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Abstract

We study epidemic arrival times in meta-population disease models through the lens of front propa-

gation into unstable states. We demonstrate that several features of invasion fronts in the PDE context

are also relevant to the network case. We show that the susceptible-infected-recovered model on a net-

work is linearly determined in the sense that the arrival times in the nonlinear system are approximated

by the arrival times of the instability in the system linearized near the disease free state. Arrival time

predictions are extended to general compartmental models with a susceptible-exposed-infected-recovered

model as the primary example. We then study a recent model of social epidemics where higher order

interactions lead to faster invasion speeds. For these pushed fronts we compute corrections to the es-

timated arrival time in this case. Finally, we show how inhomogeneities in local infection rates lead to

faster average arrival times.

Keywords: epidemic arrival times, meta-population model, invasion fronts

1 Introduction

The study of global disease spread across complex networks has been the focus of a great deal of research

over the past several decades; see [4, 10, 12, 27, 28, 31] for a survey of many of the models and methods

employed. Meta-population models comprise one sub-class of models where the disease dynamics at each

locality are assumed to obey some compartmental model (SIR for example) and movement of individuals

between localities is modeled by diffusion on a complex network; see for example [10, 29]. This leads to a

high dimensional system of ODEs of reaction-diffusion type. Among the questions that one is interested

in are arrival times: given that disease originates in one city how long does it take to appear in some

other city? For reaction-diffusion PDEs, instability spreading involves the formation of traveling fronts

and arrival times are inversely proportional to the speed selected by these fronts; see for example [9, 13].
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It is a powerful, albeit perhaps peculiar, fact that often times the speed of the front in the nonlinear PDE

is the same as the spreading speed of localized initial conditions in the PDE linearized about the unstable

state; see [2, 33]. This fact was exploited in [11] to derive arrival times estimates based upon linearization

near the unstable, disease free state. The purpose of the current study is to exploit this analogy further

and demonstrate that several features of front propagation into unstable states for PDEs are also relevant

to meta-population epidemics spreading on complex networks.

The meta-population model that we first consider is the following one; see [10, 29],

∂tsn = −αsnjn + γ
∑
m ̸=n

Pnm(sm − sn)

∂tjn = αsnjn − βjn + γ
∑
m̸=n

Pnm(jm − jn)

∂trn = βjn + γ
∑
m̸=n

Pnm(rm − rn). (1.1)

Here sn, jn and rn denote the susceptible, infected and recovered proportion of the population residing

at node (city) n. The dynamics of these variables is assumed, for the moment, to obey a standard SIR

model at each node with infection rate α and recovery rate β. The nodes are connected by edges described

by the row stochastic adjacency matrix P. Following [10] we think of these edges are describing airline

transportation routes connecting cities with the values in the matrix representing a normalized magnitude

of passenger transport along each edge. The matrix P is assumed to be row stochastic so that the total

population at each node is constant in time and it is only the proportion of the susceptible, infected and

recovered population that varies. The parameter γ is the diffusion constant and we, crucially, will assume

that it is small (see again [10] for estimates of γ for the global airline network). We note that the number

of nodes in typical realizations of (1.1) is large (on the order of thousands for the airline transportation

network) and the corresponding parameter space is also high dimensional due to the large number of

non-zero entries in P.

Brockmann and Helbing [10] studied (1.1) with the goal of identifying the role of geographically non-

local transportation routes in the global spread of epidemics. Focusing on airline transportation networks,

their influential idea was to consider the epidemic process as a front propagation with respect to some

effective distance, Deff(P), that can be derived from the connectivity matrix P. They then predict the

arrival time of the disease at a city as the ratio Ta = Deff(P)
veff(α,β,κ)

1 so that arrival times are linearly related

to the effective distance. Here veff(α, β, γ, κ) is the effective velocity which is assumed to be a function

of the dynamical parameters in the model and κ, an invasion threshold. Key to this idea is the fact that

the effective distance depends only on the structure of P. As such, the distance prediction is agnostic in

regards to the particular disease model considered. Estimates for the coefficients in the real world P are

obtained in [10] and comparisons with data of observed arrival times in historical epidemics are considered

which reveal a general linear trend between arrival times and these effective distances. One drawback of

the effective distance computed in [10] is that it assumes there is a single dominant pathway of infection

between the origin city and any other city in the graph. Modifications of this effective distance to account

1Deff(P) as defined in [10] is defined by first computing an effective distances between connected nodes defined as 1 −
log(Pmn). Then, for any two notes that are not connecting the effective distance is defined as the minimal sum of effective

distances along all paths connecting the two nodes.
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for multiple pathways of infection are presented in [23]. In addition to [10], a number of other authors have

considered the dynamics of global disease spread through the lens of front propagation; see for example

[5, 7, 11, 15, 16, 19–21].

A remarkable feature of fronts propagating into unstable states in the PDE context2 is that their speed

often equals the spreading speed of localized disturbances in the system linearized about the unstable

state. This phenomena often occurs in systems where the nonlinearity suppresses growth, as is the case in

(1.1). Such fronts are referred to as pulled; see [33] or linearly determinate; see [34] as they are driven by

the instability ahead of the front interface and their speed is determined from the linearization near the

unstable state. This is a powerful tool as it allows for the computation of a quantity of interest in a high

(or infinite) dimensional nonlinear system via a linear equation. This forms the basis of the approach in

[11] where arrival time estimates are derived for (1.1) by computing arrival times in the system linearized

near the disease free state. The goal of the present study is to exploit this analogy between the dynamics of

reaction-diffusion equations like (1.1) and their PDE counterparts to make qualitative predictions regarding

the effects of arrival times where various modifications of (1.1) are made. Our main results are qualitative

in nature and can be summarized as follows:

� For systems with local dynamics described by SIR or SEIR we derive explicit arrival times estimates

based upon linearization near the unstable state that reveal, in the limit γ → 0, how arrival times

depend on model parameters such as local infection rates, local recovery rates and mobility network

weights. At leading order in γ, the effective distance between nodes is shown to be the graph distance

d while the effective velocity is proportional to − 1
log(γ) . Network properties influence arrival times at

O(1) in γ where the key quantity is the random walk probability of traversing between the two cities

in the minimal number of steps.

� We show, by way of an example, that linear arrival times are not good estimates for all systems. This

example occurs for a model for which the nonlinearity enhances growth of the local infection and

we explain the mechanism by which this leads to faster arrival times drawing an analogy to pushed

fronts in spatially extended systems. Based upon an analysis of the local dynamics, we derive arrival

time estimates and compare them with numerical simulations.

� We show that inhomogeneities in local reaction rates lead to faster arrival times on average. We

attribute this to the following mechanism based upon the linear arrival times estimates for the

homogeneous SIR model: increasing infection rates leads to a decrease in arrival times at O (− log(γ))

while decreasing the random walk probability between two nodes decreases arrival times at O(1).

Thus, if two cities are connected by at least one shortest path consisting of cities with higher than

average infection rates we expect an overall decrease in the arrival time.

