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Abstract

The goal of this work is to identify steady-state solutions to dynamical systems defined

on large, random families of networks. We do so by passing to a continuum limit where the

adjacency matrix is replaced by a non-local operator with kernel called a graphon. This graphon

equation is often more amenable to analysis and provides a single equation to study instead of

the infinitely many variations of networks that lead to the limit. Our work establishes a rigorous

connection between steady-states of the continuum and network systems. Precisely, we show

that if the graphon equation has a steady-state solution whose linearization is invertible, there

exists related steady-state solutions to the finite-dimensional networked dynamical system over

all sufficiently large graphs converging to the graphon. The proof involves setting up a Newton–

Kantorovich type iteration scheme which is shown to be a contraction on a suitable metric

space. Interestingly, we show that the first iterate of our defined operator in general fails to be a

contraction mapping, but the second iterate is proven to contract on the space. We extend our

results to show that linear stability properties further carry over from the graphon system to

the graph dynamical system. Our results are applied to twisted states in a Kuramoto model of

coupled oscillators, steady-states in a model of neuronal network activity, and a Lotka–Volterra

model of ecological interaction.

1 Introduction

In this paper we are concerned with steady-state solutions to nonlinear differential equations defined

on networks. In particular, we study discrete reaction-diffusion-type systems of the form

dui
dt

= f(ui) +
1

n

n∑
j=1

AijD(ui, uj), i = 1, . . . , n. (1.1)

Here ui = ui(t) denotes the dynamics of the ith component (or agent, node, species, depending

upon the application) of the system, f(ui) describes the component-specific internal kinetics, and

1



D(ui, uj) details the manner in which interaction between individual components affects the dy-

namics. Applications giving rise to systems of the form (1.1) abound. A famous and motivating

example is the Kuramoto model for synchronization of coupled oscillators [24, 36], while other ex-

amples arise in areas such as power networks [37], neuroscience [1, 13], biological pattern formation

[30], and ecology [35], to name only a few.

Essential to many of these examples is that the individual components may not be coupled identi-

cally, but have interaction patterns that can be described by a network. In (1.1) such interaction

networks are described by the matrix A = [Aij ]1≤i,j≤n. If Aij ̸= 0 then the ith and jth components

interact with a strength given by the value of Aij . Research related to (1.1) typically requires

some regularity, simplicity, or symmetry in the matrix A for analytical results to be obtainable.

When this structure is lacking – as is the case for networks described by random graphs – analysis

of differential equations like (1.1) is challenging even at the level of computing the existence and

stability of steady-state equilibrium solutions.

To better understand dynamical systems of the form (1.1) on very large networks, i.e. n≫ 1, one

may formally let n→ ∞ and attempt to analyze the resulting limiting system to gain insight into

the macroscopic behavior of (1.1). The result of taking n→ ∞ in (1.1) is non-local models taking

the form
∂u

∂t
(t, x) = f(u(t, x)) +

∫ 1

0
W (x, y)D(u(t, x), u(t, y)) dy, (1.2)

which have been widely studied to gain insight into the role that the network topology plays in the

system dynamics when the network is large. Here u(t, x) is a function of the (normalized) latent

space [0, 1] and W (x, y) is a symmetric, almost-everywhere continuous function that represents the

probability of a connection between a node located at x and one at y. The formulation in (1.2) is

often employed to approximate the dynamics of (1.1) when A describes a network. For example,

W (x, y) = p represents an Erdős-Réyni random graph where the probability of connections between

nodes is a fixed constant p ∈ [0, 1], while if W = W (|x − y|) then the probability of connection

between nodes is determined by the distance between the nodes in the latent space and W is

an abstraction of a ring network. It is often the case that the non-local equation (1.2) is more

amenable to analysis than the discrete version (1.1) as it provides a single deterministic model

against infinitely-many random discrete systems of different sizes. Our goal in the current study is

to transfer existence and stability results for steady-state solutions of the limiting non-local model

(1.2) back down to the network models (1.1) that are large enough to be considered close to the

limit. The result of our analysis of (1.2) provides information regarding important dynamical

features of infinitely many systems of the form (1.1) with large n and varying network topologies.

The function W (x, y) in (1.2) is known as a graphon and has been derived as a natural graph limit

for sequences of graphs where convergence is measured with respect a metric known as the cut norm;

see [5, 6, 25, 26] and our brief review presented in Section 2. The language and tools from graphon
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theory are germane to our work herein since probabilistic statements regarding the convergence of

sequences of random graphs to their graphon limits are now well-understood [26, 33, 34]. Most

importantly, while convergence in the cut norm can be difficult to interpret mathematically, it

captures the intuitive essence of growing graph structures that is observed using pixel plots of the

associated adjacency matrices, as illustrated in Figure 2. This is in contrast to the traditional

vector norms that measure element-wise differences in matrices which cannot compare adjacency

matrices of different sizes nor remain small when only a single edge is added or subtracted from a

very large graph.

The emergence of the non-local equation (1.2) featuring the graphon W (x, y) as a continuum limit

of (1.1) has been a focus of research for the past decade. Notably, closeness of the solutions

to (1.1) and (1.2) as initial value problems was proven in [27]. The goal of the present work

is complementary in the sense that we will establish that stable steady-states for the non-local

model (1.2) persist as stable steady-states in the discrete model (1.1) if A and W (x, y) are close as

operators in an appropriate sense to be made precise later. The use of graphons in the analysis of

network dynamical systems has also grown in the past decade. We note contributions to the study

of coupled oscillators [11, 28, 29], mean field games [9, 10, 31], pattern formation [7], epidemics

[12], control theory [16], power networks [23], opinion dynamics [2, 4] and Kuramoto models with

higher order interactions [3]. We remark that in many of these works the focus is on the analysis

of the system (1.2), while connections to the discrete system (1.1) are provided through numerical

investigations. Within the context of mean field games, rigorous results connecting the existence of

Nash equilibria in the graphon limit to approximate Nash equilibria in the finite-dimensional graph

case have been obtained [10, 31].

To illustrate our main results, let us consider the Kuramoto model for coupled oscillators [24]. In

this case the reaction and interaction functions in (1.2) assume the forms

f(u) = 0, D(u(x), u(y)) = sin(2π(u(y)− u(x))). (1.3)

A special type of solution to the Kuramoto system arem-twisted states, taking the form u(x, t) = mx

(typically understood modulo 1 as u represents a phase in this model) for an m ∈ Z. For ring

graphons, the existence and stability of twisted states in (1.2) was established in [29, 36]. Thus,

a question one can ask is whether these twisted state solutions persist as solutions to the discrete

system (1.1) with a large number of vertices n ≫ 1 and the Aij = Aji ∈ {0, 1} being independent

random variables generated by the limiting graphon according to

P (Aij = 1) =W

(
i− 1

n
,
j − 1

n

)
. (1.4)

Our work herein answers this question in the affirmative with high probability. Figure 1 provides

numerical illustrations of our results using the same small-world graphon employed in the study
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Figure 1: (a) A cartoon of a 2-twisted state over a ring network with next-nearest-neighbor connections. (b)
Contour plot of the small-world graphon (1.5) with α = 0.2. (c) the pixel plot of the adjacency matrix of a
random network built from the graphon according to (1.4). Twisted states for the Kuramoto model of coupled
oscillators in both the graphon (blue solid line) and random graph model (red dots) are provided with (d)
m = 2, (e) m = 3, and (f) m = 4 twists.

[36]:

W (x, y) =

 1
2πα , min{|x− y|, 1− |x− y|} ≤ α,

0, otherwise.
(1.5)

Moreover, we show that stability properties are also inherited by the persisting solutions in the

discrete system. One further arrives at the conclusion that these steady-states are robust with

respect to large scale re-wiring of the network structure, so long as the graphs are sufficiently close

to the limiting graphon.

Our proof of the persistence of solutions down from the continuum limit follows from an appli-

cation of the contraction mapping theorem to a Newton-type operator. Central to this task is

the identification of an appropriate Banach space on which this operator will act. The Lebesgue

spaces, Lp(R), are natural candidates but turn out to be insufficient for our purposes. For any

p ∈ [1,∞) these spaces are not closed under pointwise multiplication, and so we cannot prove that

the right-hand-side of (1.2) is well-defined as an operator on Lp for p < ∞. For this reason we

pivot to spaces of piece-wise continuous functions equipped with the supremum, or L∞, norm (see

the definition of Xn in Section 4). However, our candidate operator is not, generally speaking, a

contraction in these spaces. This can be traced to the fact that the cut-norm cannot be used to

control the L∞ → L∞ operator norm of graphon adjacency operators v 7→
∫ 1
0 W (x, y)v(y)dy, which
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are critical to our analysis. Remarkably, it turns out that the second iterate of this operator is a

contraction. This is a somewhat unusual property, but we demonstrate that it arises naturally from

the definition of the cut-norm and the form of the integral operators arising in the linearization of

(1.2) near the steady-state solution. In this way we provide unique analytical methods to arrive at

our results in this manuscript.

This paper is organized as follows. In Section 2 we review graphons and describe how they can

be used to generate families of discrete graphs which converge to the graphon in the cut norm as

the number of vertices increases without bound. Our main results are presented in Section 3. In

Section 4 we prove our first main result which states that a solution to the continuum problem

defined with a graphon persists as a solution to the discrete problem on sufficiently large graphs.

Then, in Section 5, we prove our second result which states that these nearby solutions maintain

the stability of the original solution to the continuum model. Specifically, that their eigenvalues

lie arbitrarily close to those of the linearization for the continuous problem when the underlying

network is sufficiently large. In Section 6 we consider several examples where our theory applies.

These examples include the aforementioned Kuramoto coupled oscillator model, as well as the

Wilson-Cowan model of neuron activity, and Lotka-Volterra models describing ecological competi-

tion/cooperation. Finally, we conclude with Section 7, a discussion on future research related to

our results and examples.

