x) =

{
1 in B(x0, ρ)
0 outside B(x0, R).

Let u ∈ H1(Ω) be a weak solution of (5.1) and k be a real number. We consider
the function v ∈ H1(Ω) defined by v := ψ2(u− k)+. Then

v =

{
ψ2(u− k) in A(k,R)
0 outside .
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Replacing v in (5.3) we obtain:
∫

A(k,R)

∇u∇[ψ2(u− k)] dx+
∫

A(k,R)∩∂Ω

βuψ2(u− k) dσ =
∫

A(k,R)

fψ2(u− k) dx+
∫

A(k,R)∩∂Ω

gψ2(u− k) dσ.

Since u(u− k) ≥ 0 on A(k,R),
∫

A(k,R)

ψ2|∇u|2 dx ≤ −2
∫

A(k,R)

ψ∇u∇ψ(u− k) dx

+
∫

A(k,R)

ψfψ(u− k) dx+
∫

A(k,R)∩∂Ω

ψgψ(u− k) dσ.

Next, using the Hölder inequality, the Young inequality, the continuity of the
trace application (5.2) and the continuous embedding from H1(Ω) into L

2N
N−2 (Ω),

we obtain the following estimates:

−2
∫

A(k,R)

ψ∇u∇ψ(u− k) dx ≤ 2‖ψ∇u‖2,A(k,R)‖∇ψ(u− k)‖2,A(k,R)

≤ ε‖ψ∇u‖22,A(k,R) +
1
ε
‖∇ψ(u− k)‖22,A(k,R)

for every ε > 0. Similarly,
∫

A(k,R)

ψfψ(u− k) dx ≤ ‖ψf‖2,A(k,R)‖ψ(u− k)‖2,A(k,R)

≤ ‖ψf‖2,A(k,R)|A(k,R)|1/N‖ψ(u− k)‖ 2N
N−2 ,A(k,R)

≤ c1‖ψf‖2,A(k,R)|A(k,R)|1/N‖ψ(u− k)‖H1(Ω)

≤ εc1‖ψ(u− k)‖2H1(Ω) +
1
ε
‖ψf‖22,A(k,R)|A(k,R)|2/N

≤ εc1‖ψ∇u‖22,A(k,R) + εc1‖ψ(u− k)‖22,A(k,R)

+ c1ε‖∇ψ(u− k)‖22,A(k,R) +
1
ε
‖ψf‖2p|A(k,R)|1−2/p+2/N

for every ε > 0 and some constant c1 = c(p, q, |Ω|, [∂Ω]) > 0. Moreover,
∫

A(k,R)∩∂Ω

ψgψ(u− k) dσ ≤ ‖ψg‖s′,A(k,R)∩∂Ω‖ψ(u− k)‖s,A(k,R)∩∂Ω

≤ 1
2ε
|ψg‖2s′,A(k,R)∩∂Ω + c2ε‖ψ(u− k)‖2H1(Ω)

≤ εc2‖ψ∇u‖22,A(k,R) + εc2‖ψ(u− k)‖22,A(k,R)

+εc2‖∇ψ(u− k)‖22,A(k,R)

+
1
2ε
‖ψg‖2q,∂Ω[A(k,R) ∩ ∂Ω]2/s

′−2/q
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for every ε > 0 and some constant c2 = c(p, q, |Ω|, [∂Ω]) > 0. Choosing ε suitably,
using the fact that ψ = 1 on B(x0, ρ), 0 ≤ ψ(x) ≤ 1, |∇ψ(x)| ≤ c(R − ρ)−1 and
A(k, ρ) ⊂ A(k,R), we obtain the inequality (5.15).

Lemma 5.2.4. There exist some constants C1, C2, C3 > 0 such that for each x0 ∈ Ω̄,
and for all 0 < ρ < ρ0 and for every u ∈ H1(Ω), we have

(i)
∫
A(k,ρ)

|u− k|2 dx ≤ C1|A(k, ρ)|2/N ∫
A(k,ρ)

|∇u|2 dx;

(ii) |A(h, ρ)|N−2
N ≤ C2(h− k)−2

∫
A(k,ρ)\A(h,ρ)

|∇u|2 dx;

(iii) |A(h, ρ)| 2N−2
N ≤ C3(h− k)−2

∫
A(k,ρ)

|∇u|2 dx (|A(k, ρ)| − |A(h, ρ)|)

for all h > k ≥ 0 and for every k ≥ 0 such that

|A(k, ρ)| ≤ 1
2
|Ω(x0, ρ)|,

where A(k, ρ) is defined as in Proposition 5.2.3.

Proof. Let x0 ∈ Ω̄, 0 < ρ < ρ0 and k ≥ 0 be a real number such that
|A(k, ρ)| ≤ 1

2 |Ω(x0, ρ)| and let u ∈ H1(Ω).
(i) Consider the function v ∈ H1(Ω) defined by v := (u− k)+. Then

∫

Ω

|v|2 dx =
∫

A(k,ρ)

|u− k|2 dx ≤ |A(k, ρ)|2/N
(∫

A(k,ρ)

|u− k| 2N
N−2

)N−2
N

.

Since v = 0 on Ω(x0, ρ)\A(k, ρ) and |Ω(x0, ρ)\A(k, ρ)| > 1
2 |Ω(x0, ρ)|, by Theorem

5.1.7, there exists a constant C1 > 0 such that

(∫

A(k,ρ)

|u− k| 2N
N−2

)N−2
N

≤ C1

∫

A(k,ρ)

|∇u|2 dx.

Finally, this implies that
∫

A(k,ρ)

|u− k|2 dx ≤ C1|A(k, ρ)|2/N
∫

A(k,ρ)

|∇u|2 dx.

(ii) Let h > k, where k ≥ 0 satisfies |A(k, ρ)| ≤ 1
2 |Ω(x0, ρ)|. Consider the

functions v1, v2 ∈ H1(Ω) defined by v1 = (u − k)+, v2 = (u − h)+ and let w :=
v1 − v2. Then

w =





h− k in A(h, ρ)
u− k in A(k, ρ) \A(h, ρ)
0 otherwise .
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Since w = 0 on Ω(x0, ρ) \ A(k, ρ) and |Ω(x0, ρ) \ A(k, ρ)| > 1
2 |Ω(x0, ρ)|, using the

Hölder inequality and Theorem 5.1.7, we obtain the following estimates:

∫

A(h,ρ)

|w|2 dx ≤ |A(h, ρ)|2/N
(∫

A(h,ρ)

|w| 2N
N−2

)N−2
N

≤ |A(h, ρ)|2/N
(∫

A(k,ρ)

|w| 2N
N−2

)N−2
N

≤ C2|A(h, ρ)|2/N
∫

A(k,ρ)

|∇w|2 dx.

for some constant C2 > 0. Replacing w, we obtain that

|A(h, ρ)| ≤ C2(h− k)−2|A(h, ρ)|2/N
∫

A(k,ρ)

|∇u|2 dx

which gives (ii).
(iii) Consider the same function w ∈ H1(Ω) as in (ii). Since w = 0 on

Ω(x0, ρ)\A(k, ρ) and |Ω(x0, ρ)\A(k, ρ)| > 1
2 |Ω(x0, ρ)|, using the Hölder inequality

and Theorem 5.1.7, we obtain the following estimates:

∫

A(h,ρ)

|w| dx ≤ |A(h, ρ)|1/N
(∫

A(h,ρ)

|w| N
N−1

)N−1
N

≤ |A(h, ρ)|1/N
(∫

A(k,ρ)

|w| N
N−1

)N−1
N

≤ c|A(h, ρ)|1/N
∫

A(k,ρ)

|∇w| dx

for some constant c > 0. Replacing w, we obtain the following estimates:

|A(h, ρ)| ≤ c(h− k)−1|A(h, ρ)|1/N
∫

A(k,ρ)\A(h,ρ)

|∇u| dx

≤ c(h− k)−1|A(h, ρ)| 1
N |A(k, ρ) \A(h, ρ)| 12 ×

×
(∫

A(k,ρ)\A(h,ρ)

|∇u|2 dx
) 1

2

which implies that

|A(h, ρ)| 2N−2
N ≤ C3(h− k)−2

∫

A(k,ρ)

|∇u|2 dx (|A(k, ρ)| − |A(h, ρ)|) .

Next we give some estimates for a weak solution u of (5.1).