It bears mentioning that if one had reliable estimates for the parameters in (1.1) – the infection rate α, the

recovery rate β and the coefficients of the mobility matrix P then to estimate arrival times one could simply

numerically solve the system of ODEs in (1.1). In fact, this would serve as a forecast for the entire course of

the epidemic. More broadly, there are a number of sophisticated tools for the forecasting of epidemics; see

for example the GLEAM simulator [3, 32]. In this light, our goal in this work is not epidemic forecasting

2In fact, this phenomena occurs more generally for spatially extended systems such as lattice dynamical systems or systems

with non-local diffusion in both discrete and continuous time; see [19, 34] among others for examples.
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but instead is to present qualitative predictions for how arrival times depend on system features and to

strengthen the relationship between the dynamics of (1.1) and the theory of invasion fronts in PDEs or

other spatially extended systems which will, in turn, help inform researchers making epidemic forecasting.

Qualitative statements are particularly useful for systems with a high dimensional parameter spaces, as is

the case with (1.1).

We discuss some limitations of the present study. Most arrival time estimates that we provide are obtained

in the limit of small γ. In particular, our explicit arrival time estimates will require γ to be asymptotically

smaller than various quantities including the instability parameter α−β and the coefficients of the mobility

matrix P. While γ is naturally expected to be small, once again see [10], it is not expected that these

conditions will hold generally for real world transportation networks. While some of these deficiencies could

be likely remedied by a more detailed analysis we do not pursue such estimates here. Another interesting

avenue for research is to study how well the arrival times estimates for the deterministic model (1.1) reflect

those in stochastic versions of epidemic spread; we point the reader to [24, 25] for recent work in this

direction.

For the purposes of illustrating our main results we will perform numerical simulations of (1.1) on a version

of the world wide airline transportation network obtained from [1]. This is a historical snapshot from June

2014. There are N = 3304 airports and the network has 19, 082 edges representing one or more flights

connecting two cities. The mean degree is 11.53. We will use this network to illustrate some of our

results and arrival time estimates, but we do not pursue a full numerical investigation. For the purposes

of numerical simulations, we do not attempt to construct accurate approximations for the flux matrix P

as was done in [10]. Let A be the symmetric adjacency matrix for the airline transportation network from

[1] where the entry Anm equals 1 if there exists a flight connecting cities n and m and 0 otherwise. Let D

be the diagonal degree matrix. Then we will take P = D−1A for simplicity. For future reference, we define

the graph distance dmn as the minimum length path between the node n and m. When the origin node n

is fixed we will shorten this to dm.

The rest of the paper is organized as follows. In Section 2, we review and motivate the arrival time

estimate of [11]. In Section 3, we extend this arrival times estimate to a susceptible-exposed-infected-

recovered (SEIR) model. In Section 4, we show that the linear arrival time estimate is no longer valid in a

model of social epidemics that incorporates higher order interactions between individuals but are able to

make corrections to the arrival time estimate to yield approximations. In Section 5, we study the effect of

inhomogeneous infection rates on arrival times and argue that this will decrease arrival times on average.

2 Arrival time estimates via linearization near the disease free state

In this section, we review the arrival time estimate presented in [11]. We assume that the disease originates

in city n with the initial infected proportion jn(0) = χ0 so that sn(0) = 1 − χ0. We are interested in

nonlinear arrival times tmn defined as the minimal time at which jm(t) exceeds some threshold κ. The

primary purpose of this section is to review how estimates for tmn can be obtained by linearizing near the

unstable, disease-free state.

The arrival time estimate in [11] is predicated on the fact that (1.1) is linearly determined; see [34], which

informally means that the linear arrival times will be a good prediction for the nonlinear arrival times.
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Thus, the first step is to linearize (1.1) near the unstable state (we will neglect the recovered population

from here forward) to obtain the following system of linear equations expressed in vector form,

st = −αj+ γ (P− I) s

jt = (α− β)j+ γ (P− I) j.

The j component decouples and can be solved using the matrix exponential,

j(t) = χ0e
(α−β−γ)teγPtδn, (2.1)

where δn is the standard Euclidean basis vector and χ0 is the initial infected proportion residing in city

n. The arrival time in city m is defined as the first time where the infected proportion of the population

exceeds a threshold κ and is therefore the smallest positive solution of

jm(tmn) = κ. (2.2)

Let τmn be an estimate for tmn obtained by setting the m-th component of (2.1) equal to κ. To obtain this

estimate, project the solution in (2.1) onto δm to extract the infected proportion at the m-th node. Then

we wish to solve

κ = δTmχ0e
(α−β−γ)τmneγPτmnδn. (2.3)

To exploit the smallness of the parameter γ, the matrix exponential is expanded as a series,

δTmeγPτmnδn =

∞∑
k=0

γk
τkmn

k!
δTmPkδn.

The coefficients δTmPkδn are random walk probabilities for a walker traveling from city m to city n in k

steps. As such, all these terms are zero up to k = dm where we recall that dm is the graph distance between

the origin city n and the arrival city m. Let ρm = δTmP dmδn. Now, for γ sufficiently small we assume that

the leading order term in the sum dominates and we obtain a leading order expression for τmn by solving

κ =
χ0ρm
dm!

γdmτdmmne
(α−β−γ)τmn . (2.4)

The solution of this equation can be expressed in terms of the Lambert-W function, and we obtain the

arrival time estimate

τmn =
dm

α− β
W

(
1

γ

α− β

dm

(
dm!κ

ρmχ0

)1/dm
)
. (2.5)

Expanding the Lambert-W function we obtain

τmn = − dm
α− β

log(γ)− dm
α− β

log(− log(γ))− dm
α− β

log

(
dm

α− β

(
ρmχ0

dm!κ

)1/dm
)

+ o(1), (2.6)

where o(1) represent terms that go to zero as γ → 0; see again [11]. Note that in the O(1) terms we write

the argument of the logarithm so that it is clear that larger values of the random walk probability ρm lead

to faster arrival times.

The primary take-away from (2.6) is that only two network features are relevant for the determination of

arrival times (in the limit as γ → 0) and are i) the graph distance between the origin and arrival cities and
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ii) the random walk probability of traversing between these two cities in the minimal number of steps. We

remark further that, to leading order, the effective distance is simply the graph distance between the nodes

n and m while the effective velocity is α−β
− log(γ) . This is consistent with the spreading speed of instabilities

along one dimensional lattices; see for example [20]. We also note that if O(1) terms are involved then it is

no longer possible to separate the arrival times into a ratio of a network-dependent effective distance and

a dynamics-dependent effective velocity. Once again, we emphasize that these are asymptotic estimates

and should be expected to hold in limit as γ → 0. For larger values of γ, we are not able to explicitly

connect network properties to arrival times, although we emphasize that numerical results suggest that

linear arrival times remain good estimates for nonlinear arrival times in this case; see Section 6.

As we have stressed above, the fact that these arrival time estimates are accurate stems from the fact that

(1.1) is linearly determined. In fact, we have the following result which proves that the linear arrival times

are always a lower bound for the nonlinear arrival times.

Theorem 2.1. Consider (1.1) with the initial conditions sl(0) = 1, jl(0) = rl(0) = 0 for all l ̸= n and

sn(0) = 1 − χ0, jn(0) = χ0 and rn(0) = 0 for some 0 < χ0 < 1. Let τmn(α, β, γ, κ, χ0) be the linearized

arrival time estimate in city m defined as the solution of (2.3). Let tmn(α, β, γ, κ, χ0) be the nonlinear

arrival time of the disease at node m, defined by the minimum time at which

jm(tmn) = κ.