2 Graphs and Graphons

In this paper we demonstrate a useful application of graphons as a tool to analyze dynamical

systems on large graphs. Throughout this section we aim to build an understanding of graphons

as limiting objects for sequences of graphs on n vertices as n → ∞. We show how such sequences

can be generated both deterministically and randomly by starting with a graphon and building a

sequence for which it is the limit. What follows is only a limited review of graphons, while the

expository works [20, 25] are recommended for readers who would like to understand them further.

2.1 Graphons and their norms

A graphon W is a symmetric, Lebesgue-measurable function mapping [0, 1]2 to [0, 1]. Boundedness

of W guarantees that W ∈ Lp = Lp([0, 1]) for every p ∈ [1,∞], however the space of graphons is

typically endowed with a more appropriate metric called the cut norm [5, 6, 14, 26], defined by

∥W∥□ = sup
S,T

∣∣∣∣ ∫
S×T

W (x, y) dxdy

∣∣∣∣ (2.1)
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where S and T are measurable subsets of [0, 1]. The cut norm is a weaker norm than the Lp norms

in the sense that ∥W∥□ ≤ ∥W∥p for all p ∈ [1,∞]. As we will see below, the cut norm plays a

critical role in graph limit theory as it can be used to interpret the geometric properties of graphs

that are not captured well by the Lp norms.

On a technical level, the cut norm has been shown to be equivalent to various operator norms. For

our purposes here, we will mainly use the following version

∥W∥□,2 = sup
∥f∥∞≤1,∥g∥∞≤1

∣∣∣∣ ∫ 1

0

∫ 1

0
W (x, y)f(x)g(y)dydx

∣∣∣∣,
which is equivalent to the cut-norm in (2.1) in the sense that ∥W∥□ ≤ ∥W∥□,2 ≤ 4∥W∥□; see

Appendix E of [20] for reference. We also note that the cut norm is often expressed in terms of the

operator norm of TW : v →
∫ 1
0 W (x, y)v(y)dy, which is the graphon analog of how the adjacency

matrix acts on a vector. Precisely, it holds that (see [20, Lemma E.6]),

∥W∥□,2 ≤ ∥TW ∥Lp→Lq ≤
√
2∥W∥min(1−1/p,1/q)

□,2 (2.2)

for all p, q ∈ [1,∞]. To reiterate the discussion from the introduction we see that when p = q = ∞,

the L∞ → L∞ operator norm of TW cannot be controlled by the cut-norm.

2.2 Constructing finite graphs from graphons

The goal of this subsection is to review how graphons can be used as a tool to generate both

deterministic and random finite graphs. To start, fix any n ≥ 1 and partition the interval [0, 1]

into sub-intervals using the points xi = i−1
n with i = 1, . . . , n. Then, a graphon W leads to a

deterministic graph with n vertices represented by the weighted adjacency matrix A = [Ai,j ]1≤i,j≤n

with (undirected) edge weights

Ai,j =W (xi, xj), i, j = 1, . . . , n. (2.3)

Alternatively, we may construct a random graph from W by assigning edges at random with the

probability of connection between vertex i and j given by W (xi, xj). Precisely, the associated

adjacency matrix A = [ξi,j ]1≤i,j≤n has elements that are independent Bernoulli random variables

ξi,j = ξj,i with distribution

P(ξi,j = 1) = 1− P(ξi,j = 0) =W (xi, xj), ∀i > j (2.4)

and the diagonal elements fixed as ξi,i = 0. Notice that the resulting random graph is not weighted

as the adjacency matrix only encodes whether a connection is present or not.

While our results will apply equally to both deterministic and random graphs, it will be the latter
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(a) (b) (c)

Figure 2: Pixel plots of Erdős-Rényi random graphs on n = 10, 100, and 1000 vertices generated by the
graphon W (x, y) = 1/2 with black representing an edge and white representing no edge. Visually they appear
to approach a solid gray state of value 1/2, which is the correct intuition for the cut norm in this case, but
not the standard Lp norms.

that will be the primary focus of our applications. Several classes of popular random graph models

can be described in terms of graphons. The following list enumerates some of these models.

1. Erdős-Réyni networks are perhaps the simplest random graph model, where edges are as-

signed independently with some fixed probability p ∈ [0, 1]. Such models can be generated

by a constant graphon W (x, y) = p. Figure 2 provides pixel plots of random graphs with

n = 10, 100, and 1000 vertices generated using W (x, y) = 1/2. They visually approach a near

solid gray state, providing the intuition for convergence in the cut norm, as we will discuss in

the next subsection.

2. Ring networks correspond to periodic arrays of nodes where edges are assigned with a prob-

ability that depends only on the distance between nodes. A ring graphon is defined by a

piecewise continuous, 1-periodic function R : [0, 1] → [0, 1] such that W (x, y) = R(|x− y|) for
all x, y ∈ [0, 1]. Ring graphons have a Fourier series representation of the form

W (x, y) =
∑
k∈Z

cke
2πik(x−y), ck = c−k ∈ R. (2.5)

An important sub-class of ring networks are Watts-Strogatz or small-world networks

which satisfy

W (x, y) =

p for |x− y| ≤ α or 1− |x− y| ≤ α

q otherwise
(2.6)

with parameters α, p, q ∈ [0, 1]. The corresponding Fourier series of W has coefficients

ck =


2αp+ (1− 2α)q k = 0,(
p−q
πk

)
sin(2πkα) k ̸= 0,

(2.7)
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
0 1 1 1
1 0 1 0
1 1 0 0
1 0 0 0



Figure 3: A graph on 4 vertices (left) can be encoded as an adjacency matrix (center) which is used to define
a step graphon (right). This step graphon representation is really a pixel plot of the adjaceny matrix, showing
values of 0 in white and 1 in black.

which will be of use in our examples in Section 6.

3. A bipartite network seeks to divide vertices into two groups, with probability of connections

between vertices in different groups given by p ∈ [0, 1] and no intragroup connections. The

corresponding graphon divides [0, 1] into [0, α] and (α, 1], for some α ∈ (0, 1), and takes the

form

W (x, y) =

p if min{x, y} ≤ α, max{x, y} > α,

0 otherwise.
(2.8)

That is, vertices i and j are connected with probability p if xi ∈ [0, α] and xj ∈ (α, 1], while

no edge is present when xi and xj both belong to [0, α] or (α, 1]. One may extrapolate and

define multipartite networks by partitioning the interval [0, 1] into multiple subintervals and

providing probabilities of connections between distinct subintervals.

2.3 Step graphons

In order to facilitate the forthcoming analysis, we need a way to compare discrete finite graphs with

a continuous graphon. As we will review in this subsection, the pixel plot of an adjacency matrix

naturally leads to a step-function representation of a finite graph as a graphon. This means that

graphs can be represented in three equivalent ways: 1) geometrically as a collection of vertices and

edges, 2) through the adjacency matrix, and 3) as a step-graphon. We refer the reader to Figure 3

which provides these three equivalent presentations of a finite graph using a simple example.

To be more precise, for a graph on n vertices its adjacency matrix A = [Ai,j ]1≤i,j≤n can be used to

make a graphon Wn which is a step function over the domain In× In where In = {[(i− 1)/n, i/n) :

i = 1, 2, . . . , n}. Its values are defined as

Wn(x, y) = Ai,j for (x, y) ∈ [(i− 1)/n, i/n)× [(j − 1)/n, j/n). (2.9)

By expressing finite graphs as step-graphons one is then able to compare their distances in the cut
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or operator norms. In particular, our main results in the following section require a sequence of step

graphons converging to a given graphon in the cut norm. Let us now briefly comment on when this

hypothesis can be guaranteed to hold using both the deterministic and random adjacency matrices

coming from a single graphon.

We begin with the deterministic case. For a graphon W , we have shown how one can generate a

weighted deterministic graph on n ≥ 1 vertices by sampling the graphon via (2.3). The correspond-

ing step graphon, here denoted W d
n , is then constructed as in (2.9). Thus, W d

n is simply a step

function approximation of W . If W is almost everywhere continuous (as in all examples herein),

the dominated convergence theorem gives that

lim
n→∞

∥W d
n −W∥1 → 0. (2.10)

As presented in Section 2.1 we have that ∥W∥□ ≤ ∥W∥1 for all graphons W , and so we find that

∥W d
n −W∥□ → 0 as n → ∞ for the case of deterministic weighted graphs generated by an almost

everywhere continuous graphon W .

The case of random graphs is not nearly as straightforward, but we will again demonstrate that

convergence of the step graphons to the generating graphon in the cut norm can be obtained with

high probability1. Following (2.4), we generate a random graph on n vertices and denote W r
n to be

its corresponding step graphon, again via (2.9). Notice now that W r
n only takes on values of 0 or

1, but nothing in between, and so in general we do not have pointwise convergence of W r
n to W as

n→ ∞. Nonetheless, [25, Lemma 10.16] provides the following useful result.

Lemma 2.1 ([25]). Let n ≥ 1 and let W be a graphon. Then with probability at least 1 −
exp(−n/ log(n)) we have

∥W r
n −W∥□ ≤ 22√

log(n)
. (2.11)

Thus we see from the above lemma that W r
n converges to W in probability and so ∥W r

n−W∥□ → 0

as n→ ∞ can be expected to hold with high probability for random graphs. Although the cut norm

can be unintuitive on first glance, Figure 2 provides random realizations of Erdős-Rényi random

graphs with n = 10, 100, and 1000 vertices that help to visualize convergence in the cut norm. For

large n the blending of black (1s) and white (0s) plateaus of the step graphon begin to resemble

the limiting graphon W (x, y) = 1/2 that would appear uniformly gray.

Another measure of convergence of graphon sequences is in the degree of the vertices of the graph.