132 5. THE ROBIN LAPLACIAN ON C(Ω̄)

Proposition 5.2.5. For each x0 ∈ Ω̄, and for all 0 < ρ < R < ρ0 and for a weak
solution u ∈ H1(Ω) of (5.1) the following estimates hold.

(i)
∫
A(h,ρ)

|u− h|2 dx ≤ c1

{
(R− ρ)−2

∫
A(k,R)

|u− k|2 dx+G(k,R)
}

×|A(k,R)|2/N ;

(ii) |A(h, ρ)|N−2
N ≤ c2(h− k)−2

{
(R− ρ)−2

∫
A(k,R)

|u− k|2 dx+G(k,R)
}
;

(iii) |A(h, ρ)| 2N−2
N ≤ c3(h− k)−2

{
(R− ρ)−2

∫
A(k,R)

|u− k|2 dx+G(k,R)
}

×(|A(k, ρ)| − |A(h, ρ)|);

(iv) [A(h, ρ) ∩ ∂Ω]
2
s ≤ c4(h− k)−2

{
(R− ρ)−2

∫
A(k,R)

|u− k|2 dx+G(k,R)
}

for all k ≥ 0 such that |A(k, ρ)| ≤ 1
2 |Ω(x0, ρ)| and for all h > k, where G(k,R)

and A(k, ρ) are defined as in Proposition 5.2.3.

Proof. (i) Since A(h, ρ) ⊂ A(k, ρ), by Lemma 5.2.4 (i),
∫

A(h,ρ)

|u− h|2 dx ≤
∫

A(k,ρ)

|u− k|2 dx ≤ c|A(k, ρ)|2/N
∫

A(k,ρ)

|∇u|2 dx.

Now we obtain (i) by using Proposition 5.2.3.
The assertions (ii) and (iii) are also an easy consequence of Lemma 5.2.4 and

Proposition 5.2.3.
(iv) Let w ∈ H1(Ω) be the function defined in the proof of Lemma 5.2.4 (ii).

Since w = 0 on Ω(x0, ρ) \A(k, ρ) and |Ω(x0, ρ) \A(k, ρ)| > 1
2 |Ω(x0, ρ)| we obtain

(∫

A(h,ρ)∩∂Ω

|w|s dσ
)2/s

≤
(∫

A(k,ρ)∩∂Ω

|w|s dσ
)2/s

≤ c

∫

A(k,ρ)

|∇w|2 dx.

Replacing w, we obtain that

[A(h, ρ) ∩ ∂Ω]2/s ≤ c(h− k)−2

∫

A(k,ρ)

|∇u|2 dx.

Now Proposition 5.2.3 completes the proof.

Next we introduce some notations. Let E ⊂ Ω be an open set. We put

H(E) := {u|E : u ∈ H1(Ω)}.

Let G be an open set, not necessarily contained in Ω. We denote by H1
c (G) the

closure in H1(Ω) of the space of functions of the type ψu where u ∈ H1(Ω) and
ψ ∈ C1

c (RN ) with suppψ ⊂ G.
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Remark 5.2.6. If G ⊂ Ḡ ⊂ Ω, then H1
c (G) = H1

0 (G). Note that in order to
obtain the estimates of Proposition 5.2.3 at a fixed point x0 ∈ Ω̄, it is enough that
u ∈ H(Ω(x0, R)) and (5.3) is satisfied by those functions ψ ∈ H1

c (B(x0, R)).

We are now in position to prove our main result which is the following theo-
rem.

Theorem 5.2.7. Let p > N and q > N − 1. Then there exists a constant 0 < δ < 1
such that for every f ∈ Lp(Ω) and g ∈ Lq(∂Ω) the weak solution u ∈ H1(Ω) of
(5.1) belongs to C0,δ(Ω̄).

Proof. Let p > N and q > N − 1. We show that there exists a constant
0 < δ1 < 1 such that if f ∈ Lp(Ω), g ∈ Lq(∂Ω) and u ∈ H1(Ω) is the weak
solution of (5.1), then there exist a constant H > 0 such that

ω(r) ≤ Hrδ1 , (5.16)

for every x0 ∈ Ω̄ and for every 0 < r < ρ0, where

ω(r) := ess sup
Ω̄(x0,r)

u(x)− ess inf
Ω̄(x0,r)

u(x).

By Remark 5.2.6, it is enough to consider a solution u ∈ H(Ω(x0, R)) of the
equation
∫

Ω(x0,R)

∇u∇ϕ+
∫

Ω̄(x0,R)∩∂Ω

βuϕ dσ =
∫

Ω(x0,R)

fϕ dx+
∫

Ω̄(x0,R)∩∂Ω

gϕ dσ (5.17)

for all ϕ ∈ H1
c (B(x0, R)). By definition, for every open set G, H1

c (G) is a closed
subspace of H1(Ω). Since aσ is a closed coercive form on H1(Ω), it follows that
aσ is a closed coercive form on H1

c (G). Let G := B(x0, R) and L be the functional
defined by: for ϕ ∈ H1

c (B(x0, R)) we let

Lϕ :=
∫

Ω(x0,R)

fϕ dx+
∫

Ω̄(x0,R)∩∂Ω

gϕ dσ.

Then L is a linear continuous functional onH1
c (B(x0, R)). Since aσ is a closed coer-

cive form on H1
c (B(x0, R)), it follows from the Lax-Milgram Lemma that the equa-

tion (5.17) restricted to H1
c (B(x0, R)) has a unique solution w ∈ H1

c (B(x0, R)).
Now, let u ∈ H(Ω(x0, R)) be a solution of (5.17) and v := u − w. Then

v ∈ H(Ω(x0, R)) satisfies
∫

Ω(x0,R)

∇v∇ϕ+
∫

Ω̄(x0,R)∩∂Ω

βvϕ dσ = 0 ∀ ϕ ∈ H1
c (B(x0, R)). (5.18)

Thus, if u ∈ H(Ω(x0, R)) is a solution of (5.17), we can always decompose u =
v+w, where v ∈ H(Ω(x0, R)) is a solution of (5.18) and w ∈ H1

c (B(x0, R)) satisfies
∫

Ω(x0,R)

∇w∇ϕ+
∫

Ω̄(x0,R)∩∂Ω

βwϕ dσ =
∫

Ω(x0,R)

fϕ dx+
∫

Ω̄(x0,R)∩∂Ω

gϕ dσ,

(5.19)
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for all ϕ ∈ H1
c (B(x0, R)).

1) We claim that there exists a constant 0 < η < 1 such that for v ∈
H(Ω(x0, 4r)) solution of (5.18), we have

ω1(r) ≤ ηω1(4r) (5.20)

where for 0 < ρ < ρ0,

ω1(ρ) := ess sup
Ω̄(x0,ρ)

v(x)− ess inf
Ω̄(x0,ρ)

v(x).

Indeed, let k0 ≥ 0 and k ≥ k0 be such that |A(k, ρ)| ≤ 1
2 |Ω(x0, ρ)| for every

0 < ρ < ρ0, where here

A(k, ρ) := {x ∈ Ω̄(x0, ρ) : v(x) > k}.

Let h > k ≥ k0, and 0 < ρ < R < ρ0 and set

µ(h, ρ) :=
∫

A(h,ρ)

|v − h|2 dx

and
a(h, ρ) := |A(h, ρ)|+ [A(h, ρ) ∩ ∂Ω]

2N
s(N−2) .

Since v satisfies the estimates of Propositions 5.2.3 and 5.2.5 with G(k,R) = 0, by
Proposition 5.2.5 (i) one has,

µ(h, ρ) ≤ c(R− ρ)−2µ(k,R)|A(k,R)|2/N
≤ c(R− ρ)−2µ(k,R)a(k,R)2/N .

Let α be the positive solution of the equation

2α2 = (α+ 1)(N − 2). (5.21)

Then,
µ(h, ρ)α ≤ c(R− ρ)−2αµ(k,R)αa(k,R)

2α
N . (5.22)

By Proposition 5.2.5 (ii) and (iv),

a(h, ρ)
N−2

N ≤ c(h− k)−2(R− ρ)−2µ(k,R). (5.23)

The inequalities (5.22) and (5.23) imply that

µ(h, ρ)αa(h, ρ)
N−2

N ≤ c(h− k)−2(R− ρ)−2−2αµ(k,R)1+αa(k,R)
2α
N .