Then

τmn(α, β, γ, κ, χ0) < tmn(α, β, γ, κ, χ0).

Proof. The proof is a standard application of the comparison principle and was sketched in [11]. Let

NS(s, j) = st + αs ◦ j− γ (P− I) s

NJ(s, j) = jt − αs ◦ j+ βj− γ (P− I) j.

Here s ◦ j is the Hadamard, or component-wise multiplication of the vectors. The idea is to find functions

s̄(t) and j̄(t) such that both NS(s̄(t), j̄(t)) and NJ(s̄(t), j̄(t)) are non-negative indicating that the temporal

growth rate of the selected functions exceeds that of the true solution and therefore any initial condition

for which s(0) ≤ s̄(0) and j(0) ≤ j̄(0) will satisfy s(t) ≤ s̄(t) and j(t) ≤ j̄(t) for all t > 0. To begin, it is

easy to see that if s̄(t) = 1 then NS(1, j(t)) > 0. Then we observe

NJ(1, j̄(t)) = j̄t − (α− β)̄j− γ (P− I) j̄.

Thus, if j̄(t) is the solution of the linear equation (2.1) we have obtained a super-solution. The result then

follows.

To fully validate that the arrival times are linearly determined would require the establishment of sufficiently

sharp sub-solutions. We do not pursue this avenue of research here; although we do point to [14, 35] for

constructions in the case of (1.1) posed on an infinite lattice.

The linearly determined arrival time estimates are compared to arrival times observed in numerical simu-

lations in Figure 1. We also point out that Theorem 2.1 does not depend on γ being small, see Figure 8
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Figure 1: Arrival time estimates given by (2.5) plotted against arrival times observed in numerical simulations of

(1.1). On the left, the mobility parameter γ = 0.001 while on the right the mobility parameter is γ = 0.01. In both

cases, the infection rate is α = 1.50 and the recovery parameter is β = 0.25. In both cases, the linear estimate is a

good approximation of the nonlinear arrival times (for γ = 0.01 absolute error less than 0.75 days and relative error

less than 0.04). We note that when γ = 0.001 (left) then the observed arrival time is always greater than the predicted

arrival time as is expected. However, when γ = 0.01 (right) a few cities have observed arrival times that are faster

than the linear arrival time. This does not contradict Theorem 2.1 since only one term in the matrix exponential is

used to create the linear arrival time estimate in (2.5). If one were to include more terms in the sum, then the linear

estimate would again be less than the observed nonlinear arrival time; see [11] and Figure 8.

2.1 Alternate derivation of linear arrival time estimate

The analysis above suggests that, in the small diffusion limit, epidemic spreading in complex networks can

be thought of as a cascading behavior where the epidemic spreads from the node of origination out through

the network with all nodes of fixed graph distance from the origin node becoming infected at approximately

the same time. In this section, we explain how this point of view can be used to obtain analogous arrival

time estimates as in (2.3).

The purpose of this section is twofold. First and most importantly, this approach and the ideas presented

here will be employed later for cases where linear determinacy fails (namely Section 4 where faster than

linear invasion speeds are observed and then in Section 5 where inhomogeneous infection rates lead to faster

than average arrival times). As a secondary goal, this section presents an alternate way to understand

why the linear arrival time estimates derived previously are good estimates of the nonlinear arrival times.

This alternate method is more combersome than expanding the matrix exponential and relies on a number

of formal calculations and therefore we do not suggest that this derivation should supplant the estimate

derived by solving (2.4).

To begin, without loss of generality we may assume that node n = 1 is the node (city) at which the disease

emerges. Let n = 2 correspond a city that is connected to the first node. The equation for the infected

population at this node is then

dj2
dt

= αs2j2 − βj2 + γ

N∑
k=1

P2k(jk − j2).

Assume that j2 ≪ 1, s2 ≈ 1 and that jk ≪ 1 for all k ≥ 3. From this it is reasonable to approximate j2(t)
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in the short to intermediate time by the linear equation

dj2
dt

≈ (α− β)j2 + γP21j1(t). (2.7)

This equation has an explicit solution

j2(t) ≈ γP21e
(α−β)t

∫ t

0
e−(α−β)τ j1(τ)dτ (2.8)

Assuming further that j1(t) ≈ χ0e
(α−β)t then (2.8) reduces to

j2(t) ≈ γP21χ0te
(α−β)t,

from which we see that imposing j2(t2) = κ and solving for the arrival time t2 produces the same formula

as in (2.3) and identical arrival time estimate t2 ≈ 1
α−βW

(
κ(α−β)
χ0γP21

)
.

Now suppose that n = 3 is connected to n = 2 but not connected to node n = 1 nor any of its children

(aside from node 2). Repeating the analysis above we can find

dj3
dt

≈ (α− β)j3 + γP32j2(t). (2.9)

We now plug in the approximation j2(t) ≈ γP21χ0te
(α−β)t. Then we obtain an approximate solution

formula

j3(t) ≈ χ0γ
2P32P21

t2

2
e(α−β)t,

so that the arrival time t3, determined from setting j3(t3) = κ is approximately

t3 ≈
2

α− β
W

(
(α− β)

2γ

√
P32P21χ0

2κ

)
. (2.10)

This expression is identical to (2.6). It is more tedious to derive estimates in this manner when there

are more than one shortest path between nodes. For example, suppose that node 1 is connected to nodes

2 and 3 which are then both connected to node 4. Using the same assumptions as above we would then

obtain that j4(t) should have an approximate solution of the form

j4(t) ≈ γP42e
(α−β)t

∫ t

0
e−(α−β)τ j2(τ)dτ + γP43e

(α−β)t

∫ t

0
e−(α−β)τ j3(τ)dτ.

Using expressions for j2(t) and j3(t) we then would find

j4(t) ≈ γ2 (P42P21 + P43P31)χ0
t2

2
e(α−β)t,

where we note that ρ4 = P42P21 + P43P31 and we then find the same arrival time estimate as in (2.5).

This process can then be continued and refined. In terms of providing accurate arrival time estimates for

(1.1) this method is cumbersome in comparison to the matrix exponential expansion performed in [11],

however, it provides a different point of view to see how the arrival time estimates in (2.6) may be derived

and will be used later in cases where the matrix exponential approach does generate accurate estimates.

We conclude this section with three remarks.

8



Remark 2.2. Suppose that in (2.9) we had instead used the expression for j2(t) given in (2.8). Then our

solution for j3(t) would read (approximately)

j3(t) ≈ γ2P32P21χ0
t2

2
e(α−β)t,

and the arrival time estimate would be exactly as that derived from (2.4) despite the fact that j1(t) is,

unrealistically, assumed to grow exponentially on the entire time interval 0 < t < t3.

Remark 2.3. The arrival time estimates in (2.3) are observed in numerical simulations to be good predic-

tors for arrival times in the nonlinear model if both χ0 and κ are small (again in the limit as γ → 0). In

light of the discussion above, we see that χ0 small is required so that j1(t) ≈ χ0e
(α−β)t is accurate while κ

small is needed so that the threshold is crossed when jn(t) is small and the approximation in (2.7) is valid.