The degree is an important centrality measure which is the sum of all edge weights incident to a

vertex. In the language of graphons, the degree of a graphon is a function dW : [0, 1] → [0, 1], given

by

dW (x) =

∫ 1

0
W (x, y)dy, (2.12)

1with high probability means that the probability of the event occurring goes to 1 as n → ∞
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for all x ∈ [0, 1]. Our hypotheses below will require that the degree functions of sequences of step

graphons converge uniformly to the degree of a graphon, and so we briefly comment on when this

can be verified in practice. We begin by providing the result [34, Lemma 3] and then discuss its

ramifications for our assumptions presented in the next section.

Lemma 2.2 ([34]). Let W be a graphon such that dW (x) ≥ d0 > 0 for all x ∈ [0, 1]. There exists

an N ≥ 1 such that for all n ≥ N , with probability at least 1− ν we have

∥dW r
n
− dW d

n
∥∞ ≤

√
log(2n/ν)

nd0
. (2.13)

Lemma 2.2 shows that the degree functions of the random step graphon and its deterministic

counterpart converge uniformly with high probability so long as W satisfies the minimal degree

assumption dW (x) ≥ d0 > 0 for all x. Although this result relates the degrees of the random and

deterministic graphs, it does not necessarily imply uniform convergence to dW as n→ ∞. However,

if we can show that

lim
n→∞

∥dW d
n
− dW ∥∞ = 0 (2.14)

is true, then an application of the triangle inequality with (2.13) can show that ∥dW r
n
− dW ∥∞ → 0

with high probability as n → ∞. There are many situations where (2.14) can be confirmed,

such as when the graphon is continuous or when dW (x) is independent of x; see for example [7].

Importantly, (2.14) holds for Erdős–Réyni graphons and ring graphons, as well as many other

well-studied graphons in the literature.

3 Main Results

With the introduction of graphons in the previous section, we are now in a position to provide our

results. We begin by properly formulating the problem so that we can easily transition between

the finite-dimensional setting of (1.1) and the infinite-dimensional graphon equation (1.2).

3.1 Problem setting

Prior to stating our main results, we aim to fix the notation that will be used throughout this

manuscript. Our eventual goal is to show that steady-state solutions to (1.1) can be analyzed

for n ≥ 1 through the limiting infinite-dimensional graphon dynamical system (1.2). Since our

objective is to analyze a finite-dimensional ordinary differential equation using a non-local functional

equation, we first seek to provide the appropriate definitions and terminology to move back and

forth between the two settings.
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Steady-state solutions of (1.2) solve F (u;W ) = 0, where

F (u;W ) := f(u) +

∫ 1

0
W (x, y)D(u(x), u(y))dy. (3.1)

To ease notation we will simply write F (u) instead of F (u;W ) in what follows. However, since we

will consider (3.1) with a family of step-graphons Wn converging to W (see Hypothesis 2 below),

we will further introduce the short-hand

Fn(u) := f(u) +

∫ 1

0
Wn(x, y)D(u(x), u(y)) dy. (3.2)

Clearly Fn(u) = F (u;Wn) by definition.

If one restricts u to lie in the set of step-functions defined over the partition In of the interval [0, 1],

then solving Fn(u) = 0 is equivalent to solving a finite-dimensional problem. Indeed, one is only

required to identify the value of u on each of the n intervals that make up the partition In. Thus,

for each n ≥ 1 and u = (u1, . . . , un)
T ∈ Rn, solving Fn(u) = 0 for a step function u is equivalent to

solving Gn(u) = (Gn(u)1, . . . , Gn(u)n) = 0, where

Gn(u)i = f(ui) +
1

n

n∑
j=1

(An)i,jD(ui, uj) (3.3)

and (An)i,j is the value of the step graphon Wn on the square [(i − 1)/n, i/n) × [(j − 1)/n, j/n).

Notice that we have now arrived at the right-hand-side of (1.1), in this case derived from the

graphon system (3.1). Importantly, the structure of the connections in the networked dynamical

system comes from the adjacency matrix An, which simply represents the n2 values taken on the

steps of Wn whose structure is endowed by the limiting graphon W .

3.2 Assumptions and Main Results

With the problem setting and notation fixed by the previous subsection, we are now in a position to

state our main results. We begin with a sequence of assumptions on the functions in the differential

equation, the graphon, and on the existence of steady-states to the graphon equation (3.1). We

begin with the following assumption that is a standard starting point for the investigation of both

(1.1) and (1.2).

Hypothesis 1. The functions f : R → R and D : R×R → R that make up F in (3.1) are smooth

with locally Lipschitz derivatives.

Our next assumption provides that we have a sequence of graphs converging to a graphon as the

size of the network grows without bound.
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Hypothesis 2. There exists a sequence of adjacency matrices An ∈ Rn×n for all n ≥ 1 and graphon

W so that the following hold:

1. The step graphons Wn over In × In corresponding to each An are such that ∥Wn −W∥□ → 0

and ∥dWn − dW ∥∞ → 0 as n→ ∞,

2. For any ε > 0 there exists a δ > 0 so that for every x0 ∈ [0, 1] we have that∫ 1

0
|W (x, y)−W (x0, y)| dy < ε (3.4)

when |x− x0| < δ and x ∈ [0, 1].

We remind the reader that the discussion in Section 2.3 provides scenarios for when Hypothe-

sis 2(1) will hold. Precisely, if the An are deterministic weighted graphs generated from an almost

everywhere continuous W then we have ∥Wn −W∥□ → 0 as n → ∞ and we need only verify the

degree convergence. Similarly, if the An are random graphs drawn from the graphon W then the

convergence ∥Wn −W∥□ → 0 as n → ∞ can be expected with high probability. The condition

Hypothesis 2(2) is slightly less intuitive, but is indeed necessary for our proofs in this manuscript.

If the graphon W is continuous we can easily satisfy this condition using the fact that the domains

x, y ∈ [0, 1] are compact and arguing from the uniform continuity of W . Furthermore, in the ap-

pendix we provide a proof that this condition can be shown to hold for, potentially discontinuous,

ring graphons, thus broadening the class of graphons to which our work is applicable.

We now present our final hypothesis which posits the existence of a solution to the graphon equation

(3.1), as well as the invertibility of the linearization about this solution.

Hypothesis 3. There exists a continuous u∗(x) satisfying F (u∗) = 0. Furthermore, the linear

operator DF (u∗) is invertible on C[0, 1] with bounded inverse and the function

Q(x) := −f ′(u∗(x))−
∫ 1

0
W (x, y)D1(u

∗(x), u∗(y))dy, (3.5)

satisfies Q(x) > 0 for all x ∈ [0, 1], where D1 indicates the first partial derivative of D with respect

to its first variable.

In the above hypothesis the function Q comes from the decomposition of the linearization DF (u∗)

into

DF (u∗)v = −Q(x)v +

∫ 1

0
W (x, y)D2(u

∗(x), u∗(y))v(y)dy, (3.6)

where D2 indicates the first partial derivative of the interaction function D with respect to its

second variable. Observe that Q is the multiplication component of the linear operator. As we

show in our examples below, the condition that Q(x) > 0 can be verified in examples and, as proven
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in Lemma 4.1 below, reflects stability of the essential spectrum of the linearized operator DF (u∗).

Furthermore, Corollary 4.2 establishes that Q(x) is continuous in x, essentially following from the

assumption Hypothesis 2(2). Another piece to note is that while Hypothesis 3 uses the Banach

space C[0, 1], Lemma 5.1 below shows that the spectrum of DF (u∗) is equivalent on C[0, 1] and

L2. This is important for applications where identifying the spectrum on L2 is sometimes easier

than on C[0, 1].

With the above Hypotheses we provide the following theorem that gives the persistence of the

steady-state solution from the graphon equation to large networks with adjacency matrices con-

verging to the graphon.

Theorem 3.1. Assume Hypotheses 1, 2, and 3. Then, there exists a constant ρ∗ > 0 such that for

any ρ ∈ (0, ρ∗) there exists an N ≥ 1 such that for all n ≥ N there is a vector u∗
n ∈ Rn satisfying

Gn(u
∗
n;An) = 0 and ∥u∗n − u∗∥∞ < ρ; where u∗n(x) is the step function representation of the vector

u∗
n over In.

Our second main result concerns the stability of this steady-state. We adopt the usual convention

that a linear operator is stable if its spectrum is entirely contained in the left half of the complex

plane and bounded away from the imaginary axis. The reader should recall that stability of the

linearization of a finite-dimensional dynamical system about a steady-state gives local asymptotic

stability, thus providing insight into the nonlinear dynamics of the network system (1.1).

Theorem 3.2. Under the same assumptions as Theorem 3.1, there exists an M ≥ 1 such that u∗
n

is a stable equilibrium solution of (1.1) for all n ≥ max{N,M} if DF (u∗;W ) is stable.

The proof of Theorem 3.1 will be presented in Section 4 while the proof of Theorem 3.2 will be

presented in Section 5.

Remark 1. Our applications of the above theorems in Section 6 primarily deal with dynamics on

random graphs. However, we note that our results are stated independently of these considerations

and therefore can be adapted to be applied much more broadly. For example, one could consider

a fixed finite graph on n vertices. Minor tweaks to the proof of Theorem 3.1 can be made to show

that steady-states can be shown to be robust with respect to perturbations of the network, such as

edge addition or deletion, provided that the resulting change in the cut norm is sufficiently small.

4 Proof of Theorem 3.1

The goal of this section is to prove Theorem 3.1. Precisely, we seek the existence of solutions to the

finite-dimensional system Gn(u, An) = 0, which from Section 3.1 represent steady-state solutions

of the original differential equation (1.1). As described above, this finite-dimensional problem
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can be embedded into a continuous graphon problem using step-graphons which we have denoted

Fn(u) = 0, per (3.2).

To achieve our goal, we equivalently demonstrate the existence of a unique fixed point for the

operator

Tn[u] = u− (DF (u∗))−1Fn(u). (4.1)

For each n ≥ 1 we will consider Tn as an operator on the Banach space of piecewise continuous

functions Xn

Xn =

{
u ∈ L∞

∣∣∣∣ u(x) is continuous on each interval

[
i− 1

n
,
i

n

)}
, (4.2)

equipped with the supremum, or C[0, 1], norm. Notice that for each n ≥ 1 we have C[0, 1] ⊂ Xn

and so in turn u∗ ∈ Xn for any n since Hypothesis 3 gives that u∗ is continuous.