Letting ϕ(h, ρ) = a(h, ρ)
N−2

N µ(h, ρ)α, we obtain

ϕ(h, ρ) ≤ c(h− k)−2(R− ρ)−2−2αϕ(k,R)δ
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where δ = 1 + 1
α > 1. Then the function ϕ(h, ρ) satisfies the conditions of Lemma

5.1.3. Taking R = 2r and ρ = r we obtain that ϕ(k0 + d, r) = 0 where

d2 = cr−2−2αϕ(k0, 2r)δ−1

≤ C r−2−2αr
N−2

α µ(k0, 2r)
= C r−Nµ(k0, 2r).

But ϕ(k0 + d, r) = 0 implies that |A(k0 + d, r)| = [A(k0 + d, r) ∩ ∂Ω] = 0 which
implies that v(x) ≤ k0 + d almost everywhere on Ω̄(x0, r). Then we obtain that

ess sup
Ω̄(x0,r)

v(x) ≤ k0 +

(
Cr−N

∫

A(k0,2r)

|v − k0|2 dx
)1/2

. (5.24)

Next for 0 < ρ < ρ0 we put

M1(ρ) := ess sup
Ω̄(x0,r)

v(x), m1(ρ) := ess inf
Ω̄(x0,r)

v(x).

Thus ω1(ρ) = M1(ρ)−m1(ρ). Let 0 < r < 4r < ρ0. For an integer n ≥ 0 we put

Kn := M1(4r)− 2−(n+1)ω1(4r).

Then Kn is an increasing sequence converging to K∞ = M1(4r) and it is clear
that K0 = 1

2 (M1(4r) +m1(4r)). Note that if v is a solution of (5.18) then −v is
also a solution of (5.18). By changing v to −v if necessary, we may assume without
restriction that K0 ≥ 0 and

|A(K0, 2r)| ≤ 1
2
|Ω(x0, 2r)|. (5.25)

Thus Kn ≥ K0 ≥ 0 for each integer n. By Proposition 5.2.5 (iii),

|A(h, ρ)| 2N−2
N ≤ c(h− k)−2(R− ρ)−2

∫

A(k,R)

|v − k|2 dx (|A(k, ρ)| − |A(h, ρ)|)

where 0 < ρ < R < ρ0 and all h > k ≥ 0 for every k ≥ 0 such that

|A(k, ρ)| ≤ 1
2
|Ω(x0, ρ)|.

Since by (5.25) this condition is satisfied for k = K0, taking ρ = 2r and R = 4r,
we obtain

|A(h, 2r)| 2N−2
N ≤ c(h− k)−2r−2

∫

A(k,4r)

|v − k|2 dx (|A(k, 2r)| − |A(h, 2r)|)

≤ c(h− k)−2r−2|A(k, 4r)|(M1(4r)− k)2

× (|A(k, 2r)| − |A(h, 2r)|)
≤ c(h− k)−2rN−2(M1(4r)− k)2 (|A(k, 2r)| − |A(h, 2r)|)
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which implies that

(
r−N |A(h, 2r)|)

2N−2
N ≤ c(h− k)−2(M1(4r)− k)2

× (
r−N |A(k, 2r)| − r−N |A(h, 2r)|) .

Applying Lemma 5.1.4 with the function ϕ(h) := r−N |A(h, 2r)| we obtain that

r−N |A(h, 2r)| → 0 as h→M1(4r).

Thus
r−N |A(Kn, 2r)| → 0 as Kn →M1(4r).

So we can choose n so large such that

|A(Kn, 2r)| ≤ 1
2
|Ω(x0, 2r)|

and
Cr−N |A(Kn, 2r)| ≤ 1

4
where C is the constant in (5.24). The constant n can be chosen independtly of
x0. Now, using (5.24) with k0 = Kn, we find that

M1(r) ≤ Kn +
(
C(M1(2r)−Kn)2r−N |A(Kn, 2r)|

)1/2

≤ Kn +
1
2
(M1(2r)−Kn)

≤ Kn +
1
2
(M1(4r)−Kn)

= M1(4r)− 2−(n+2)ω1(4r).

Since m1(r) ≥ m1(4r), the preceding inequality implies that

ω1(r) := M1(r)−m1(r) ≤ M1(r)−m1(4r)
≤ M1(4r)− 2−(n+2)ω1(4r)−m1(4r)
≤ (1− 2−(n+2))ω1(4r).

Letting η := (1−2−(n+2)), we obtain the inequality (5.20) and the claim is proved.
2) We claim that there exist two constants K > 0 and 0 < α < 1 such that

if w ∈ H1
c (B(x0, r)) (0 < r < ρ0) is a solution of (5.19) we have

ω2(r) ≤ Krα, (5.26)

where for 0 < r < ρ0,

ω2(r) := ess sup
Ω̄(x0,r)

w(x)− ess inf
Ω̄(x0,r)

w(x).
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Indeed, for every real number k ≥ 0, let ϕ := (|w| − k)+ sgn(w). Then ϕ ∈
H1
c (B(x0, r)). Proceeding as in the proof of Proposition 5.2.1 and setting

H(k, r) := |A(k, r)|1/2−1/p+1/N‖f‖p,Ω + [A(k, r) ∩ ∂Ω]1/s
′−1/q‖g‖q,∂Ω

where A(k, r) := {x ∈ Ω̄(x0, r) : |w(x)| ≥ k}, we obtain that

‖ |w| − k‖H1(Ω) ≤ cH(k, r).

It then follows that
‖ |w| − k‖ 2N

N−2 ,A(k,r) ≤ c1H(k, r) (5.27)

and
‖ |w| − k‖s,A(k,r)∩∂Ω ≤ c2H(k, r). (5.28)

Let h > k ≥ 0. The inequalities (5.27) and (5.28) imply that

|A(h, r)|N−2
N ≤ C1(h− k)−2H(k, r)2 (5.29)

and
[A(k, r) ∩ ∂Ω]

2
s ≤ C2(h− k)−2H(k, r)2. (5.30)

Letting a(h, r) := |A(h, r)|+ [A(h, r) ∩ ∂Ω]
2N

s(N−2) , we obtain that

a(h, r)
N−2

N ≤ c(h− k)−2H(k, r)2.

Therefore we obtain the following estimate:

a(h, r)
N−2

N ≤ c(h− k)−2
(
|A(k, r)|1/N−1/p‖f‖p +

+[A(k, r) ∩ ∂Ω]
1
s′− 1

q− N
s(N−2) ‖g‖q

)2

a(k, r).

Since |A(k, r)| ≤ c rN and since Ω has a Lipschitz boundary, there exist some
constants b1, b2 > 0 such that

b1r
N−1 ≤ σ(∂Ω ∩B(x, r)) ≤ b2r

N−1 for x ∈ ∂Ω, 0 < r ≤ 1,

(see [72, Theorem 4.14]), and it follows that

a(h, r)
N−2

N ≤ c(h− k)−2
(
r2(1−N/p)‖f‖2p,Ω + r−2(N−1)/q‖g‖2q,∂Ω

)
a(k, r).

For r fixed, we let ϕ(h) := a(h, r)
N−2

N . Then

ϕ(h) ≤ c(h− k)−2
(
r2(1−N/p)‖f‖2p,Ω + r−2(N−1)/q‖g‖2q,∂Ω

)
ϕ(k)δ
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where δ = N
N−2 = 1 + 2

N−2 > 1. By Lemma 5.1.2, ϕ(k0 + d) = 0. Taking k0 = 0,
we have ϕ(d) = 0 with

d2 ≤ c
(
r2(1−N/p)‖f‖2p,Ω + r−2(N−1)/q‖g‖2q,∂Ω

)
ϕ(0)δ−1.

We therefore obtain,

ϕ(0)δ−1 = a(0, r)
2
N ≤

(
|A(0, r)|+ [A(0, r) ∩ ∂Ω]

2N
s(N−2)

)2/N

≤ c
(
rN + r

2N(N−1)
s(N−2)

)2/N

≤ c r2.

Finally we have

d2 ≤ C
(
r2(1−N/p)‖f‖2p,Ω + r2(1−(N−1)/q)‖g‖2q,∂Ω

)
.

This implies that

ess sup
Ω̄(x0,r)

w(x) ≤ ess sup
Ω̄(x0,r)

|w(x)| ≤ d ≤ c
(‖f‖2p,Ω + ‖g‖2q,∂Ω

)1/2
rα (5.31)

where 0 < α = min (1−N/p, 1− (N − 1)/q) < 1. As

ω2(r) := ess sup
Ω̄(x0,r)

w(x)− ess inf
Ω̄(x0,r)

w(x) ≥ 0,

and since
ω2(r) ≤ 2 ess sup

Ω̄(x0,r)

|w(x)|,

by (5.31), we have the inequality (5.26) with K := 2c
(
‖f‖2p,Ω + ‖g‖2q,∂Ω

)1/2

and
the claim is proved.