Remark 2.4. Suppose that the local dynamics in (1.1) are changed to be SIS type dynamics where recovered

individuals become susceptible at some rate γrn. Linearizing at the disease free state, it once again turns out

the the infected dynamics decouple and are described by (2.1). Therefore, the linear arrival time estimates

are exactly the same as in (1.1). Numerical simulations of the SIS model show that the linear arrival times

remain good estimates for the nonlinear arrival times in this model.

3 Arrival times for a SEIR model

The local dynamics in (1.1) are described by the simple SIR model. We now demonstrate how to extend

the arrival time estimates for other types of disease models. For example, many disease models incorporate

an exposed population that accounts for the latency in infection once an individual becomes infected with

a disease. The generalization of (1.1) to this case is

∂tsn = −αsnjn + γ
∑
m ̸=n

Pnm(sm − sn)

∂ten = αsnjn − σen + γ
∑
m ̸=n

Pnm(em − en)

∂tjn = σen − βjn + γ
∑
m̸=n

Pnm(jm − jn)

∂trn = βjn + γ
∑
m̸=n

Pnm(rm − rn). (3.1)

We demonstrate how to derive arrival time estimates in this case. First, linearize about the disease free

state (1, 0, 0, 0)T to obtain (neglecting the recovered population once again)

st = −αj+ γ (P− I) s

et = −σe+ αj+ γ (P− I) e

jt = σe− βj+ γ (P− I) j.

Note that the e-j sub-system decouples. Write this sub-system abstractly as

ht = Ãh+ γ
(
P̃− I

)
h, (3.2)
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where h = (e1, j1, e2, j2, . . . , eN , jN )T , the 2N×2N matrix P̃ = P⊗I2, and the 2N×2N matrix Ã = IN⊗A

with

A =

 −σ α

σ −β

 .

The matrix A is the local linearization of the reaction terms for (3.1) at a fixed node. Let

λ±(α, σ, β) =
−(β + σ + 2γ) +

√
(β − σ)2 + 4σα

2
,

be the two eigenvalues of A and note that since det(A) = −σ(α−β) then if α−β > 0 we have λ+ > 0 > λ−
and the disease free state is unstable. Note that the instability threshold for the SEIR model is identical

to that of the SIR model. The matrix A is diagonalizable. Let A = QDQ−1, with

D =

 λ+ 0

0 λ−

 , Q =

 Γ+ Γ−

1 1

 ,

where Γ±(α, σ, β) =
β−σ±

√
(β−σ)2+4σα

2σ . Equation (3.2) can be solved using the matrix exponential as

h(t) = e(Ã+γ(P̃−I))th0.

Key to the derivation of the arrival time estimate in the SIR model is the ability to separate the homoge-

neous growth due to the instability from the diffusion due to the coupling matrix P. Such a decomposition

is possible here since the matrices Ã and P̃ commute which we verify using properties of the Kronecker

product,

ÃP̃ = (IN ⊗A)(P⊗ I2) = (INP)⊗ (AI2)

= (PIN )⊗ (I2A) = (P⊗ I2)(IN ⊗A) = P̃Ã.

Since the matricies commute we can therefore write the solution

h(t) = e(Ã−γI)teγP̃th0, (3.3)

and expand the matrix exponentials as

e(IN⊗A)t =
∞∑
j=0

tj(IN ⊗A)j

j!
=

∞∑
j=0

IN ⊗Aj

j!
tj , e(P⊗I2)t =

∞∑
k=0

tk(P⊗ I2)
k

k!
=

∞∑
k=0

Pk ⊗ I2
k!

tk.

To calculate arrival times for a disease propagating from city n to city m, we specify that at time zero we

have some proportion, χ0, of the infected population in city n and calculate when the infected population

exceeds some threshold κ at city m. Thus, h0 = χ0δn⊗ δ̃2, where δn denotes the standard Euclidean basis

vector in RN while δ̃j is the same for R2. This leads to the following equation to determine the arrival

times, which we simplify using properties of the Kronecker product,

10



κ = χ0

(
δm ⊗ δ̃2

)T (
IN ⊗QeDτmnQ−1

)( ∞∑
k=0

γkPk ⊗ I2
k!

τkmn

(
δn ⊗ δ̃2

))

= χ0

(
δTm ⊗ δ̃

T
2 QeDτmnQ−1

)( ∞∑
k=0

γkPkδn ⊗ δ̃2
k!

τkmn

)

= χ0

( ∞∑
k=0

γk
δTmPkδn

k!
τkmn

)
⊗
(
δ̃
T
2 QeDτmnQ−1δ̃2

)
.

Since both terms in parenthesis are scalar the Kronecker product in the last line is actually just a multi-

plication. Assuming again that the leading order term in γ will dominate we can neglect all terms in the

sum aside from the one where k = dm. For the terms on the right, we simplify to

δ̃
T
2 QeDτmnQ−1δ̃2 =

1

Γ− − Γ+

(
Γ−e

λ+τmn − Γ+e
λ−τmn

)
.

We neglect the exponential involving λ− since λ− < 0 and obtain

κ = χ0
γdmρmτdmmn

dm!

(
Γ−

Γ− − Γ+

)
eλ+τmn .

As was the case for the SIR model, this equation can be solved using the Lambert-W function and we

obtain the estimate

τmn =
dm

λ+(α, σ, β)
W

(
1

γ

λ+(α, σ, β)

dm

(
κdm!(Γ−(α, σ, β)− Γ+(α, σ, β))

χ0ρmΓ−(α, σ, β)

)1/dm
)

+ o(1). (3.4)

Recall that as σ → ∞ the period of time that individuals spend in the exposed phase tends to zero and

we anticipate that the arrival times for the SEIR model should approach those for the SIR model in this

limit. Indeed, we observe that as σ → ∞, Γ± → −1
2 ± 1

2 and λ+ → α − β and the arrival time estimate

(3.4) converges to the estimate for the SIR model, see (2.5). Comparisons between this arrival time and

those in direct numerical simulations of (3.1) are presented in Figure 2.

Remark 3.1. Arrival times estimates analogous to formula (3.4) can be obtained for other compartmental

models as well. Let A denote the linearization of the local model near the disease free equilibrium point of

an ℓ component disease model. Then the linearization at the unstable state in the network system can be

expressed as

ht = Ãh+ γ
(
P̃− I

)
h,

for h ∈ RNℓ. Assume that the components of h are ordered so that the infected proportion is expressed

first. Then the solution of the linear equation can be written as

h(t) = e(Ã−γI)teγP̃th0,

where P̃ = P ⊗ Iℓ, and Ã = IN ⊗ A Suppose that A is diagonalizable with maximal eigenvalue λ1(A) and

A = QDQ−1 where Q = (q1 q2 . . . qℓ) with qj the eigenvectors of A. Then λ1 is the upper left entry of

D. Let D̃ = diag(λ1, 0, . . . , 0). Then we can estimate arrival times by solving

κ = χ0
γdmρmτdmmn

dm!
Ξ(A)eλ+τmn ,

11
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Figure 2: Arrival times for the SEIR model (3.1) versus predictions. In the left panel we show arrival times observed

in numerical simulations versus predicted arrival times based upon the arrival time estimate for the SIR model; see

(2.5). Three simulations are performed with σ = 0.5, σ = 1.0 and σ = 10. As anticipated the arrival time of the

disease is delayed by the incorporation of an exposed phase. For σ = 10, individuals reside in the exposed phase for

a short amount of time and the arrival times for the SEIR model are close to those of the SIR model. In the right

two panels, we compare observed arrival times in the SEIR model to the prediction (3.4) for σ = 0.5 (middle panel)

and σ = 1.0 (right panel). Here α = 1, β = 0.25 and γ = 0.001.

where the constant Ξ(A) comes from projecting the initial condition of the local dynamics onto the leading

eigenvector and is defined as

Ξ(A) = δ̃
T
1 QD̃Q−1δ̃1 =

q11
det(Q)

det [δ1 q2 q3 . . . qℓ] .