By construction, fixed points of Tn[u] in (4.1) are solutions of Fn(u). The natural approach is to

show that Tn is a contraction on the Banach space Xn. However, for reasons that we will elaborate

on below this cannot always be shown to be the case. Simply, this comes from the fact that Tn
does not generally map balls of sufficiently small radius ρ > 0, denoted Bρ(u

∗) ⊂ Xn, back to itself.

As it turns out, the operator Sn = Tn ◦ Tn, consisting of a two-fold application of the operator Tn,
can be shown to be a contraction on small enough balls in Xn centered at u∗. Thus, once we are

able to establish that Sn is a contraction for sufficiently large n, we obtain a unique fixed point of

Sn, which we will then show is also a fixed point of Tn. Finally, we will demonstrate that this fixed

point of Tn, i.e. the piecewise continuous solution to Fn(u) = 0, in Xn is in fact piecewise constant

so that the existence of a solution to the finite-dimensional problem is truly obtained.

As a road map for what follows, this section has the following breakdown:

1. Section 4.1.1: We establish Fredholm properties of the operator DF (u∗) and verify that

DF (u∗) : Xn → Xn is both well-posed and invertible for all n ≥ 1 (Lemma 4.1 and Corol-

lary 4.4). Furthermore, expansions of the operator DF (u∗)−1 are obtained using a Neumann

type series expansions (Lemma 4.5).

2. Section 4.1.2: We establish two general estimates on integrals of the form∣∣∣∣ ∫ 1

0
[W (x, y)−Wn(x, y)]ϕ(x, y)dy

∣∣∣∣,
and ∣∣∣∣ ∫ 1

0

∫ 1

0
[W (z, y)−Wn(z, y)]ψ(x, z)ϕ(z, y)v(y)dy

∣∣∣∣
for continuous functions ϕ and show that their supremum can be controlled by ∥dW −dWn∥∞
and ∥W −Wn∥□, respectively (Lemmas 4.7 and 4.8).
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3. Section 4.2: The results and estimates of the previous subsection are combined to obtain

estimates on DF (u∗)−1Fn(u
∗) and DF (u∗)−1[DF (u∗)−DFn(z)]v (Lemmas 4.9 and 4.13).

4. Section 4.3: These estimates are employed to study the action of operator Tn on a ball

(Lemma 4.14).

5. Section 4.4: In the general case, Tn will fail to be a contraction mapping, so we will instead

show that Sn[u] = Tn[Tn[u]] is a contraction on Xn (Lemma 4.15).

6. Section 4.5 : We conclude by showing that the fixed point of the operator Sn implies the

existence of a solution to the finite-dimensional problem Gn(u, A) for n sufficiently large.

This involves two steps: showing that the fixed point for Sn is also a fixed point of Tn thereby

generating a solution of the non-local problem Fn(u) = 0 (Lemma 4.17). This fixed point

is an element of Xn and our final step is to show that it is constant on each sub-interval in

Xn and therefore also implies the existence of a solution of the finite-dimensional problem

Gn(u, An) = 0 (Lemma 4.18).

Before we proceed with the proof of Theorem 3.1, we briefly comment on why we cannot necessarily

establish that Tn is a contraction, thus necessitating the use of Sn. To apply the contraction

mapping theorem to the operator Tn we need to control the operator norm difference of operators

DF (u∗)−DFn(z) for some z ∈ Bρ(u
∗) applied to an arbitrary vector v ∈ Bρ(u

∗), for some ρ > 0.

It turns out that almost all terms in this difference can be controlled by making ρ small or taking

n large. The exception is a term that takes (in the simplest case) the following form∫ 1

0
(W (x, y)−Wn(x, y)) v(y)dy. (4.3)

To see why we cannot necessarily make this term small in the supremum norm by taking n large,

let x ∈ [0, 1] and consider the piecewise continuous function v(y) = ρ sign[W (x, y) −Wn(x, y)].

Then (4.3) will be

ρ

∫ 1

0
|W (x, y)−Wn(x, y)|dy,

and, for the applications that we are interested in, this quantity will not typically tend to zero

when n→ ∞.

Alternatively, in the operator Sn[u] we show that the dominant term takes the form (presented

again in the simplest case for the sake of exposition) of the double integral∫ 1

0
(W (x, z)−Wn(x, z))

∫ 1

0
(W (z, y)−Wn(z, y)) v(y)dydz, (4.4)

whose supremum norm with respect to x can be controlled by the cut-norm difference ∥W −Wn∥□,
which by our assumptions can be made arbitrarily small for n sufficiently large.
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4.1 Preliminary Facts

Before proceeding to an analysis of the fixed point operators Tn and Sn we will need to compile

some facts to have at our disposal.

4.1.1 Properties of DF (u∗) and its inverse

In this section we consider the linear operator DF (u∗). The goal of this section is two-fold. We

need to verify that the mapping Tn : Xn → Xn is well defined for n ≥ 1. This requires that DF (u∗)

is invertible on the space Xn. Additionally, the remaining analysis will require estimates on and

expansions of the operator DF (u∗)−1.

Recall from Hypothesis 3 that DF (u∗) is assumed to be invertible on C[0, 1]. We will show that

this operator is also invertible on the larger space Xn. In fact, we will prove a stronger result that

the spectrum of DF (u∗) is equivalent whether the operator is considered on C[0, 1] or Xn. The

spectrum of DF (u∗) can be characterized in terms of Fredholm properties of DF (u∗) − λI. We

will say that λ ∈ C is an element of the essential spectrum of DF (u∗) if DF (u∗)− λI is either not

Fredholm or is Fredholm with non-zero index. Conversely, λ lies in the point spectrum of DF (u∗) if

and only if DF (u∗)− λI is Fredholm with index zero and the kernel of this operator is nontrivial.

The set of all such λ belonging to the point spectrum of DF (u∗) is denoted σpt(DF (u
∗)), while the

essential spectrum is denoted σess(DF (u
∗)). This leads to our first result.

Lemma 4.1. The following dichotomy holds for any n ≥ 1:

� If λ /∈ Rng(−Q(x)) then DF (u∗)− λI is Fredholm as an operator on Xn with index zero and

λ ∈ σpt(DF (u
∗)) if and only if ker(DF (u∗)− λI) ̸= ∅.

� If λ ∈ Rng(−Q(x)) then DF (u∗) − λI is not Fredholm as an operator on Xn and λ ∈
σess(DF (u

∗)).

Proof. Throughout this proof we fix n ≥ 1 since the arguments apply equally to any Xn. Then to

begin, recall that for each v ∈ Xn we have

DF (u∗)v − λv = −(Q(x) + λ)v +

∫ 1

0
W (x, y)D2(u

∗(x), u∗(y))v(y)dy.

If λ /∈ Rng(−Q(x)) then Q(x)+λ ̸= 0 and the multiplication operator v 7→ −(Q(·)+λ)v is invertible
on Xn and hence Fredholm with index zero. Conversely, if λ ∈ Rng(−Q(x)) then the multiplication

operator v → −(Q(·) + λ)v is not invertible on Xn. Indeed, letting x∗ ∈ [0, 1] be one value where

Q(x∗) + λ = 0, we get that the co-range of −(Q(·) + λ) includes all functions w ∈ Xn for which

w(x∗) ̸= 0. The set of all such functions is infinite-dimensional, thus implying that the operator

v 7→ −(Q(·) + λ)v is not Fredholm if λ ∈ Rng(−Q(x)).
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We will now verify that the integral operator
∫ 1
0 W (x, y)D2(u

∗(x), u∗(y))v(y)dy is compact. In

doing so, we have that DF (u∗) − λI is a compact perturbation of the multiplication operator

v → −(Q(·) + λ)v and so we obtain that DF (u∗) − λI is Fredholm with index zero if and only if

−(Q(·) + λ)v is too; see [21, Theorem IV.5.26] for full details.

To establish compactness, Hypothesis 2(2) is key, as outlined in [18]. Let vj be a sequence of

functions in Xn with ∥vj∥∞ = 1 and set

Ψj(x) =

∫ 1

0
W (x, y)D2(u

∗(x), u∗(y))vj(y)dy.

Let ε > 0 and consider an arbitrary a ∈ [0, 1]. Then the triangle inequality gives

|Ψj(x)−Ψj(a)| ≤
∣∣∣∣ ∫ 1

0
[W (x, y)−W (a, y)]D2(u

∗(x), u∗(y))vj(y)dy

∣∣∣∣
+

∣∣∣∣ ∫ 1

0
W (a, y)[D2(u

∗(x), u∗(y))−D2(u
∗(a), u∗(y))]vj(y)dy

∣∣∣∣
Since the function D2(u

∗(x), u∗(y)) is uniformly continuous in x, y ∈ [0, 1] it is also uniformly

bounded by some constant L > 0. Furthermore, there exists a δ > 0 such that for any a ∈ [0, 1], if

|x− a| < δ we have

|D2(u
∗(x), u∗(y))−D2(u

∗(a), u∗(y))| < ε

2

and, from Hypothesis 2(2), ∫ 1

0
|W (x, y)−W (a, y)|dy < ε

2L
.

Thus, for all a ∈ [0, 1], j ≥ 1, and any x such that |x− a| < δ we get

|Ψj(x)−Ψj(a)| ≤ L

∫ 1

0
|W (x, y)−W (a, y)|dy + ε

2
<
ε

2
+
ε

2
= ε, (4.5)

using the fact that ∥vj∥∞ = 1 and |W (x, y)| ≤ 1 for all x, y ∈ [0, 1]. Hence, the above bounds

show that Ψj is an equicontinuous family of functions and so the Arzelá–Ascoli theorem guar-

antees the existence of a convergent subsequence. This therefore implies that the operator v →∫ 1
0 W (x, y)D2(u

∗(x), u∗(y)v(y))dy is compact and DF (u∗) is a compact perturbation of the multi-

plication operator −(Q(x)+λ). Hence, DF (u∗)−λI is Fredholm if and only if −(Q(x)+λ) is, per

[21, Theorem IV.5.26]. This concludes the proof.