3) Next, let
ω(r) := ess sup

Ω̄(x0,r)

u(x)− ess inf
Ω̄(x0,r)

u(x)

where u = v + w. Then
ω(r) ≤ ω1(r) + ω2(r).

By (5.20) and (5.26) we obtain that

ω(r) ≤ ηω1(4r) +Krα ≤ ηω(4r) +Krα.

Note that 0 < η < 1 and K are independent of r. Since α depends only on
Ω, ∂Ω, N, p and q, by Lemma 5.1.5 and Remark 5.1.6, there exist two constants
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H > 0 and 0 < δ1 < 1 (0 < δ1 ≤ α) where δ1 depends only on Ω, ∂Ω, N, p and q
such that

ω(r) ≤ Hrδ1 for 0 < r < ρ0

which is the inequality (5.16).
4) Notice that it is well-known that a weak solution u of the problem (5.1)

belongs to C1(Ω). Finally the Hölder continuity on Ω̄ of the weak solution u ∈
H1(Ω) of the problem (5.1) is a direct consequence of the inequality (5.16).

Now, let ∆R be the selfadjoint operator on L2(Ω) associated with the closed
form (aσ,H1(Ω)). Since Ω has a Lipschitz boundary, by Proposition 4.2.5, ∆R is
given by {

D(∆R) = {u ∈ H(∆,Ω) :
(
∂u
∂ν + βu

) |∂Ω = 0}
∆Ru = ∆u,

where we recall that

H(∆,Ω) := {u ∈ H1(Ω) : ∆u ∈ L2(Ω)}.
For a real number λ ≥ 0, we denote by R(λ,∆R) the resolvent of ∆R and for
u, v ∈ H1(Ω) we let

aλσ(u, v) := aσ(u, v) + λ

∫

Ω

uv dx.

For 0 < α < 1, we set

C0,α(Ω̄) := {u ∈ C(Ω̄) : ∃ c > 0 : ∀ x, y ∈ Ω : |u(x)− u(y)| ≤ c|x− y|α}.
We obtain the following result as a corollary of Theorem 5.2.7.

Corollary 5.2.8. The following assertions hold.

a) Assume that p > N . Then for each λ ≥ 0, R(λ,∆R)(Lp(Ω)) ⊂ C0,α(Ω̄) for
some 0 < α < 1 depending only on Ω, ∂Ω, N and p.

b) For each λ ≥ 0, R(λ,∆R)(C(Ω̄)) is dense in C(Ω̄).

Proof. a) Let λ ≥ 0, f ∈ Lp(Ω) and u ∈ H1(Ω) satisfying

aλσ(u, v) =
∫

Ω

fv dx, ∀ v ∈ H1(Ω). (5.32)

If λ = 0, then u is a solution of (5.1) with g = 0 and by Theorem 5.2.7 u ∈ C0,α(Ω̄)
for some 0 < α < 1.

If λ > 0, the results of Chapter 4 or Proposition 5.2.1 (see also [34]) imply
that the function u satisfying (5.32) is bounded. We obtain that u is a solution of
the equation

aσ(u, v) =
∫

Ω

(f − λu)v dx, ∀v ∈ H1(Ω).
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As (f − λu) ∈ Lp(Ω), replacing f by (f − λu) in (5.1) and taking g = 0, Theorem
5.2.7 implies that u ∈ C0,α(Ω̄) for some 0 < α < 1 which completes the proof of
a).

b) Let v ∈ C(Ω̄). For every ε > 0, by Weierstrass Theorem, there exists
u ∈ C∞(Ω̄) such that

‖v − u‖∞ < ε.

For such u ∈ C∞(Ω̄), define the linear functional Lu on H1(Ω) by: for every
ϕ ∈ H1(Ω) we let

〈Lu, ϕ〉 := −
∫

Ω

∇u∇ϕ dx−
∫

∂Ω

βuϕ dσ

= −
N∑

i=1

∫

Ω

DiuDiϕ dx−
∫

∂Ω

βuϕ dσ.

For each λ ≥ 0, define T := λu− Lu. Since T is a linear continuous functional on
H1(Ω), there exists a unique element w ∈ H1(Ω) such that

aλσ(w,ϕ) = 〈T, ϕ〉, ∀ ϕ ∈ H1(Ω).

We denote this element w by Rλ(∆R)T . In fact, one has w := Rλ(∆R)T = u.
Next we show that there exists g ∈ C∞(Ω̄) such that

‖u−R(λ,∆R)g‖∞ < ε.

Let ki ∈ C∞(Ω̄), i = 0, . . . , N be such that

‖k0 − λu‖p < ε and ‖Diu− ki‖p < ε

N

for some p > N and i = 1, . . . , N , and

‖βu−
N∑

i=1

ki‖q,∂Ω < ε

for some q > N − 1. Let

g := −k0 +
N∑

i=1

Diki.

Then g ∈ C∞(Ω̄). Moreover, for every ϕ ∈ H1(Ω) we have

aλσ(u−R(λ,∆R)g, ϕ) = aλσ(u, ϕ)− aλσ(R(λ,∆R)g, ϕ)

= 〈T, ϕ〉 −
∫

Ω

gϕ dx

=
∫

Ω

(λu− k0)ϕ dx+
N∑

i=1

∫

Ω

(Diu− ki)Diϕ dx+

+
∫

∂Ω

(
βu−

N∑

i=1

ki

)
ϕ dσ.
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By Corollary 5.2.2,

‖u−R(λ,∆R)g‖∞ ≤ c

(
‖λu− k0‖p +

N∑

i=1

‖Diu− ki‖p + ‖βu−
N∑

i=1

ki‖q,∂Ω

)

≤ 3cε.

Let f ∈ C(Ω̄) be such that
‖g − f‖∞ < ε.

Then

‖v −R(λ,∆R)f‖∞ = ‖v − u+ u−R(λ,∆R)g +R(λ,∆R)g −R(λ,∆R)f‖∞
< ‖v − u‖∞ + ‖u−R(λ,∆R)g‖∞ + ‖R(λ,∆R)(g − f)‖∞
< Cε

which completes the proof.

Theorem 5.2.9. Let ∆Ω̄
R be the part of the operator ∆R in C(Ω̄) in the sense that

D(∆Ω̄
R) := {u ∈ D(∆R) ∩ C(Ω̄) : ∆Ru ∈ C(Ω̄)}; ∆Ω̄

Ru := ∆Ru.

Then ∆Ω̄
R generates a holomorphic compact contractive C0-semigroup (T (t))t≥0 on

C(Ω̄).

Proof. By Corollary 5.2.8, the operator ∆Ω̄
R generates a C0-semigroup on

C(Ω̄) which is contractive.
The compactness follows from the formula

T (t) = ABCD

where D = Id is bounded from C(Ω̄) into L2(Ω), C = et/3∆R is compact from
L2(Ω) into L2(Ω), B = et/3∆R is bounded from L2(Ω) into L∞(Ω) by ultracon-
tractivity (see Chapter 4) and A = et/3∆R is bounded from L∞(Ω) into C(Ω̄) by
the strong Feller property (Corollary 5.2.8 a)).

Now we prove the holomorphy. Since the semigroup (et∆R)t≥0 on L2(Ω) is
submarkovian, it induces contractive semigroups on all Lp(Ω), 1 ≤ p ≤ ∞ which
are strongly continuous if 1 ≤ p < ∞. Moreover, these semigroups are consistent
(see Theorem 1.3.17). Let us denote by ∆∞

R := (∆1
R)∗ the generator of the semi-

group on L∞(Ω). The consistence property and Corollary 5.2.8 a) imply that for
each λ ≥ 0,

R(λ,∆R)(L∞(Ω)) = R(λ,∆∞
R )(L∞(Ω)) = D(∆∞

R ) ⊂ C(Ω̄).

Thus ∆Ω̄
R can also be defined as the part of the operator ∆∞

R in C(Ω̄). We obtain
that

D(∆Ω̄
R) = {u ∈ D(∆∞

R ) ∩ C(Ω̄) : ∆∞
R u ∈ C(Ω̄)} = D(∆∞

R ).
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Since C(Ω̄) is a closed subspace of L∞(Ω) and D(∆Ω̄
R) = D(∆∞

R ) which is dense
in C(Ω̄) = D(∆∞

R ) (by Corollary 5.2.8 c)) and since (et∆
∞
R )t≥0 is a holomorphic

semigroup on L∞(Ω) (see [16, Theorem 5.2]), it follows from [11, Remark 3.7.13]
that (T (t))t≥0 is a holomorphic C0-semigroup on C(Ω̄) which completes the proof.