This leads to the arrival time estimate

τmn =
dm

λ1(A)
W

(
1

γ

λ1(A)

dm

(
κdm!Ξ(A)

χ0ρm

)1/dm
)

+ o(1). (3.5)

4 Pushed fronts: faster invasion speeds due to nonlinearities

Not all invasion fronts are linearly determined. For the SIR model considered in (1.1) the nonlinearity

suppresses growth and the maximal growth rate of the infection occurs when when the infected population

is small. In this section, we demonstrate that nonlinearities which amplify growth can lead to faster-than-

linear arrival times. This phenomena is well known in the PDE setting where the resulting fronts are

referred to as pushed; see for example [18, 33].

Consider the following meta-population model,

∂tsn = −αsnjn − ρsnj
2
n + γ

∑
m ̸=n

Pnm(sm − sn)

∂tjn = αsnjn + ρsnj
2
n − βjn + γ

∑
m̸=n

Pnm(jm − jn). (4.1)

The only difference between this system and (1.1) is the additional infection term ρsnj
2
n. This system

is motivated by recent work in [22] where the role of higher order interactions in social epidemics is

studied. Recall that the quadratic terms αsnjn represent infections occurring due to interactions between

12



infected and susceptible individuals. The cubic term ρsnj
2
n represents infections due to group (we consider

only groups of size three for simplicity) interactions and expresses the higher probability of a susceptible

individual adopting a new social norm if all the other members of one of their social groups has already

adopted that norm. We emphasize that the model in [22] is an agent-based stochastic model without

spatial structure and refer the reader to [22] for more details.

We are interested in how these higher-order interactions affect arrival times. Based upon our analysis of

the SIR and SEIR models the natural starting point is to compute linearly determined arrival times. In

fact, the linearization of (4.1) near the unstable disease free state is equivalent to that of (1.1) and therefore

the linear arrival time estimates for this system are also identical. However, numerical simulations reveal

faster invasion speeds; see Figure 4. We proceed to explain and predict this faster invasion speed starting

first with a discussion of the local dynamics of (4.1).

4.1 The local dynamics

To obtain modified arrival times estimates using the approach presented in Section 2.1 we need an estimate

for the local dynamics of (4.1) at a fixed city in the absence of diffusion. In this section, we obtain an

approximation for these dynamics in the limit as ρ → ∞. This corresponds to a regime where infections

via group interactions dominates those stemming from pairwise interactions.

Consider the local dynamics of (4.1),

S′ = −αSI − ρSI2

I ′ = αSI + ρSI2 − βI. (4.2)

We desire estimates on the solution of (4.2) for initial conditions starting near the disease free steady state

(S, I) = (1, 0). We will consider the case when ρ ≫ 1 so that we can view (4.2) as a singularly perturbed

system. Let ϵ = 1
ρ ≪ 1. After transformation of the independent variable by τ = t

ϵ we obtain the following

system of equations

dS

dτ
= −SI2 − ϵαSI

dI

dτ
= SI2 + ϵαSI − ϵβI. (4.3)

Setting ϵ = 0 we obtain the so-called reduced fast equation,

dS

dτ
= −SI2

dI

dτ
= SI2. (4.4)

This reduced equation is, to leading order, the same as the system of equations analyzed in [17] and so

we follow their analysis. System (4.4) has two lines of equilibria: in the language of Geometric Singular

Perturbation Theory these are called slow manifolds – MI = {(S, I) | S = 0 } and MS = {(S, I) | I = 0 };
see for example [26]. The two manifolds intersect at the origin. For I > 0, the manifold MI is normally

hyperbolic whereas the manifold MS lacks normal hyperbolicity.

13



Let W = S + I. Then for (4.4), W (τ) is constant to leading order while

dI

dτ
= (W − I)I2.

For ϵ small and away from MS we therefore have that W (τ) is constant to leading order in ϵ while I(τ)

increases from zero to W . This provides a leading order fast connection between the slow manifolds MS

and MI .

In order to use the local solution to estimate arrival times in (4.1) we need some basic estimates on the

form of the solution starting near (1, 0) for small ϵ. We will consider the initial condition I(0) = κ and

S(0) = 1 − κ with κ
ϵ sufficiently small so that κ < ϵ. We must then follow this initial condition in the

slow time scales until I(t) exceeds some threshold η and the fast dynamics prescribed by (4.4) take over

and the solution quickly converges to the slow manifold MI . Once it nears MI , then the solution relaxes

exponentially to the origin since I ′ ≈ −βI there.

Since MS is not normally hyperbolic we can not directly use the linearization to estimate the solution

before the transition time Ω. This lack of normal hyperbolicity can be traced to the fact that as I → 0 the

dominant term on the right side of (4.3) shifts from SI2, which is formally O(1) in ϵ to ϵI(αS − β) which

is formally O(ϵ).

In appendix A we mimic the geometric desingularization approach of [17] to obtain estimates on Ω. We

will obtain an approximation for the transition time

Ω ≈ 1

α− β
log

(
ϵ(α− β)

κ

)
, (4.5)

and the solution to the local dynamics as

I(t) ≈

 κe(α−β)t t < Ω

e−β(t−Ω) t ≥ Ω.
(4.6)

Solutions of the system (4.2) are shown in Figure 3.

4.2 Arrival time estimates

We now turn our attention to making estimates of nonlinear arrival times using the approach outlined in

Section 2.1. Assume that the epidemic originates at node n = 1. For simplicity we assume that the initial

infected proportion at city 1 is κ as in (4.6). We then wish to estimate the nonlinear arrival times tm
defined by the condition that jm(tm) = κ. In fact, we will obtain the estimate

tm ≈ dm
α− β

log

(
κα

γ(ρm)1/dm

)
+ dmΩ, (4.7)

where we recall that dm is the minimal number of flights connecting city m to the origin city (the graph

distance), ρm is the random walk probability of moving between city m and the origin city in exactly dm
stops and Ω is the local transition time obtained (4.5).

To verify this we first consider the city n = 2 which we suppose is connected to origin node. We approximate

the evolution of the infected population at node two by the equation

dj2
dt

≈ (α− β)j2 + γP21j1(t).
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Figure 3: The local dynamics for the system of equations in (4.2). On the left are numerically computed solution

trajectories starting from the initial conditiond I(0) = 0.001 and S(0) = 0.999 for ρ = 100 and ρ = 0 (the standard

SIR model) with α = 1.50 and β = 0.25. The red and blue curves are the infected and susceptible proportions

respectively with ρ = 100 while the purple and yellow are the infected and susceptible proportions when ρ = 0.