From the previous proof we also obtain the following facts.

Corollary 4.2. The functions

Q(x) = −f ′(u∗(x))−
∫ 1

0
W (x, y)D1(u

∗(x), u∗(y))dy
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and ∫ 1

0
W (x, y)D2(u

∗(x), u∗(y))v(y)dy

are continuous in x for any function v ∈ Xn.

Proof. Uniform continuity of the second function was verified in (4.5). For Q(x), we have that

f ′(u∗(x)) is continuous since both f ′ and u∗ are. The proof of continuity of the integral part

follows from an analogous computation as that of
∫ 1
0 W (x, y)D2(u

∗(x), u∗(y))v(y)dy and so we

omit the details.

Lemma 4.3. The spectrum of DF (u∗) posed on Xn is equivalent to the spectrum on C[0, 1], i.e.

σ(DF (u∗))|C[0,1] = σ(DF (u∗))|Xn. Furthermore, the generalized eigenspaces associated to any

element of the point spectrum is spanned by continuous functions.

Proof. The essential spectrum of DF (u∗) characterized independently of n in Lemma 4.1. In

particular, the essential spectrum is the same whether the operator is posed on C[0, 1] or Xn with

any n ≥ 1. Thus, it only remains to examine the point spectrum.

Since C[0, 1] ⊂ Xn for all n ≥ 1, we immediately get the inclusion σpt(DF (u
∗))|C[0,1] ⊆ σpt(DF (u

∗))|Xn .

Now, to show the opposite inclusion we assume that λ ∈ σpt(DF (u
∗))|Xn . We will show that any

kernel element ofDF (u∗)−λI must be a continuous function, giving the equality σpt(DF (u
∗))|C[0,1] =

σpt(DF (u
∗))|Xn .

To prove the above statement, let us assume that ψ ∈ ker (DF (u∗)− λI)∩Xn for some n ≥ 1. Our

goal is to show ψ ∈ C[0, 1] as well. By definition of ψ we have

−(Q(x) + λ)ψ(x) +

∫ 1

0
W (x, y)D2(u

∗(x), u∗(y))ψ(y)dy = 0. (4.6)

Since λ /∈ σess(DF (u
∗))|Xn , Lemma 4.1 gives that Q(x) + λ ̸= 0 and Corollary 4.2 further gives

that Q(x) + λ is continuous. Hence, rearranging (4.6) gives that

ψ(x) =
1

Q(x) + λ

∫ 1

0
W (x, y)D2(u

∗(x), u∗(y))ψ(y)dy (4.7)

and from Corollary 4.2 we have that∫ 1

0
W (x, y)D2(u

∗(x), u∗(y))ψ(y)dy ∈ C[0, 1].

Therefore, the right-hand-side of (4.7) is continuous, thus giving that ψ ∈ C[0, 1], as desired.

Finally, continuity of any generalized eigenfunction can be established in a similar manner. Indeed,

consider an eigenfunction ψ ∈ C[0, 1] of DF (u∗)−λI and let η ∈ Xn be a generalized eigenfunction
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which satisfies

−(Q(x) + λ)η(x) +

∫ 1

0
W (x, y)D2(u

∗(x), u∗(y))η(y)dy = ψ(x).

Arguing as above, we have that
∫ 1
0 W (x, y)D2(u

∗(x), u∗(y))η(y)dy is continuous and we therefore

obtain that η ∈ C[0, 1]. The argument extends to any element of the generalized eigenspace.

This leads to the following corollary which follows from Lemma 4.3 and Hypothesis 3 that assumes

that DF (u∗) is invertible on C[0, 1].

Corollary 4.4. For all n ≥ 1, the operator DF (u∗) : Xn → Xn is well-defined and invertible.

From Lemma 4.3 and Corollary 4.4, the spectrum is the same regardless of whether we pose DF (u∗)

on C[0, 1] or Xn for any n ≥ 1. Thus, we can drop all notation indicating the underlying space.

That is, in what follows we simply write σ(DF (u∗)) to denote the spectrum of DF (u∗), regardless

of the space that the operator is posed on.

We now turn our attention to interpreting the inverse of DF (u∗) on the spaces Xn. By definition,

we are required to solve

DF (u∗)v = −Q(x)v +

∫ 1

0
W (x, y)D2(u

∗(x), u∗(y))v(y)dy = w,

for any w ∈ Xn. Dividing this equation by the non-zero continuous function −Q(x) we obtain the

equivalent formulation(
v −

∫ 1

0
W (x, y)

D2(u
∗(x), u∗(y))

Q(x)
v(y)dy

)
= −w(·)

Q(·)
.

The operator on the left hand side can be written as (I − TK) where we introduce the notation

TKv =

∫ 1

0
W (x, y)

D2(u
∗(x), u∗(y))

Q(x)
v(y)dy. (4.8)

Therefore, inversion of DF (u∗) is equivalent to solving a Fredholm integral equation of the second

kind. This leads to the following lemma whose proof is left to Appendix B.

Lemma 4.5. The following holds:

1. For all n ≥ 1 the operator TK : Xn → Xn, as defined in (4.8), is compact.

2. The spectrum of TK as an operator on Xn is independent of n and has at most a finite number

of eigenvalues with real part greater than one. We denote the spectrum over any Xn as σ(TK).
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3. Let {λj}Jj=1 denote the (finitely many) eigenvalues of TK with real part greater than or equal

to 1 and let mj ≥ 1 denote their algebraic multiplicity. Let {φj,k(x)}
mj

k=1 be a set of con-

tinuous and linearly independent functions that span the generalized eigenspace associated to

the eigenvalues λj. There exists a complementary set of continuous, linearly independent

functions {ψj,k(y)}
mj

k=1 such that the spectral projection P : Xn → Xn associated with these J

eigenvalues is expressed as

Pv =

J∑
j=1

mj∑
k=1

∫ 1

0
φj,k(x)ψj,k(y)v(y)dy. (4.9)

4. Letting P̃ = I−P be the spectral projection associated to the subset of the spectrum whose real

part is less than one, there exists a ξ > 0 such that DF (u∗)−1 : Xn → Xn can be represented

as

DF (u∗)−1w =
∞∑
k=0

(
TK + ξ

1 + ξ

)k
P̃

(
−w

Q(·)(1 + ξ)

)
+

J∑
j=1

mj∑
k,l=1

cj,k,lφj,k(x)

∫ 1

0
ψj,l(y)

(
−w(y)
Q(y)

)
dy,

(4.10)

for some constants cj,k,l and every n ≥ 1.

We will sometimes require a general bound on the inverse operator.

Lemma 4.6. There exists an m > 0, independent of n, such that the following bound holds

∥DF (u∗)−1∥Xn→Xn ≤ m, (4.11)

for all Xn.

Proof. Consulting the formula for the inverse derived in (4.10), we observe that the only possible

obstruction to the uniform bound in (4.11) stems from the infinite sum. Indeed, uniform bounds on

the finite sum coming from the inversion on the finite-dimensional space PXn are readily obtained.

We therefore consider the following operator

1

1 + ξ

∞∑
k=0

(
TK + ξ

1 + ξ

)k
P̃ . (4.12)

The spectral radius of the operator Tξ =
TK+ξ
1+ξ on the space X̃n = Rng(P̃ ) is strictly less than one

by construction and independent of n by Lemma 4.5. Therefore, for any n the series converges

absolutely.
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We will now write (4.12), considered as an operator on X̃n = Rng(P̃ ) in the form

1

1 + ξ
(I − Tξ)

−1 = (I − TK)−1|X̃n
= I + V,

for some operator V . Re-arranging,

(I − TK)−1|X̃n
(I − (I − TK)V ) = I,

which implies that, restricted to X̃n,

I − V + TKV = I − TK ,

after which we find that V : X̃n → X̃n has the expression

V = (I − TK)−1|X̃n
TK .

With this expansion, we see that (4.12) has a uniform bound in n as follows. From Corollary 4.2,

TK takes elements of Xn into C[0, 1] and so is easily bounded independent of n since all spaces have

the same norm. Furthermore, (I − TK)−1|X̃n
is bounded as an operator on C[0, 1]∩ X̃n, leading to

a uniform operator bound on (4.12) that is independent of n. This completes the proof.

For future reference we will write

V (w) = H[TK(w)],

whereH = (I−TK)−1|X̃n
P̃ and, from Lemma 4.6, is a bounded linear operator on C[0, 1]. Precisely,

there exists b > 0 so that

∥H[w]∥∞ ≤ b∥w∥∞ (4.13)

for all w ∈ C[0, 1].

4.1.2 Two useful integral bounds

In the analysis throughout the remainder of this section we will often have to estimate integrals

involving the differenceW (x, y)−Wn(x, y). In what follows we establish two auxiliary lemmas that

will be employed to control certain terms in Tn[u] in the following subsection.

The first of our lemmas shows that when integrating W −Wn against a continuous function ϕ(x, y)

the resulting function can be made arbitrarily small in the supremum norm by taking n sufficiently

large, based on the assumed convergence of ∥W −Wn∥□ and ∥dWn − dW ∥∞ as n→ ∞. The result

is as follows.
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Lemma 4.7. Suppose that ϕ ∈ C([0, 1] × [0, 1]). Then for any ε > 0 there exists a constant

C1(ε, ϕ) > 0, independent of n, such that

sup
x∈[0,1]

∣∣∣∣ ∫ 1

0
[W (x, y)−Wn(x, y)]ϕ(x, y)dy

∣∣∣∣ < ε+ C1(ε, ϕ)∥dWn − dW ∥∞. (4.14)

Proof. Let us fix an ε > 0 and begin by recalling that ϕ(x, y) is continuous on [0, 1] × [0, 1].