5.3 Resolvent Positive Operator.

In this section we define an operator A on C(Ω̄) × C(∂Ω) whose part in C(Ω̄) is
the operator ∆Ω̄

R. Using an elliptic weak maximum principle, we will show that A
is a resolvent positive operator.

Definition 5.3.1. Let λ be a positive real number. A function u ∈ H1(Ω) is called
a subsolution of the equation associated with aλσ if

aλσ(u, v) ≤ 0 ∀ v ∈ H1(Ω), such that v ≥ 0 on Ω̄ in the “generalized sense”.
(5.33)

We have the following elliptic weak maximum principle.

Proposition 5.3.2 (Elliptic weak maximum principle). Let u ∈ H1(Ω)∩C(Ω̄) satisfy
(5.33). Then u ≤ 0 on Ω̄.

Proof. Let u ∈ H1(Ω) ∩ C(Ω̄) satisfy the equation (5.33) and let v := u+.
Then v ∈ H1(Ω) ∩ C(Ω̄) and v ≥ 0 on Ω̄. As v is continuous on Ω̄, then v ≥ 0
on Ω̄ in the “generalized sense” is the same than v ≥ 0 on Ω̄ in the usual sense.
Replacing v in (5.33), we obtain:

λ

∫

{u>0}
u2 dx+

∫

{u>0}
|∇u|2 dx+

∫

{u>0}∩∂Ω

βu2 dσ ≤ 0.

Since β(x) ≥ γ > 0 for some constant γ, it follows that for each λ ≥ 0, we have
that u = 0 or u ≤ 0 a.e. on Ω and u ≤ 0 σ a.e. on ∂Ω. Since u ∈ C(Ω̄), this cleary
implies that u ≤ 0 on Ω̄.

We obtain the following result as a consequence of the above elliptic weak
maximum principle.

Proposition 5.3.3. Let f ∈ C(Ω̄), f ≥ 0, ϕ ∈ C(∂Ω), ϕ ≥ 0 and let u ∈ H1(Ω) be
a weak solution of the inhomogeneous Robin problem

{
λu−∆u = f in Ω
∂u
∂ν + βu = ϕ on ∂Ω

(5.34)

where λ ≥ 0 is a real number. Then u ≥ 0 on Ω̄.
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Proof. We can decompose u = v +w, where v ∈ H1(Ω) is a weak solution of
the equation {

λv −∆v = f in Ω
∂v
∂ν + βv = 0 on ∂Ω

(5.35)

and w ∈ H1(Ω) is a weak solution of the equation
{
λw −∆w = 0 in Ω
∂w
∂ν + βw = ϕ on ∂Ω.

(5.36)

1) It is well-known that R(λ,∆R) is a positive operator. Since f ≥ 0 on Ω̄,
it follows that v := R(λ,∆R)f ≥ 0 a.e. on Ω. As v ∈ C(Ω̄), it follows that v ≥ 0
on Ω̄.

2) The solution w of (5.36) satisfies

aλσ(w,ψ) =
∫

∂Ω

ϕψ dσ ∀ ψ ∈ H1(Ω).

By Theorem 5.2.7, w ∈ H1(Ω) ∩ C(Ω̄). As ϕ ≥ 0 on ∂Ω, then for all ψ ∈ H1(Ω),
ψ ≥ 0 on Ω̄ in the “generalized sense” we have, aλσ(w,ψ) ≥ 0. One obtains that
aλσ(−w,ψ) = −aλσ(w,ψ) ≤ 0 and then (−w) is a subsolution of the equation
associated with aλσ. By Proposition 5.3.2, −w ≤ 0 on Ω̄ and thus w ≥ 0 on Ω̄.
Finally, one obtains that u = v + w ≥ 0 on Ω̄.

On C(Ω̄) we consider the operator ∆m defined by




D(∆m) := {u ∈ H1(Ω) ∩ C(Ω̄) : ∆u ∈ C(Ω̄) : ∃ ϕ ∈ C(∂Ω) :
aσ(u, v) = − ∫

Ω
∆uv dx+

∫
∂Ω
ϕv dσ, ∀ v ∈ H1(Ω)}

∆mu := ∆u in Ω.

Obviously, ∆m is a closed operator on C(Ω̄).
Next we consider the operator A on C(Ω̄)× C(∂Ω) defined by

{
D(A) := D(∆m)× {0},
A(u, 0) := (∆u,−ϕ),

where ϕ si given by the condition u ∈ D(∆m) and the Banach space C(Ω̄)×C(∂Ω)
is equipped with the norm

‖(f, g)‖C(Ω̄)×C(∂Ω) := max
(‖f‖C(Ω̄), ‖g‖C(∂Ω)

)
.

Proposition 5.3.4. Let f ∈ C(Ω̄) and g ∈ C(∂Ω). Then −A(u, 0) = (f, g) if and
only if u is a weak solution of the problem (5.1).
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Proof. Let u ∈ D(∆m) be such that −A(u, 0) = (f, g). Then
{
−∆u = f in Ω
ϕ = g on ∂Ω;

where ϕ is the function given by the condition u ∈ D(∆m). We obtain that for
every v ∈ H1(Ω),

∫

Ω

∇u∇v dx+
∫

∂Ω

βuv dσ = −
∫

Ω

∆uv dx+
∫

∂Ω

ϕv dσ

=
∫

Ω

fv dx+
∫

∂Ω

gv dσ

and thus u is a weak solution of (5.1).
To prove the converse, let u ∈ H1(Ω) be a weak solution of (5.1). By Theorem

5.2.7, u ∈ C(Ω̄). Since ∆u = −f ∈ C(Ω̄), taking ϕ = g ∈ C(∂Ω), one has that
u ∈ D(∆m) and −A(u, 0) = (f, g).

Next, letX be a Banach lattice. A closed operator B onX is called a resolvent
positive operator, if there exists ω ∈ R such that (ω,∞) ⊂ ρ(B) (the resolvent set
of B) and R(λ,B) ≥ 0 for all λ > ω. We denote by

s(B) = sup{Reλ : λ ∈ σ(B)}

the spectral bound of B, where σ(B) denotes the spectrum of B.

Proposition 5.3.5. The operator A is resolvent positive and s(A) < 0.

Proof. a) Let λ ≥ 0 be a real number and suppose that λ ∈ ρ(A). Let
f ∈ C(Ω̄), g ∈ C(∂Ω) and (u, 0) = R(λ,A)(f, g). Then u is a solution of the
equation

aλσ(u, v) =
∫

Ω

fv dx+
∫

∂Ω

gv dσ, ∀ v ∈ H1(Ω).

If f ≤ 0 and g ≤ 0, it follows from the weak maximum principle that u ≤ 0 in Ω̄.
Thus R(λ,A) ≥ 0.

b) We show that 0 ∈ ρ(A). Let f ∈ C(Ω̄) and g ∈ C(∂Ω). Let u ∈ H1(Ω) be
a weak solution of (5.1). Taking ϕ = g, we have that u ∈ D(∆m) and −A(u, 0) =
(f, g). Thus −A is surjective. Since a weak solution of (5.1) is unique, it follows
that −A is bijective and 0 ∈ ρ(A).

c) Proceeding exactly as in the proof of [11, Theorem 6.1.6 c)], we obtain
that [0,∞) ⊂ ρ(A) and this completes the proof.

Proposition 5.3.6. The operator ∆Ω̄
R is the part of A in C(Ω̄). Moreover we have

ρ(A) = ρ(∆Ω̄
R).



5.3. RESOLVENT POSITIVE OPERATOR. 145

Proof. a) We claim that D(A) = C(Ω̄)× {0}.
(i) First, let

D := {u ∈ H1(Ω) ∩ C(Ω̄) : ∆u ∈ C(Ω̄),
(
∂u

∂ν
+ βu

)
∈ C(∂Ω)}.

We show that D(∆m) = D. Indeed, let u ∈ D and ϕ := ∂u
∂ν +βu. Then integrating

by parts yields,

−
∫

Ω

∆uv dx+
∫

∂Ω

ϕv dσ =
∫

Ω

∇u∇v dx−
∫

∂Ω

∂u

∂ν
v dσ +

∫

∂Ω

ϕv dσ

= aσ(u, v) ∀ v ∈ H1(Ω).