Note that when ρ = 100 the infected proportion has fast transition around t = 2.80 with a theoretical estimate of

Ω = 2.6865. On the right, the solution with ρ = 100 is plotted in S−I phase space. The red lines depict the invariant

fast transition curves that connect the two slow manifolds.

Supposing that j1(t) evolves according to (4.6) leads to an approximate expression for j2(t),

j2(t) ≈ γP21e
(α−β)t

(∫ Ω

0
κdτ +

∫ t

Ω
e−ατeβΩdτ

)
.

The contribution from the second integral dominates and we estimate the arrival time by setting j2(t) = κ

while ignoring lower order terms yields the equation

κ = γ
P21

α
e(α−β)(t−Ω),

from which we estimate the arrival time t2 by

t2 =
1

α− β
log

(
κα

γP21

)
+Ω,

which agrees with (4.7). Extrapolating, we can consider the evolution at an arbitrary node m where the

evolution of the infected population is approximately governed by the following differential equation

djm
dt

≈ (α− β)jm + γ
∑

k:dk=dm−1

Pmkjk(t).

The sum represents the coupling to cities which are closer to the origin city. For each jk we substitute

jk(t) ≈

 κe(α−β)(t−tk) t− tk < Ω

e−β(t−tk−Ω) t− tk ≥ Ω

As we did for the node j2, we approximate this solution as

jm(t) ≈ γe(α−β)t
∑

k:dk=dm−1

∫ t

tk+Ω
Pmke

−ατeβ(tk+Ω)dτ,
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Figure 4: Epidemic arrival times for (4.1) are plotted against various predictions. On the left, we plot numerically

observed arrival times in (4.1) for ρ = 10, 50, 100 versus the linear arrival time estimate (2.5). Note that large values

of ρ lead to faster invasion speeds. In the other two panels we plot in magenta observed arrival times against our

nonlinear prediction in (4.7) for ρ = 100 (middle panel, with original data for comparison) and ρ = 50 (right panel,

with original data for comparison). For all simulations, α = 1.5, β = 0.25 and γ = 0.001.

after which integrating and neglecting the upper bound of integration we obtain an arrival time estimate

by solving

κ = γe(α−β)t
∑

k:dk=dm−1

Pmke
−(α−β)(tk+Ω). (4.8)

Using

tk =
dk

α− β
log

(
κα

γ(ρk)1/dk

)
+ dkΩ,

then (4.8) becomes

κ = γe(α−β)(t−dmΩ)
∑

k:dk=dm−1

γdkρk
κdkαdk

Pmk

α
.

Since ρm =
∑

k:dk=dm−1 ρkPmk this is equivalent to

(ακ)dm

γdmρm
= e(α−β)(tm−dmΩ),

and solving for tm we obtain the expression in (4.7).

In Figure 4, we show comparisons between this arrival time estimate and those observed in numerical

simulations.

5 Inhomogeneous infection rates speed up average arrival times

System (1.1) assumes that local infection and recovery rates are uniform across all cities. In this section,

we consider how inhomogeneties in these rates affect arrival times by allowing the infection rate to vary

by node. We will suppose that the infection rate at each node is expressed as α+ ωn where α is the mean

infection rate and ωn describes city by city variations from this mean. Local infection rates are expected

to differ for a variety of factors and we point out that rather large differences are reasonable, for example,

for diseases that exhibit seasonality where the infection rate may vary by hemisphere. The question we
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Figure 5: Histograms showing the difference in arrival times between the inhomogeneous SIR model (5.1) and the

homogeneous model with constant infection rate equal to the mean of the inhomogeneous model. Each figure represents

observations over thirty different realizations of the random infection rates. In each example α = 1.0, β = 0.25 and

γ = 0.001. On the left, αn is drawn from a normal distribution, scaled by 0.2 and then normalized to have zero mean.

On average, the epidemic arrives 3.66 days earlier in the inhomogeneous model versus the homogeneous version. In

the middle panel, we randomly select half the nodes to have ωn = 0.2 and the other half to have ωn = −0.2. In

this example, the arrival times are advanced by an average of 1.20 days in the inhomogeneous versus homogeneous

model. On the right, we assign randomly one tenth of the nodes to have ωn = 0.18 while the remaining nodes have

ωn = −0.02. Again, the inhomogeneous network has faster on average arrival times with a mean of 0.814 days.

will focus on is whether this inhomogeneity speeds up or slows down the invasion process as compared to

the average. We consider the system

∂tsn = −αsnjn − ωnsnjn + γ
∑
m ̸=n

Pnm(sm − sn)

∂tjn = αsnjn + ωnsnjn − βjn + γ
∑
m̸=n

Pnm(jm − jn), (5.1)

where
∑N

n=1 ωn = 0 and α+ ωn − β > 0 for all n.

A similar argument as in Theorem 2.1 shows that the linear arrival times once again place a lower bound

on nonlinear arrival times. However, in contrast to the SIR or SEIR models, in the inhomogeneous case

the linear arrival times are no longer a reliable predictor for the nonlinear arrival times. We make two

observations. First, if we write (5.1) in vector form then due to the inhomogeneity of the reaction terms it

is no longer the case that the reaction and migration matrices commute, so it is not possible to decompose

the solution as in (2.1) or (3.3). More problematic is the fact that the linearized solution will be dominated

by the largest eigenvalue, corresponding to the largest ωn, and so the linear equation will asymptotically

predict arrival times equivalent to the homogeneous case with infection rate equal to α+maxn ωn. We refer

the reader to Section 2.1 to see why this unbounded growth does not degrade the arrival time estimate in

the homogeneous case.

Numerical simulations suggest that arrival times in the inhomogeneous system are faster on average than

arrival times in the homogeneous system. These results are shown in Figure 5 for three different types

inhomogeneities. We argue that these faster arrival times are due to the following mechanism. For the

worldwide airline transportation network, most cities are connected by multiple shortest paths. If the

inhomogeneities are distributed randomly then it is likely that one of these shortest paths will connect the

two cities along a route consisting entirely, or mostly, of cities with ωn > 0. Consulting (2.6) we expect

this increase in infection rate to decrease the arrival times at O(− log(γ)), whereas limiting the disease to
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spread along fewer of the possible shortest paths will decrease the random walk probability of traversing

between the two cities. However, according to (2.6) this would only affect the arrival times at O(1). We

substantiate this point of view with some formal calculations as in Section 2.1.

For the nodes connected to the origin node, arrival time estimates can be derived as in Section 2.1. Suppose

that the disease originates at node n = 1 and this node is connected to node n = 2. Let Γn = α+ ωn − β.

Then we approximate the dynamics of the infected proportion at node 2 by

j2(t) ≈ γP21χ0e
Γ2t

∫ t

0
e−Γ2τeΓ1τdτ = γP21χ0e

Γ2t

[
e(ω1−ω2)τ

ω1 − ω2

]t
0

. (5.2)

Setting this equal to the threshold value κ we find two different arrival time estimates depending on whether

ω1 > ω2 or vice versa. Let the arrival time t2 be defined by j2(t2) = κ, then we get

t2 ≈ − 1

Γ1
log

(
1

γ

κ(ω1 − ω2)

χ0P21

)
, ω1 > ω2, t2 ≈ − 1

Γ2
log

(
1

γ

κ(ω2 − ω1)

χ0P21

)
, ω2 > ω1.