Therefore, for any ε > 0 there exists M ∈ N such that,

ϕ(x, y) =

M∑
i,j=1

ϕijζi(x)ζj(y) + ∆ϕ(x, y)

where ζi is an indicator function defined as

ζi(x) =

{
1 x ∈

[
i−1
M , i

M

)
0 otherwise

, (4.15)

and |∆ϕ(x, y)| < ε. We use notation Ij =
[
j−1
M , jM

)
and consider an arbitrary x ∈ Ij ⊂ [0, 1].

Then, we expand∣∣∣∣ ∫ 1

0
[Wn(x, y)−W (x, y)]ϕ(x, y)dy

∣∣∣∣
=

∣∣∣∣ M∑
j=1

(∫
Ij

[Wn(x, y)−W (x, y)]ϕijdy +

∫
Ij

[Wn(x, y)−W (x, y)]∆ϕ(x, y)dy

)∣∣∣∣
≤
∣∣∣∣ M∑
j=1

∫
Ij

[Wn(x, y)−W (x, y)]ϕijdy

∣∣∣∣+ M∑
j=1

∣∣∣∣ ∫
Ij

[Wn(x, y)−W (x, y)]∆ϕ(x, y)dy

∣∣∣∣,
(4.16)

The first summation in the above expression can be bounded by

∣∣∣∣ M∑
j=1

ϕij

∫
Ij

[Wn(x, y)−W (x, y)]dy

∣∣∣∣ ≤M∥dWn − dW ∥L∞(Ij) sup |ϕij |. (4.17)

For the second summation in (4.16) we use the fact that |Wn(x, y)−W (x, y)| ≤ 1 to get∣∣∣∣ ∫
Ij

[Wn(x, y)−W (x, y)]∆ϕ(x, y)dy

∣∣∣∣ ≤ ∣∣∣∣ ∫
Ij

[Wn(x, y)−W (x, y)]∆ϕ(x, y)dy

∣∣∣∣ ≤ ε

M
, (4.18)

since each interval Ij has length 1/M . Finally, summing over the M sub-intervals and using the
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inequality (4.16) we get∣∣∣∣ ∫ 1

0
[Wn(x, y)−W (x, y)]ϕ(x, y)dy

∣∣∣∣ ≤ ε+M sup
j
(∥dWn − dW ∥L∞(Ij)) sup

i,j=1,...,M
|ϕij |. (4.19)

Since ϕ(x, y) is uniformly continuous on [0, 1] × [0, 1] the supremum is finite, while supj{∥dWn −
dW ∥L∞(Ij)} ≤ ∥dWn − dW ∥∞ since the Ij are a partition of [0, 1], thus removing all j-dependence

on this quantity. Since x ∈ [0, 1] was arbitrary the stated estimate then follows.

The next result that we present considers repeated integrals and again involves the difference

W (x, y) − Wn(x, y). In the proof we will make use of the following alternative version of the

cut-norm (see [20, Section 4]), defined as

∥W∥□,2 = sup
∥f∥∞≤1,∥g∥∞≤1

∣∣∣∣ ∫ 1

0

∫ 1

0
W (x, y)f(x)g(y)dydx

∣∣∣∣. (4.20)

Importantly, [20] proves the inequality ∥W∥□,2 ≤ 4∥W∥□, and so it holds that convergence in the

cut-norm we are working with (see (2.1)) implies convergence in the alternative norm ∥ · ∥□,2. This
leads to the following lemma.

Lemma 4.8. Suppose that ϕ : [0, 1] × [0, 1] → R is continuous, ψ : [0, 1] × [0, 1] → R is bounded

and v ∈ Xn. Then for any ε > 0 there exists an constant C2(ε, ψ, ϕ) > 0, independent of n, such

that

sup
x∈[0,1]

∣∣∣∣ ∫ 1

0

∫ 1

0
[W (z, y)−Wn(z, y)]ψ(x, z)ϕ(z, y)v(y)dzdy

∣∣∣∣
< ε∥v∥∞ + C2(ε, ψ, ϕ)∥W −Wn∥□∥v∥∞.

(4.21)

Proof. The proof of this result mimics the previous lemma. First, for any ε > 0, there exists a

M ∈ N such that

ϕ(z, y) =
M∑
i,j=1

ϕijζi(z)ζj(y) + ∆ϕ(z, y), (4.22)

with ζi,j defined in (4.15) and with the remainder terms obeying the bound

|∆ϕ(z, y)| < ε

∥ψ∥∞
.

Here we have implicitly assumed that ∥ψ∥∞ ̸= 0 as otherwise the result would be trivial.

Now take an arbitrary x ∈ [0, 1]. Using the expansion (4.22), the integral in (4.21) can be expressed
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as

M∑
i,j=1

∫ 1

0

∫ 1

0
[W (z, y)−Wn(z, y)]ψ(x, z)ϕijζi(z)ζj(y)v(y)dzdy

+

∫ 1

0

∫ 1

0
[W (z, y)−W (z, y)]ψ(x, z)∆ϕ(z, y)v(y)dzdy.

The first integral is in an adequate form for a direct application of (4.20) and we obtain

∣∣∣∣ M∑
i,j=1

∫ 1

0

∫ 1

0
[W (z, y)−Wn(z, y)]ψ(x, z)ϕijζi(z)ζj(y)v(y)dzdy

∣∣∣∣
≤M2 sup

i,j
|ϕij |∥W −Wn∥□,2∥ψ∥∞∥v∥∞.

≤ 4M2 sup
i,j

|ϕij |∥W −Wn∥□∥ψ∥∞∥v∥∞.

Since the right-hand bound is independent of the x being considered, it follows that taking the

supremum over x ∈ [0, 1] over the left-hand-side obeys the same bound. For the integral involving

the remainder terms ∆ϕ, we can estimate directly using the facts that |W (x, y) −Wn(x, y)| ≤ 1

and |∆ϕ(x, y)| ≤ ε
∥ψ∥∞ for all (x, y) ∈ [0, 1]× [0, 1] to get

∣∣∣∣ ∫ 1

0

∫ 1

0
[W (z, y)−W (z, y)]ψ(x, z)∆ϕ(z, y)v(y)dzdy

∣∣∣∣ ≤ ε∥v∥∞.

We therefore have obtained (4.21) with C2(ε, ψ, ϕ) = 4M2 supij |ϕij |∥ψ∥∞, which is independent of

n as claimed.

4.2 Residual Estimates

Building towards an application of the contraction mapping theorem, we now obtain estimates on

the function Fn(u
∗) and the operator DF (u∗)−1[DF (u∗) − DFn(u)]. Our work here will involve

applications of Lemma 4.7 and Lemma 4.8.

Notation: In the remaining analysis we will consider balls of radius ρ in Xn, denoted Bρ(u
∗).

We will always assume that ρ < 1. From Hypothesis 1, f , D and their derivatives are continuous.

Taking inputs in a bounded region provides that f , D and their derivatives f ′, D1 and D2 are

globally bounded by some uniform constant and Lipschitz continuous. To simplify notation we

will let L > 0 denote a uniform bound on these functions, their derivatives and their Lipschitz

constants over all inputs with ∥u − u∗∥∞ ≤ 1. We emphasize that for functions with two inputs

this Lipshitz bound is taken to be with respect to the sup norm on R2 so that, for example,

|D(a1, b1)−D(a2, b2)| ≤ Lmax{|a1 − a2|, |b1 − b2|}.
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We begin this section by showing that for n sufficiently large the continuous function u∗ ∈ C[0, 1]

is an approximate solution to the problem Fn(u) = 0 in the sense that ∥Fn(u∗)∥∞ is small.

Lemma 4.9. For any ε > 0 there exists an N ∈ N such that for all n ≥ N

∥Fn(u∗)∥∞ < ε.

Proof. First, Hypothesis 3 gives that F (u∗) = 0 and so ∥Fn(u∗)∥∞ = ∥Fn(u∗) − F (u∗)∥∞. Since

Fn and F only differ by the graphons Wn and W , the result holds if we can show

sup
x∈[0,1]

∣∣∣∣ ∫ 1

0
[Wn(·, y)−W (·, y)]D(u∗(x), u∗(y))dy

∣∣∣∣ < ε. (4.23)

To achieve this inequality we simply apply Lemma 4.7. Indeed, let ε > 0 and take ϕ(x, y) =

D(u∗(x), u∗(y)). Then, there exists a C > 0, independent of n, such that

sup
x∈[0,1]

∣∣∣∣ ∫ 1

0
[Wn(·, y)−W (·, y)]D(u∗(x), u∗(y))dy

∣∣∣∣ < ε

2
+ C∥dWn − dW ∥∞. (4.24)

Since C is independent of n, Hypothesis 2(1) guarantees that there is an N sufficiently large so

that C∥dWn − dW ∥∞ < ε
2 for all n ≥ N . This therefore completes the proof.

Now that we have shown Fn(u
∗) is small in the sup-norm when n is large, we turn to showing

something similar for the operator norm of DF (u∗)−1[DF (u∗) − DFn(u)]. To begin, recall that

DF (u∗) acts on v ∈ Xn, for any n ≥ 1, by

DF (u∗)v = −Q(x)v +

∫ 1

0
W (x, y)D2(u

∗(x), u∗(y))v(y)dy.

Recall further that Hypothesis 3 gives that Q(x) > 0 for all x ∈ [0, 1], while Corollary 4.2 shows

that Q is continuous. We will express the linearization DFn(u) in a similar fashion,

DFn(u)v = −Qn(u(x))v +
∫ 1

0
Wn(x, y)D2(u(x), u(y))v(y)dy,

where W is replaced by Wn in the definition of Q to get Qn. We now proceed by obtaining bounds

on the difference DF (u∗)−DFn(u) in two steps: first showing that |Q(x)−Qn(u(x))| can be made

small by taking n sufficiently large and then considering the (more challenging) integral parts of

the operators.