Thus u ∈ D(∆m).
To prove the converse inclusion, let u ∈ D(∆m). By hypothesis, u ∈ H1(Ω)∩

C(Ω̄), ∆u ∈ C(Ω̄) and there exists ϕ ∈ C(∂Ω) such that

aσ(u, v) = −
∫

Ω

∆uv dx+
∫

∂Ω

ϕv dσ, ∀ v ∈ H1(Ω).

Integrating by parts yields,
∫

Ω

∇u∇v dx+
∫

∂Ω

βuv dσ =
∫

Ω

∇u∇v dx−
∫

∂Ω

∂u

∂ν
v dσ +

∫

∂Ω

ϕv dσ.

This implies that
∫

∂Ω

(
∂u

∂ν
+ βu

)
v dσ =

∫

∂Ω

ϕv dσ ∀ v ∈ H1(Ω).

Since ϕ ∈ C(∂Ω), this gives that (∂u∂ν + βu) ∈ C(∂Ω) and thus u ∈ D.
(ii) We claim that D(∆Ω̄

R) ⊂ D(∆m). In fact, let u ∈ D(∆Ω̄
R). By definition,

u ∈ C(Ω̄) ∩D(∆R) and ∆Ru ∈ C(Ω̄) where we recall that

D(∆R) := {u ∈ H(∆,Ω) :
(
∂u

∂ν
+ βu

)
= 0}.

We obtain that u ∈ H1(Ω) ∩ C(Ω̄), ∆u ∈ C(Ω̄) and
(
∂u
∂ν + βu

)
= 0 ∈ C(∂Ω).

Thus u ∈ D(∆m).
(iii) Since D(∆Ω̄

R) ⊂ D(∆m) and D(∆Ω̄
R) is dense in C(Ω̄) this implies that

D(∆m) is dense in C(Ω̄) and the proof of a) is complete.
b) Let AΩ̄ be the part of A in C(Ω̄)× {0}. Then
{
D(AΩ̄) := {(u, 0) ∈ D(A) ∩ (

C(Ω̄)× {0}) : A(u, 0) ∈ C(Ω̄)× {0}},
AΩ̄(u, 0) = A(u, 0).
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Let (u, 0) ∈ D(AΩ̄). The condition A(u, 0) ∈ C(Ω̄) × {0} means that −A(u, 0) =
(f, 0) for some f ∈ C(Ω̄). By Proposition 5.3.4, this implies that u is a weak
solution of the equation (5.1). We obtain that

−A(u, 0) = (−∆u, (
∂u

∂ν
+ βu)) = (f, 0).

Thus

D(AΩ̄) = {(u, 0) ∈ D(A) ∩ (
C(Ω̄)× {0}) : (∆u, (

∂u

∂ν
+ βu)) ∈ C(Ω̄)× {0}}.

Identifying C(Ω̄)× {0} with C(Ω̄), one obtains that

D(AΩ̄) = {u ∈ C(Ω̄) ∩D(∆R) : ∆u ∈ C(Ω̄)} = D(∆Ω̄
R).

Moreover, with this identification, AΩ̄u = ∆u and the proof of this part is com-
plete.

c) Now we show that ρ(A) = ρ(∆Ω̄
R). Let λ ∈ ρ(A), f ∈ C(Ω̄) and (u, 0) =

R(λ,A)(f, 0). Then (λ−A)(u, 0) = (f, 0) and u is a solution of the equation (5.32)
which is in H1(Ω)∩C(Ω̄). This gives that R(λ,A)(C(Ω̄)×{0}) ⊂ C(Ω̄)×{0} and
thus ρ(A) ⊂ ρ(∆Ω̄

R).
To prove the converse inclusion, let λ ∈ ρ(∆Ω̄

R). For f ∈ C(Ω̄) and ϕ ∈
C(∂Ω), let u ∈ H1(Ω)∩C(Ω̄) be a solution of the equation (5.34). We obtain that
(∂u∂ν + βu) := ϕ ∈ C(∂Ω) and

aσ(u, v) = −
∫

Ω

∆uv dx+
∫

∂Ω

ϕv dσ

for every v ∈ H1(Ω). This implies that u ∈ D(∆m) and (λ − ∆)u = f . Then
(u, 0) ∈ D(A), (λ−A)(u, 0) = (f, ϕ) and thus (λ−A) is surjective. Let u ∈ D(∆m)
be such that (λ−A)(u, 0) = (0, 0). Then u is a solution of the equation (5.34) with
f = 0 and ϕ = 0. We obtain that u ∈ D(∆Ω̄

R) and (λ−∆Ω̄
R)u = 0. Thus u = 0 and

the proof is complete.

Remark 5.3.7. If follows from the proof of the preceding proposition that for u ∈
D(∆m), we have

−A(u, 0) = (−∆u, (
∂u

∂ν
+ βu)).

Finally, notice that the fact that the operator A is a resolvent positive oper-
ator can be used to study the well-posedness of the heat equation with inhomoge-
neous boundary conditions





u′(t) = ∆u(t) (t ∈ [0, τ ]);(
∂u(t)
∂ν + βu(t)

)
|∂Ω = ϕ(t), (t ∈ [0, τ ];

u(0) = u0,
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where u0 ∈ C(Ω̄) and ϕ ∈ C([0, τ ], C(∂Ω)) are given. The case of the inhomoge-
neous Dirichlet boundary conditions is contained in [11, Chapter 6]. We will not
go into details.
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Chapter 6

Wentzell-Robin Boundary
Conditions on C[0, 1]

In this chapter we consider the operator AW on C[0, 1] defined by
{
D(AW ) := {u ∈ C2[0, 1] : (au′)′(j) + βju

′(j) + γju(j) = 0; j = 0, 1}
AWu := (au′)′,

(6.1)

where βj , γj (j = 0, 1) are arbitrary real numbers and the function a ∈ C1[0, 1]
satisfies

a(x) ≥ α > 0 (6.2)

for some real number α. We call the operator AW the realization of the operator
(au′)′ on C[0, 1] with Wentzell-Robin boundary conditions. Note that this bound-
ary condition called Wentzell-Robin boundary condition is a dynamic boundary
condition (see [14]). We will use perturbation arguments to show that AW gener-
ates a holomorphic C0-semigroup.

6.1 Intermediate Results.

Before starting the study of the problem mentioned in the introduction, we prove
the following abstract result which we shall use frequently.

Theorem 6.1.1. Let Y be a Banach space and AY be a generator of a holomorphic
C0-semigroup TY = (TY (t))t≥0 on Y . Let X := Y ⊕ Z for some Banach space Z
and A be the closed operator defined on X by

Ax = A(y, z) := (AY y, 0)

with domain D(A) = D(AY )⊕Z. Then A generates a holomorphic C0-semigroup
on X.
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Proof. Note that AY is the part of A in Y . It is also easy to see that A
generates a C0-semigroup T = (T (t))t≥0 on X and for every x := (y, z) ∈ X, we
have T (t)x = (TY (t)y, z). Since TY = (TY (t))t≥0 is a holomorphic semigroup on
Y , it follows that T = (T (t))t≥0 is a holomorphic semigroup on X.

Next, we consider the bilinear form l : H1
0 (0, 1) ×H1

0 (0, 1) → R on L2(0, 1)
defined by

l(u, v) :=
∫ 1

0

a(x)u′(x)v′(x) dx+
∫ 1

0

b(x)u′(x)v(x) dx+
∫ 1

0

c(x)u(x)v(x) dx;

where we assume for the moment that a ∈ L∞(0, 1) satisfies the condition (6.2)
and b, c ∈ C[0, 1].

It is well-known (see [12]) that (l,H1
0 (0, 1)) is a bilinear densely defined closed

form on L2(0, 1) which is also elliptic; i.e., there exist ω ∈ R and µ > 0 such that

l(u, u) + ω‖u‖2L2(0,1) ≥ µ‖u‖2H1(0,1)

for every u ∈ H1
0 (0, 1). Let L2 be the closed operator on L2(0, 1) associated with

the form (l,H1
0 (0, 1)); i.e.,

{
D(L2) := {u ∈ H1

0 (0, 1) : ∃ v ∈ L2(0, 1) : l(u, ϕ) = (v, ϕ) ∀ ϕ ∈ H1
0 (0, 1)}

L2u := −v,

where ( , ) denotes the scalar product in L2(0, 1). It is easy to see that the operator
L2 is given by

{
D(L2) = {u ∈ H1

0 (0, 1) : (au′)′ − bu′ − cu ∈ L2(0, 1)}
L2u = (au′)′ − bu′ − cu.