In the case ω1 > ω2 one can interpret the estimate as saying that the growth in infections at city 2

is dominated by migration of infections from city 1 where the local growth rate is larger. In contrast, if

ω2 > ω1 then the growth of local infections at city 2 dominates and the coupling to city 1 is only required to

transmit a few initial infections to city 2. Both of these estimates rely on a gap between the ω1 and ω2 values

so that one of the boundary terms in the integral in (5.2) can be ignored. If these values are comparable

then both terms need to be considered and the arrival time estimate will involve an approximation of the

Lambert-W function.

The purpose of these informal calculations is to demonstrate that arrival times can be decreased by the

disease passing through nodes with higher than average growth rates. Now consider the grandchildren of

the origin node. These nodes are connected to the origin node through one or more children nodes. For

networks such as the worldwide airline network there are typically multiple such paths. Thus, even if there

is only a 1/2 probability that the children nodes have higher than mean infection rates, there is a greater

than even probability that there is a path with positive ωn connecting the grandchild node to the origin.

This means that there exists a path over which the disease can spread faster leading to faster arrival times.

Numerical evidence for this is presented in Figure 6. Here we consider the worldwide airline network [1]

where each node has mean infection rate α = 1.0 and deviation ωn = ±0.2 selected uniformly at random.

We then plot arrival times grouped by the minimum number of negative ω values among the shortest paths

connecting each node to the origin node. We see that the fewer such negative ω values the faster the arrival

times and most (in this example 91%) of the nodes have a path connecting them to the origin node with

two or less negative ω values.

We also considered the effect of different infection rates in the southern versus northern hemispheres. In

the airline network taken from [1], only about 20% of the airports reside in the southern hemisphere. Some

numerical results are presented in Figure 7. First we consider the case where the infection rate is greater in

the southern than northern hemisphere. This causes arrival times in most of the network to be advanced

relative to the values predicted when the infection rate is constant and equal to the global mean. If the

prediction is changed to instead use the infection rate for the southern hemisphere then the predicted

versus observed arrival times is almost linear for cities in the southern hemisphere owing to the fact that

most pairs of cities in the southern hemisphere are connected by shortest paths visiting only other cities in
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Figure 6: Arrival times for (5.1) on the worldwide airline transportation network with half the nodes assigned ωn = 0.2

uniformly at random with the remaining nodes having ω = −0.2. On the left, arrival times are plotted against the

linear prediction for the mean value of α = 1.0 (β = 0.25 and γ = 0.001). Consider all paths that connect a node

m to the origin node with the minimal graph distance dm. The data points in red are those for which there exists a

minimal path on which all ωn > 0. Green corresponds to nodes with a minimal path with exactly one negative ωn.

Blue nodes have two negative ω values while magenta has three. The arrival times of all red nodes are advanced in

the inhomogeneous system. Around 95% of the nodes for which there exists a minimal path with exactly one ωn < 0

arrive faster (green nodes) and around 67% of the nodes with minimal paths with exactly two ωn < 0 arrive faster

(blue nodes). This covers 91% of the total nodes in the network. On the right, we compare arrival times in (1.1) with

the linear prediction (2.5) assuming that all nodes have α = 1.2. Observe that this constitutes a reasonable prediction

for the arrival times at nodes with all a path of all positive ω values (red data points).

the southern hemisphere. When the infection rate is greater in the northern hemisphere a similar dynamic

occurs and arrival times in the northern hemisphere are advanced and approximately linear. Since ωn is

rather small in the northern hemisphere this advancement is not as dramatic as it is for larger infection

rates in the southern hemisphere.

Remark 5.1. It is known in the PDE context that inhomogeneities can lead to faster invasion speeds; see

for example [6, 30]. In these cases the system typically exhibits pulsating traveling waves that propagate with

some mean velocity that exceeds the velocity in the homogeneous case. We emphasize that the mechanism

at play in the PDE case is distinct than the one we discuss here.

6 Conclusion

We have illustrated that the analogy between the dynamics of the meta-population model (1.1) and invasion

fronts for spatially extended reaction-diffusion systems can be used to make qualitative predictions on the

behavior of (1.1) in certain circumstances. To recap, we show that arrival time estimates can be procured

for a variation of (1.1) that includes an exposed population. Second, from the PDE theory we expect

that faster than linear invasion speeds should arise for some models where the nonlinearity enhances the

growth of the instability. Using a model motivated by recent work on the role of higher-order interactions

in social epidemics we demonstrate that this also occurs in the case of the meta-population model (1.1).

Using the smallness of the diffusion constant γ and viewing the invasion front as a cascading process we

are able to obtain corrections to the linear arrival times that provide more accurate predictions of arrival

times. Finally, we consider the effect of inhomogeneities on mean arrival times. In the PDE case this can

lead to faster arrival times. We show that the same phenomena occurs in (1.1) although we argue that the
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Figure 7: Arrival times versus predictions for the worldwide airline transportation network [1] with ωn selected by

hemisphere. In all simulations, the mean infection rate is fixed to α = 1.0, the recovery rate is fixed to β = 0.25 and

the diffusion parameter is fixed to γ = 0.001. In all simulations the original city of infection resides the southern

hemisphere. On the left, ωn > 0 for those airports in the southern hemisphere and ωn < 0 for those airports in

the northern hemisphere. The purple data points are arrival times for cities in the southern hemisphere while the

blue dots are arrival times for airports in the northern hemisphere. In the left panel, the predicted arrival time is

the linear arrival time estimate (2.3) with α fixed to be the mean infection rate. In the middle panel, the predicted

arrival time is instead the the linear arrival time estimate with the maximal infection rate (constant in the southern

hemisphere). On the right, we show arrival times for the case where ωn > 0 in the northern hemisphere while ωn < 0

in the southern hemisphere. The predicted arrival time is the linear arrival time estimate (2.3) with α fixed to be the

mean infection rate.

mechanism leading to the decrease is distinct and due to the asymmetry between how local growth rates

and random walk probabilities affect the arrival time calculation.

We conclude with comments on some directions for further research.

Throughout this article we have assumed that the mobility parameter γ is asymptotically small. This

assumption is valid in some situations, but it would be valuable to understand how arrival times are

determined for larger values of γ. This could be relevant when mobility is increased or when the infection

rate is only slightly larger than the recovery rate so that the homogeneous growth and diffusion terms have

similar scalings. Numerical simulations of the SIR model (1.1) suggest that linear arrival times remain

good estimates for nonlinear arrival times even for larger values of γ; see Figure 8. It would be interesting

if it were possible to characterize which network features are relevant for this decreased arrival times.

In terms of mathematical analysis, it would be interesting to establish rigorous upper bounds on nonlinear

arrival times to complement the lower bounds afforded by the linearized equation in Theorem 2.1. One

possible avenue is to derive sub-solutions for (1.1). We refer to [14, 35] for work in this direction for

lattice SIR models. We have used the term linearly determined informally to describe situations where the

linearized arrival times are good estimates for the nonlinear arrival times. A rigorous bound on nonlinear

arrival times would serve to make this mathematically precise. We point to recent work characterizing the

location of solution level sets for the lattice Fisher-KPP equation as a starting point for this analysis; see

[8].