Lemma 4.10. For any ε > 0 there exists a C > 0, independent of n, such that for any u ∈

25



B1(u
∗) ⊂ Xn we have

sup
x∈[0,1]

|Q(x)−Qn(u(x))| < ε+ C∥dW − dWn∥∞ + 2L∥u− u∗∥∞, (4.25)

where

Qn(u(x)) = −f ′(u(x))−
∫ 1

0
Wn(x, y)D1(u(x), u(y))dy.

Furthermore, there exists a ρ > 0 and an N ∈ N such that Qn(u(x)) ̸= 0 for all x ∈ [0, 1], all

n ≥ N , and any u ∈ Xn with ∥u− u∗∥∞ < ρ.

Proof. First, adding and subtracting the term Wn(x, y)D1(u
∗(x), u∗(y)) and using the triangle

inequality, for any x ∈ [0, 1] we have the bound

|Q(x)−Qn(u(x))| ≤ |f ′(u∗(x))− f ′(u(x))|+
∣∣∣∣ ∫ 1

0
Wn(x, y) [D1(u(x), u(y))−D1(u

∗(x), u∗(y))] dy

∣∣∣∣
+

∣∣∣∣ ∫ 1

0
[Wn(x, y)−W (x, y)]D1(u

∗(x), u∗(y))dy

∣∣∣∣.
Then, Lipschitz continuity of f ′ implies that

|f ′(u∗(x))− f ′(u(x))| ≤ L|u∗(x)− u(x)| ≤ L∥u− u∗∥∞,

for all x ∈ [0, 1]. Then, since 0 ≤Wn(x, y) ≤ 1 and D1 is Lipschitz (since it is twice differentiable)

it holds that

sup
x∈[0,1]

∣∣∣∣ ∫ 1

0
Wn(x, y) [D1(u(x), u(y))−D1(u

∗(x), u∗(y))] dy

∣∣∣∣ ≤ L∥u− u∗∥∞.

Finally, using the fact that D1(u
∗(x), u∗(y)) is continuous, we can appeal to Lemma 4.7 which

guarantees that for any ε > 0 there exists a constant C1(ε,D1(u
∗(x), u∗(y))) > 0, independent of

n, for which

sup
x∈[0,1]

∣∣∣∣ ∫ 1

0
[Wn(x, y)−W (x, y)]D1(u

∗(x), u∗(y))dy

∣∣∣∣ < ε+ C1∥dW − dWn∥∞.

Upon summing up the three bounds above, the estimate (4.25) then follows.

We now turn to proving the second statement in the lemma. Since Q(x) is continuous and non-zero

we can also guarantee that Qn(u(x)) ̸= 0 for any u sufficiently close to u∗ and any n sufficiently

large. Specifically, let

Q∗ = min
x∈[0,1]

Q(x).
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Then, one can take ε = Q∗/4, ρ = Q∗
8L and N sufficiently large so that C∥dW − dWn∥∞ < Q∗/4 in

(4.25). This gives that |Q(x) − Qn(u(x))| < 3Q∗/4, which further implies Qn(u(x)) > Q∗/4 > 0.

This concludes the proof.

We now turn our attention to the integral portion of the operator DF (u∗)−DFn(u). This part of

the operator is expressed by the difference∫ 1

0
[W (x, y)D2(u

∗(x), u∗(y))−Wn(x, y)D2(u(x), u(y))] v(y)dy.

We add and subtract Wn(x, y)D(u∗(x), u∗(y)) and separate this integral into two components: the

first taking the form ∫ 1

0
Wn(x, y) [D2(u

∗(x), u∗(y))−D2(u(x), u(y))] v(y)dy (4.26)

and the second being ∫ 1

0
[W (x, y)−Wn(x, y)]D2(u

∗(x), u∗(y))v(y)dy. (4.27)

Bounds on the norm of (4.26) are presented in the following lemma.

Lemma 4.11. Suppose u ∈ B1(u
∗) and v ∈ Xn, for any n ≥ 1. Then

sup
x∈[0,1]

∣∣∣∣ ∫ 1

0
Wn(x, y) [D2(u

∗(x), u∗(y))−D2(u(x), u(y))] v(y)dy

∣∣∣∣ ≤ L∥u− u∗∥∞∥v∥∞ (4.28)

Proof. Since 0 ≤ Wn(x, y) ≤ 1, D2 is Lipschitz and u ∈ B1(u
∗) we obtain the stated estimate

directly.

Having bounded (4.26), bounding the integral (4.27) remains. As we will demonstrate, it is not

possible, in general, to make the operator norm of this operator small through some combination

of taking ∥u− u∗∥∞ small or n large.

To illustrate why this could be the case, consider a fixed x ∈ [0, 1] and the function v ∈ Bρ(0)

defined by

v(y) = ρ sign ([Wn(x, y)−W (x, y)]D2(u
∗(x), u∗(y))) .

Then (4.27) with this choice of v will not necessarily be small relative to the magnitude of v2.

Looking ahead, control of this integral will be key in our attempt to show that Tn is a contraction

2If D2(u
∗(x), u∗(y)) changes sign then v may not be an element of Xn as it fails to be continuous on some sub-

interval. Nonetheless, for n sufficiently large one can approximate this function arbitrarily well as n → ∞ with
elements of Xn and the issue remains for large n.
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mapping and demonstrating that this operator has a norm that cannot exceed one turns out to be

something we cannot show with the level of generality endowed by Hypotheses 1-3.

Dealing with the operator in (4.27) will be the main technical issue moving forward. For that

reason, and since we will have to keep careful track of this term in the the subsequent analysis we

introduce the following notation for the operator,

Ξ(Wn,W, u
∗)v =

∫ 1

0
[Wn(x, y)−W (x, y)]D2(u

∗(x), u∗(y))v(y)dy. (4.29)

With this notation, we gather the estimates from our work so far in the following corollary.

Corollary 4.12. For any ε > 0 there exists a C1 > 0, independent of n, such that for any n ≥ 1,

u ∈ B1(u
∗) ⊂ Xn, and v ∈ Xn it holds that

[DF (u∗)−DFn(u)]v = Ξ(Wn,W, u
∗)v +RD[v] (4.30)

where

∥RD[v]∥∞ ≤ (ε+ C1(ε,D1)∥dW − dWn∥∞ + 3L∥u− u∗∥∞) ∥v∥∞

We now build upon Corollary 4.12 with the goal of understanding the operatorDF (u∗)−1 [DF (u∗)−DFn(u)],

for various choices of u. This operator will appear later when applying the contraction mapping

theorem and so the following result provides an expansion of this operator for any u ∈ B1(u
∗) ⊂ Xn.

Lemma 4.13. Let ε > 0. Then, there exists positive constants C1(ε) and C2(ε), independent of n,

such that for any n ≥ 1, u ∈ B1(u
∗) ⊂ Xn, and v ∈ Xn, it holds that

DF (u∗)−1 [DF (u∗)−DFn(u)] v = −Ξ(Wn,W, u
∗)

Q(x)
v +Ru[v], (4.31)

where

∥Ru[v]∥∞ ≤ (ε+ C1∥dW − dWn∥∞ + C2∥W −Wn∥□ + 3Lm∥u− u∗∥∞) ∥v∥∞ (4.32)

Proof. In Lemma 4.5, we showed that DF (u∗) is invertible as a linear operator acting on Xn, for

any n ≥ 1. Furthermore, Lemma 4.6 showed that the operator norm of the inverse has a uniform

bound independent of n.

Now, according to Corollary 4.12, we have [DF (u∗) −DFn(u)]v = Ξ(Wn,W, u
∗)v + RD[v] and so

we seek to estimate DF (u∗)−1 (Ξ(Wn,W, u
∗)v +RD[v]). Using the uniform bound on (4.11) and

Corollary 4.12, for any εD > 0 we have that there exists a C1(εD, D1) > 0, independent of n, so

that

∥DF (u∗)−1RD[v]∥∞ ≤ (mεD +mC1(εD, D1)∥dW − dWn∥∞ + 3mL∥u− u∗∥∞) ∥v∥∞.
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We thus have reduced the problem to estimating DF (u∗)−1Ξ(Wn,W, u
∗)v, which consists of two

pieces. Recall the formula for DF (u∗)−1 presented in (4.10). First, using Lemma 4.5 we consider

J∑
j=1

mj∑
k,l=1

cj,k,lφj,k(x)

∫ 1

0
ψj,l(z)

(
−Ξ(Wn,W, u

∗)v

Q(z)

)
dz.

For any j, k, l, the corresponding term in the sum, after expanding Ξ according to its definition

(4.29), takes the form

cj,k,l

∫ 1

0

∫ 1

0
[Wn(z, y)−W (z, y)]φj,k(x)ψj,l(z)

D2(u
∗(z), u∗(y))

Q(z)
v(y)dydz.

For each j, k, l, consider an arbitrary εj,k,l > 0. Since D2(u∗(z),u∗(y))
Q(z) is continuous, Lemma 4.8

guarantees the existence of a Cj,k,l > 0 which is independent of n so that∥∥∥∥cj,k,l ∫ 1

0

∫ 1

0
[Wn(z, y)−W (z, y)]φj,k(x)ψj,l(z)

D2(u
∗(z), u∗(y))

Q(z)
v(y)dydz

∥∥∥∥
∞

≤ (εj,k,l + Cj,k,l∥W −Wn∥□) ∥v∥∞. (4.33)

The constant Cj,k,l depends on εj,k,l, ϕ(z, y) =
D2(u∗(z),u∗(y))

Q(z) , and ψ(x, z) = cj,k,lφj,k(x)ψj,l(z), but

we suppress this dependence in the remainder of this proof. We emphasize once again that Cj,k,l is

independent of n. Summing over all j, k, l provides the bound

∥∥∥∥ J∑
j=1

mj∑
k,l=1

cj,k,lφj,k(x)

∫ 1

0
ψj,l(z)

(
−Ξ(Wn,W, u

∗)v

Q(z)

)
dydz

∥∥∥∥
∞

≤
J∑
j=1

mj∑
k,l=1

(εj,k,l + Cj,k,l∥W −Wn∥□) ∥v∥∞.