Moreover, since H1
0 (0, 1) is dense in L2(0, 1) and (l,H1

0 (0, 1)) is a bilinear closed
elliptic form, it follows from Theorem 1.3.4 that L2 generates a holomorphic C0-
semigroup T2 = (T2(t))t≥0 on L2(0, 1). It is also easy to verify that the first
Beurling-Deny criterion for non-symmetric forms is satisfied (see [80, Théorème
1.2.2]). Thus the semigroup is positive. If c ≥ 0, then the second Beurling-Deny
criterion is satisfied (see [12, Section 4] or [80, Théorème 1.2.5]) and this implies
that the semigroup is submarkovian.

Next let L0 be the part of L2 in C0(0, 1) := {u ∈ C[0, 1] : u(0) = u(1) = 0};
i.e.,

{
D(L0) := {u ∈ D(L2) ∩ C0(0, 1) : (au′)′ − bu′ − cu ∈ C0(0, 1)}
L0u := L2u = (au′)′ − bu′ − cu.

Proposition 6.1.2. a) Assume that b ∈ C1[0, 1]. Then L0 generates a holomor-
phic C0-semigroup on C0(0, 1).
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b) Assume that a ∈ C1[0, 1]. Then L0 is given by
{
D(L0) = {u ∈ C2[0, 1] ∩ C0(0, 1) : (au′)′ − bu′ − cu ∈ C0(0, 1)}
L0u = (au′)′ − bu′ − cu.

Proof. a) This part follows from [12, Corollary 4.7].
b) Set

D := {u ∈ C2[0, 1] ∩ C0(0, 1) : (au′)′ − bu′ − cu ∈ C0(0, 1)}.
Let u ∈ D. Then u ∈ H1

0 (0, 1) and (au′)′ − bu′ − cu ∈ L2(0, 1). We obtain that
u ∈ D(L2) ∩ C0(0, 1) and (au′)′ − bu′ − cu ∈ C0(0, 1). Thus u ∈ D(L0).

To prove the converse inclusion, let u ∈ D(L0). Then u is a solution of the
Dirichlet problem {

u ∈ H1
0 (0, 1)

(au′)′ − bu′ − cu = f,

where f ∈ C0(0, 1) ⊂ L∞(0, 1). Since we assume that a ∈ C1[0, 1], it follows from
[37, Proposition 13 p. 605] that u ∈ C1[0, 1] and this implies that (au′)′ ∈ C[0, 1].
As (au′)′ = a′u′ + au′′ then au′′ ∈ C[0, 1]. The continuity of a and the fact that
a(x) ≥ α > 0 imply that u′′ ∈ C[0, 1] and then u ∈ C2[0, 1]. Finally, we obtain
that u ∈ C2[0, 1] ∩ C0(0, 1) and (au′)′ − bu′ − cu ∈ C0(0, 1) which completes the
proof.

Throughout the following, we shall assume that c ∈ C[0, 1] satisfies c(x) ≥ 0
and a, b ∈ C1[0, 1] and that the function a also satisfies the condition (6.2).

Next we define an operator A on C[0, 1] by
{
D(A) := {u ∈ C2[0, 1] : (au′)′ − bu′ − cu ∈ C0(0, 1)}
Au := (au′)′ − bu′ − cu.

(6.3)

Proposition 6.1.3. The operator A generates a holomorphic C0-semigroup on
C[0, 1].

Proof. a) We claim that A is a closed operator on C[0, 1]. Indeed, it is well-
known (see [25, Remark 9 p.133]) that for u ∈ C2[0, 1],

‖u‖ := ‖u‖∞ + ‖u′′‖∞
is a norm on C2[0, 1] which is equivalent to the norm of C2[0, 1] given by:

‖u‖C2[0,1] := ‖u‖∞ + ‖u′‖∞ + ‖u′′‖∞.
Moreover, using Taylor’s formula (see [25, Remark 9 p.133]), we obtain that for
every ε > 0 there exists Cε > 0 such that for every u ∈ C2[0, 1],

‖u′‖∞ ≤ ε‖u′′‖∞ + Cε‖u‖∞. (6.4)
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We finally obtain that for every u ∈ D(A) ⊂ C2[0, 1],

‖u′‖∞ ≤ ε‖u′′‖∞ + Cε‖u‖∞
≤ εα−1‖au′′‖∞ + Cε‖u‖∞
≤ εα−1‖au′′ + a′u′ − a′u′ − bu′ − cu+ bu′ + cu‖∞ + Cε‖u‖∞
≤ εα−1‖Au‖∞ + εα−1(‖a′||∞ + ‖b‖∞)‖u′‖∞ +

+(εα−1‖c‖∞ + Cε)‖u‖∞.

From this inequality, we see that there exist some constants k1, k2 ≥ 0 such that
for every u ∈ D(A),

‖u′‖∞ ≤ k1‖Au‖∞ + k2‖u‖∞. (6.5)

Using the inequality (6.4), we obtain the following estimates.

‖u′′‖∞ ≤ α−1‖(au′)′ − bu′ − cu− a′u′ + bu′ + cu‖∞
≤ α−1‖Au‖∞ + α−1(‖a′‖∞ + ‖b‖∞)‖u′‖∞ + α−1‖c‖∞‖u‖∞
≤ α−1‖Au‖∞ + εα−1(‖a′‖∞ + ‖b‖∞)‖u′′‖∞ +

+α−1(Cε(‖a′‖∞ + ‖b‖∞) + ‖c‖∞)‖u‖∞.

Choosing ε suitably, we obtain that there exist some constants c1, c2 > 0 such that
for every u ∈ D(A),

‖u′′‖∞ ≤ c1‖Au‖∞ + c2‖u‖∞. (6.6)

Let un ∈ D(A) and u, v ∈ C[0, 1] be such that

lim
n→∞

‖un − u‖∞ = 0 and lim
n→∞

‖Aun − v‖∞ = 0.

It follows from (6.5) and (6.6) that u′n and u′′n are Cauchy sequences in C[0, 1] and
then converge uniformly. Thus u ∈ C2[0, 1]. Since Aun(0) = Aun(1) = 0 and Aun
converges to v uniformly, it follows that v(0) = v(1) = 0 and then u ∈ D(A) and
Au = v.

b) We claim that C[0, 1] = C0(0, 1) ⊕ ker(A). In fact, let f ∈ C[0, 1] and
u ∈ H1(0, 1) be a solution of the Dirichlet problem





Lu := (au′)′ − bu′ − cu = 0
u(0) = f(0)
u(1) = f(1).

(6.7)

By [59, Theorem 8.34], one has u ∈ C2[0, 1] and then u ∈ ker(A). Writing f =
(f − u) + u, we obtain that (f − u) ∈ C0(0, 1) and u ∈ ker(A). Since by [59,
Corollary 8.2], the equation {

u ∈ H1
0 (0, 1)

Lu = 0
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has only the solution u = 0, the decomposition is unique.
c) We claim that D(A) = D(L0) ⊕ ker(A). Indeed, let f ∈ D(A) and u ∈

C2[0, 1] be a solution of the equation (6.7). Then (f − u) ∈ C2[0, 1] ∩ C0(0, 1)
and L(f − u) = Lf − Lu = Lf ∈ C0(0, 1). Thus (f − u) ∈ D(L0). Moreover,
f = (f − u) + u and u ∈ ker(A). The uniqueness of the decomposition is obtained
exactly as in b).

d) Note that the decompositions in b) and in c) are also topological. Moreover,
it is clear that L0 is the part of A in C0(0, 1). Since, by Proposition 6.1.2, L0

generates a holomorphic C0-semigroup on C0(0, 1), it follows from Theorem 6.1.1
that A generates a holomorphic C0-semigroup on C[0, 1] and the proof is complete.

The fact that A generates a C0-semigroup on C[0, 1] (without holomorphy
property) can be also obtained from the results of Clément and Timmermans in
[30] with a different proof.

6.2 Holomorphy.

Throughout this section, (A,D(A)) will denote the operator defined by (6.3) in
Section 6.1.

Let AW be the operator defined in (6.1). The following is the main result of
this chapter.

Theorem 6.2.1. The operator AW generates a holomorphic C0-semigroup on
C[0, 1].