Several qualitative predictions for how network and system properties determine arrival times in meta-

population models of global disease spread have been presented. Ultimately, part of the motivation of the

current study was to provide predictions that might be applied to more complicated and realistic models

of disease spread.
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Figure 8: Predicted versus observed arrival times for the SIR model (1.1) with infection rate α = 1.0, recovery

rate β = 0.25 and diffusion parameter γ = 0.3 (left) and γ = 0.5 (right). The red predictions are those given

by (2.5) which uses only the first term in the summation (2.3) while the blue data are predictions computed by

numerically solving (2.3) including the first twenty non-zero terms in the summation. As expected, the one term

approximation over-estimates the arrival times since it considers only contributions coming from the shortest path.

The correspondence between the linear prediction and nonlinear arrival times observed in numerical simulations

suggests that (1.1) remains linearly determined even for large values of σ, although no closed form expression for

arrival times is available.

A Singular perturbation analysis of the local model 4.2

We consider (4.2) with the goal of motivating the approximate solution presented in (4.6). Our approach

mimics the analysis of a model of an autocatalator chemical reaction model presented in [17]. We begin

with the system (4.3) where we wish to track the solution to the initial value problem with initial conditions

S(0) = 1 − κ, I(0) = κ in the limit as ϵ = 1
ρ → 0. As mentioned in Section 4 this system has two slow

manifolds defined as curves of equilibrium when ϵ is set equal to zero; see (4.4). The slow manifold on

the I axis is normally hyperbolic and it follows that the reduced flow on the slow manifold is, to leading

order in ϵ given by I ′ = −βI and so we obtain that after some critical time Ω the solution of I(t) can be

described as in (4.6). The second slow manifold is given by the S axis, but this manifold lacks normal

hyperbolicity so we are unable to track the solution of the initial value problem using linearization.

To overcome this lack of normal hyperbolicity we use geometric desingularization techniques or “blow-up”

techniques to resolve the flow when I is small. Following [17] we will change coordinates to

S = S̄, I = rĪ, ϵ = rϵ̄, Ī2 + ϵ̄2 = 1,

effectively transforming the S axis to a cylinder with polar coordinates for the I and ϵ variables. It is often

easier to study the flow in coordinate charts and we employ two distinct charts. The first is known as the

re-scaling chart with coordinates

S = S1, I = r1I1, ϵ = r1,

while the second chart has coordinates

S = S2, I = r2, ϵ = r2ϵ2.

The two charts can be related via

S2 = S1, r2 = r1I1, ϵ2 =
1

I1
.
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Our goal is to track an initial condition with S(0) = 1 − κ, I(0) = κ with κ small as it evolves past the

non-hyperbolic S axis to the section Σout = {(S, I) | I = η} for some η > 0 at which the solution can

be effectively described by a fast transition to the I axis followed by a slow relaxation along the I axis

until the solution converges to the origin. In contrast to [17], our estimates here are approximate and not

rigorous. We believe that the estimates presented here could be made rigrorous, but we do not pursue such

an analysis here.

Analysis in first chart The first chart is known as the rescaling chart where r1 is simply a proxy for ϵ.

Converting (4.3) to the coordinates of the first chart we find,

dS1

dτ
= −αr21S1I1 − S1r

2
1I

2
1

dI1
dτ

= αr1S1I1 − βr1I1 + S1r1I
2
1

dr1
dτ

= 0 (A.1)

Rescaling the independent variable to divide the vector field by r1 we find the de-singularized system

dS1

dt
= −αr1S1I1 − S1r1I

2
1

dI1
dt

= αS1I1 − βI1 + S1I
2
1

dr1
dt

= 0. (A.2)

Let η > 0 and define the section Σ1 = {(S1, I1, r1) | I1 = η}. Suppose that we start with initial conditions

I(0) = κ and S(0) = 1−κ which correspond to initial conditions S1(0) = 1−κ and I1(0) =
κ
ϵ . We therefore

require κ to scale smaller than ϵ so that I1(0) is near zero. To obtain a leading order description of the

dynamics we set r1 = 0 in (A.2) and approximate S1(t) = 1. Then I1 obeys (to leading order in ϵ)

dI1
dt

= (α− β)I1 + I21 , I1(t) =
C(α− β)e(α−β)t

1− Ce(α−β)t
, C =

κ

κ+ ϵ(α− β)
.

Define Ω1 such that I1(Ω1) = η. Using the leading order description for I1(t) we estimate

Ω1 ≈
1

α− β
log

(
η(κ+ ϵ(α− β))

(α− β + η)κ

)
We now convert our solution to the coordinates of the second chart and proceed with tracking the solution.

Analysis in second chart Converting (4.3) to the coordinates of the second chart we find,

dS2

dτ
= −αr22ϵ2S2 − r22S2

dr2
dτ

= αr22ϵ2S2 − βr22ϵ2 + S2r
2
2

dϵ2
dτ

= −αr2ϵ
2
2S2 + βr2ϵ

2
2 − S2r2ϵ2 (A.3)
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Rescaling the dependent variable to divide the vector field by the non-zero factor αr2ϵ2S2 − βr2ϵ2 + S2r2
we obtain the desingularized system

dS2

ds
= −r2

(
1

1− βϵ2
αϵ2S2+S2

)
dr2
ds

= r2

dϵ2
ds

= −ϵ2. (A.4)

Define Σ2 = {(S2, r2, ϵ2) | r2 = η} with η defined as before and recall the initial conditions in the section

Σ1 which correspond to S2(0) = 1− κ+O(ϵ), r2(0) = ηϵ, ϵ2(0) =
1
η . The transition time between sections

can then be evaluated explicitly, it terms of the transformed time-scale s, as s = − log ϵ. To determine

estimates for the transition time τ2 in the τ time-scale we note that the timescales are related by the

integral

τ2 =

∫ − log(ϵ)

0

1

αr2ϵ2S2(σ)− βr2ϵ2 + S2(σ)r2(σ)
dσ

We will obtain an approximation to t2 by setting S2(σ) = 1 in the integral. We are then able to integrate

(recalling that r2ϵ2 = ϵ) and find

τ2 ≈ 1

ϵ(α− β)

(
− log(ϵ) + log

(
ϵ(α− β) + ϵη

ϵ(α− β) + η

))
,

≈ 1

ϵ(α− β)

(
− log(ϵ) + log

(
ϵ

η

(α− β) + η

1 + ϵ
η (α− β)

))

≈ 1

ϵ(α− β)

(
− log(η) + log

(
α− β + η

1 + ϵ
η (α− β)

))

Re-scaling the independent variable from τ to t we obtain an estimate on the total transit time of the

initial condition I(0) = κϵ to I(t) = η as

Ω ≈ 1

α− β

(
log

(
η
(κ+ ϵ(α− β))

(α− β + η)κ

)
− log(η) + log

(
α− β + η

1 + ϵ
η (α− β)

))

≈ 1

α− β

(
log

(
(κ+ ϵ(α− β))

κ

)
+ log

(
1

1 + ϵ
η (α− β)

))
.

Using κ
ϵ small and ϵ ≪ 1 we find the approximation in (4.5).
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