Proof. Let B be the operator on C[0, 1] defined by

D(B) := C1[0, 1] and Bu := bu′ + cu.

Then D(A) ⊂ D(B). For every u ∈ D(A) we have

‖Bu‖∞ := ‖bu′ + cu‖∞ ≤ ‖b‖∞‖u′‖∞ + ‖c‖∞‖u‖∞.

Using the inequality (6.4), we obtain that for every ε > 0,

‖Bu‖∞ ≤ ‖b‖∞(ε‖u′′‖∞ + Cε‖u‖∞) + ‖c‖∞‖u‖∞
≤ ε‖b‖∞‖u′′‖∞ + (Cε‖b‖∞ + ‖c‖∞)‖u‖∞
≤ α−1ε‖b‖∞‖(au′)′ − bu′ − cu− a′u′ + bu′ + cu‖∞ +

+(Cε‖b‖∞ + ‖c‖∞)‖u‖∞
≤ α−1ε‖b‖∞‖Au‖∞ + α−1ε‖b‖∞‖a′‖∞‖u′‖∞ +

+α−1ε‖b‖∞‖Bu‖∞ + (Cε‖b‖∞ + ‖c‖∞)‖u‖∞.
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Using the inequality (6.5), we obtain the following estimates for every ε > 0 and
every u ∈ D(A).

‖Bu‖∞ ≤ α−1ε‖b‖∞‖Au‖∞ + α−1ε‖a′‖∞‖b‖∞ (k1‖Au‖∞ + k2‖u‖∞) +
+α−1ε‖b‖∞‖Bu‖∞ + (Cε‖b‖∞ + ‖c‖∞)‖u‖∞.

Thus
‖Bu‖∞ ≤ εC1‖Au‖∞ + εC2‖Bu‖∞ + C3‖u‖∞, (6.8)

where
C1 := α−1‖b‖∞ (1 + k1‖a′‖∞) , C2 := α−1‖b‖∞

and
C3 := εk2α

−1‖a′‖∞‖b‖∞ + Cε‖b‖∞ + ‖c‖∞.
Let ω ∈ R. Since by Proposition 6.1.3, A generates a holomorphic C0-semigroup on
C[0, 1], then the operator (A−ω) generates a bounded holomorphic C0-semigroup
on C[0, 1] for ω sufficiently large. This implies that there exist θ ∈ (0, π/2] and
M ≥ 1 such that for every

λ ∈ Σπ
2 +θ := {z ∈ C \ {0} : | arg z| ≤ π

2
+ θ},

we have
λ ∈ ρ(A− ω) and ‖R(λ,A− ω)‖ ≤ M

|λ| .

From the inequality (6.8), we obtain that

‖Bu‖∞ ≤ εC1‖(A− ω)u‖∞ + εC2‖Bu‖∞ + (εC1|ω|+ C3)‖u‖∞.

Choosing ε such that

0 <
εC1

1− εC2
<

1
M + 1

,

the Perturbation Theorem in [42, Chap. III Theorem 2.13] implies that the op-
erator ((A + B − ω), D(A)) generates a bounded holomorphic C0-semigroup on
C[0, 1]. Therefore the operator A0 defined by

D(A0) = D(A) and A0u = Au+Bu

generates a holomorphic C0-semigroup on C[0, 1]. The operator A0 is given by
{
D(A0) = {u ∈ C2[0, 1] : (au′)′(j)− b(j)u′(j)− c(j)u(j) = 0; j = 0, 1}
A0u = (au′)′.

Setting βj := −b(j) and γj := −c(j) for j = 0, 1, we obtain that D(A0) = D(AW )
and AWu = A0u = (au′)′. Finally, note that, since c(x) ≥ 0, then γj := −c(j) ≤ 0.
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The case γj ≥ 0 follows from [60, Theorem 2.4] by perturbing the boundary
conditions of the operator A0 by the compact operator

Φ : C[0, 1] → R2 : u 7→ (−2c(0)u(0),−2c(1)u(1))

and by setting βj := −b(j) and γj := c(j) for j = 0, 1 which completes the
proof.
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[32] G. Dal Maso and U. Mosco. Wiener’s criterion and Γ-convergence. Appl.
Math. Option 15 (1987), 15–63.

[33] D. Daners. Elliptic and parabolic equations and domain perturbation.
Brigham Young University, Provo, Utah, 1999.

[34] D. Daners. Robin boundary value problems on arbitrary domains. Trans.
Amer. Math. Soc. 352 (2000), 4207–4236.

[35] R. Dautray and J. L. Lions. Analyse Mathématique et Calcul Numérique Vol.
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Zusammenfassung

Gegenstand dieser Dissertation ist das Studium des Laplaceoperators mit Robin-,
Neumann- und Wentzell-Robinrandbedingungen. Via quadratische Formen ist es
einfach, Realisierungen des Laplaceoperators mit Dirichlet- oder Neumannrandbe-
dingungen auf den Räumen L2(Ω) zu definieren, wobei Ω eine offene Menge im
RN ist. Hierbei betrachten wir allgemeine Robinrandbedingungen; d.h. Randbe-
dingungen gegeben durch Maße.

Im ersten Teil dieser Arbeit definieren wir einen neuen Begriff von Kapazität;
die relative Kapazität. Die relative Kapazität ist immer kleiner als die klassische
Kapazität. Relativ polare Mengen im Inneren von offenen Mengen sind polare
Mengen. Wenn die offene Menge nicht regulär ist, dann existieren relativ polare
Teilmengen des Randes mit positiver Kapazität. Wir illustrieren diese Aussage mit
Beispielen.

Ein positives Borelmaß µ auf dem Rand heißt zulässig, falls relativ polare
Mengen des Randes µ-Nullmengen sind. Für ein zulässiges Borelmaß µ auf dem
Rand der offenen Menge Ω definieren wir eine positive, bilineare, symmetrische
und abschließbare Form auf L2(Ω). Der Operator, der mit dem Abschluß der Form
assoziiert ist, ist eine Realisierung des Laplaceoperators und erzeugt eine holomor-
phe, stark stetige Halbgruppe. Diese liegt zwischen den vom Dirichlet und Neu-
mann Laplaceoperator erzeugten Halbgruppen. Außerdem ist unter Regularitäts-
und Lokalitätsbedingungen jede symmetrische und stark stetige Halbgruppe auf
L2(Ω), welche zwischen Dirichlet und Neumann Laplace Halbgruppen liegt, durch
ein zulässiges Borelmaß gegeben.

Ist µ = σ das (N − 1)-dimensionale Hausdorffmaß, dann ist der assoziierte
Operator der Laplaceoperator mit den klassischen Robinrandbedingungen. Wir
zeigen mit Beispielen, daß σ im allgemeinen nicht zulässig ist, aber es existiert
ein Teilmenge S des Randes der offenen Menge, so daß man immer Robinrandbe-
dingungen auf S und Dirichletrandbedingungen auf dem Komplement hat. Der
Robin Laplaceoperator erzeugt eine stark stetige Halbgruppe auf L2(Ω), die eine
Gaußsche Abschätzung mit modifizierten Exponenten erfüllt. Außerdem ist das
Spektrum des Robin Laplaceoperators auf Lp(Ω) unabhängig von p ∈ [1,∞).

Ist µ = 0, so ist der assoziierte Operator der Neumann Laplaceoperator.
Wir beweisen, daß die Neumann Laplace Halbgruppe aus Kernoperatoren besteht,
jedoch ist der Kern singulär.

Im zweiten Teil der Arbeit beweisen wir, daß für beschränkte Lipschitz-
Gebiete die Lösung des inhomogenen Robin Problems hölderstetig bis auf den
Rand ist. Mit Hilfe dieser Resultate zeigen wir, daß der Teil des Robin Laplaceoper-
ators auf den Räumen der stetigen Funktionen eine holomorphe, stark stetige Halb-
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gruppe erzeugt. Am Schluß beweisen wir, daß der Laplaceoperator mit Wentzell-
Robinrandbedingungen eine holomorphe, stark stetige Halbgruppe auf dem Raum
der stetigen Funktionen auf einem abgeschlossenen Intervall erzeugt.

Erklärung:

Hiermit erkläre ich, daß ich die Arbeit selbständig und nur mit den angegebenen
Hilfsmitteln angefertigt habe. Alle Stellen, die anderen Werken entnommen sind,
wurden durch Angabe der Quellen kenntlich gemacht.

Ulm, den 13. Mai 2002.
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