(4.34)

It now remains to estimate the contribution stemming from the Neumann series portion ofDF (u∗)−1;

see again (4.10).

1

1 + ξ

∞∑
k=0

(
TK + ξ

1 + ξ

)k
P̃

(
−Ξ(Wn,W, u

∗)v

Q(·)

)
. (4.35)

Using the decomposition of the operator obtained in Lemma 4.6 we have

1

1 + ξ

∞∑
k=0

(
TK + ξ

1 + ξ

)k
P̃w = P̃w +H[TKw],

with H a bounded operator on C[0, 1] (recall additionally that TK : Xn → C[0, 1] is bounded) with
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∥Hw∥∞ ≤ b∥w∥∞ for all w ∈ C[0, 1]. Expanding the action of TK gives

TK

(
−Ξ(Wn,W, u

∗)v

Q(·)

)
=

∫ 1

0

∫ 1

0

W (x, z)

Q(x)
D2(u

∗(x), u∗(z))
Wn(z, y)−W (z, y)

Q(z)
D2(u

∗(z), u∗(y))v(y)dydz.

Then Lemma 4.8 gives that for any εT > 0, there exists CT that depends on εT > 0 (we again

suppress the dependence of CT on the terms appearing in the previous integrand), but not n, so

that ∥∥∥∥H [TK (−Ξ(Wn,W, u
∗)v

Q(·)

)]∥∥∥∥
∞

≤ (bεT + bCT ∥W −Wn∥□) ∥v∥∞.

Finally, we have only to consider

P̃

(
−Ξ(Wn,W, u

∗)v

Q(·)

)
= −Ξ(Wn,W, u

∗)v

Q(·)
+ P

(
Ξ(Wn,W, u

∗)v

Q(·)

)
.

This first term is precisely the leading order estimate of DF (u∗)−1 [DF (u∗)−DFn(u)] provided in

the statement of the lemma that we wish to obtain. We therefore focus on the second part of the

expression.

Working term-by-term in the definition of P , we again apply Lemma 4.8 and obtain, for any εj,k > 0

there exists Cj,k, depending on εj,k but not n, so that

∥∥∥∥P (Ξ(Wn,W, u
∗)v

Q(·)

)∥∥∥∥
∞

≤
J∑
j=1

mj∑
k=1

(εj,k + Cj,k∥W −Wn∥□) ∥v∥∞

Hence, combining all of our estimates we have that the expression (4.31) holds with

∥Ru[v]∥ ≤

mεD +
∑
j,k,l

εj,k,l + bεT +
∑
j,k

εj,k

 ∥v∥∞ +mC1(εD, D1)∥dW − dWn∥∞)∥v∥∞

+

∑
j,k,l

Cj,k,l + bCT +
∑
j,k

Cj,k

 ∥W −Wn∥□∥v∥∞ + 3Lm∥u− u∗∥∞∥v∥∞. (4.36)

Moreover, for any ε > 0 we can select the (finite collection of) constants εD, εj,k,l, εT , εj,k > 0 in a

manner such that mεD +
∑
j,k,l

εj,k,l + bεT +
∑
j,k

εj,k

 < ε.

With these values fixed, the constant C1 and all constants Cj,k,l, CT and Cj,k are fixed quantities.

We therefore aggregate the constants appearing in (4.36) to obtain the estimate (4.32), concluding

the proof.
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4.3 Analysis of Tn

Having presented the necessary preliminary results, we now return to our analysis of the operator

Tn[u]. In general, this operator will fail to be a contraction on Xn. To establish that Tn is a

contraction mapping it is required that its operator norm is strictly less than one. However, as we

now demonstrate, there is no reason that this bound should hold in general. The problem arises

due to the term

Ξ(Wn,W, u
∗)

Q(x)
(u1 − u2) =

1

Q(x)

∫ 1

0
[Wn(x, y)−W (x, y)]D2(u

∗(x), u∗(y))(u1(y)− u2(y))dy,

coming from Lemma 4.13, which arises in the expansion of Tn[u1]−Tn[u2] for general u1, u2 ∈ Xn.

Letting

η = max

{
1, sup
x∈[0,1]

(
1

Q(x)

∫ 1

0
|D2(u

∗(x)), u∗(y))|dy
)}

(4.37)

it can be shown that η provides a coarse bound on the operator norm of Ξ(Wn,W,u∗)
Q(·) , which will not

be less than one in general.

Our main result regarding Tn is the following Lemma.

Lemma 4.14. Let η be defined as defined in (4.37). Then, there exists a positive ρ∗ ≤ 1
2η such

that for any ρ ∈ (0, ρ∗) there exists an N(ρ) ≥ 1 such that for any n ≥ N(ρ) the operator Tn maps

the ball Bρ(u
∗) ⊂ Xn into the ball B2ηρ(u

∗) ⊂ B1(u
∗) ⊂ Xn, i.e. Tn[Bρ(u∗)] ⊆ B2ηρ(u

∗).

Proof. For an n ≥ 1 and ρ > 0, consider a u ∈ Bρ(u
∗) ⊂ Xn. Using the mean-value theorem we

can expand

Tn[u]− u∗ = u− u∗ −DF (u∗)−1Fn(u)

= u− u∗ −DF (u∗)−1Fn(u
∗)−DF (u∗)−1DFn(z)(u− u∗)

= −DF (u∗)−1Fn(u
∗) +DF (u∗)−1 (DF (u∗)−DFn(z)) (u− u∗),

(4.38)

for some z ∈ Bρ(u
∗). We use the uniform bound for DF (u∗)−1 guaranteed by Lemma 4.6 and apply

Lemma 4.9 to obtain that for any ε1 > 0 there exists a N1 = N1(ε1) such that for any n ≥ N1 it

holds that

∥DF (u∗)−1Fn(u
∗)∥∞ ≤ mε1.

Next, Lemma 4.13 guarantees that for any ε2 > 0 there exists C1(ε2), C2(ε2) > 0, independent of
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n, so that

∥DF (u∗)−1 (DF (u∗)−DFn(z)) (u− u∗)∥∞

≤
∥∥∥∥Ξ(Wn,W, u

∗)

Q(·)

∥∥∥∥
Xn→Xn

∥u− u∗∥∞

+ (ε2 + C1(ε2)∥dW − dWn∥∞ + C2(ε2)∥W −Wn∥□) ∥u− u∗∥∞
+ 3Lm∥z − u∗∥∞∥u− u∗∥∞

(4.39)

Recall from the beginning of this subsection that η is defined in (4.37) so that

∥∥∥∥Ξ(Wn,W, u
∗)

Q(·)

∥∥∥∥
Xn→Xn

≤ η. (4.40)

Thus, we will have derived that Tn : Bρ → B2ηρ if we can show that

mε1 + (ε2 + C1(ε2)∥dW − dWn∥∞ + C2(ε2)∥W −Wn∥□ + 3Lmρ) ρ < ηρ, (4.41)

where we have used the fact that z ∈ Bρ(u
∗), making ∥z − u∗∥∞ < ρ. To guarantee that (4.41)

holds, take

ρ∗ ≤ min

{
1

2η
,

η

9Lm

}
. (4.42)

and consider any ρ ∈ (0, ρ∗). Since ε1 and ε2 were arbitrary, we take them to satisfy ε1 <
ρη
6m and

ε2 <
η
6 . With ε2 chosen C1(ε2) and C2(ε2) are fixed constants and we can take N(ρ) ≥ N1(ε1) so

that inequality (4.41) is satisfied and the result follows.

Remark 2. If we were able to show that the operator norm of Ξ(Wn,W, u
∗)/Q on Xn was less than

one, potentially for all suitably large n, then it would be possible to show that Tn is a contraction.

As argued at the beginning of this section with the introduction of the operator Tn this in turn

would give the existence of a solution to Fn(u) = 0. As we will see in the examples studied in

Section 6 this operator norm is not necessarily less than 1 and so we will proceed in the general

setting of Lemma 4.14 and turn our attention to the second iterate of Tn which we prove be a

contraction on a sufficiently small ball centered at u∗ in Xn.

4.4 Analysis of Sn

In the previous subsection we highlighted our inability to prove that Tn is a contraction on any

suitably small ball in Xn centered at u∗. We therefore turn our attention to demonstrating that

Sn = Tn ◦Tn, the composition of Tn with itself, is a contraction mapping on Bρ(u
∗) with sufficiently

small ρ > 0 and large n ≥ 1. On top of this result, we further prove that it is also a contraction on

the larger ball B2ηρ(u
∗) from Lemma 4.14. This will allow us to conclude in the next subsection
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that Tn has a unique fixed point in the smaller ball Bρ(u
∗), thus achieving the goal in introducing

the operator Tn at the onset of this section.

We begin with the following lemma.

Lemma 4.15. There exists a ρS > 0 such that for every ρ ∈ (0, ρS) there exists a N(ρ) ≥ 1 such

that for any n ≥ N(ρ) the operator Sn : Bρ(u
∗) ∩Xn → Bρ(u

∗) ∩Xn is a contraction mapping.

Proof. The proof is broken down into two components: first showing that Sn : Bρ(u
∗) ∩ Xn →

Bρ(u
∗) ∩Xn is well-posed and second showing that it is a contraction.

Well-posedness: Sn : Bρ(u
∗) ∩Xn → Bρ(u

∗) ∩Xn

For any n ≥ 1 and ρ > 0, consider u ∈ Bρ(u
∗) ∩ Xn. From Lemma 4.14 we have that there

exists a ρ∗ > 0 so that if we restrict ρ ∈ (0, ρ∗) and take n sufficiently large we guarantee that

Tn[u] ∈ B2ηρ(u
∗) ⊂ B1(u

∗), where we recall that η is defined in (4.37). Keeping these restrictions

on ρ and n, we use the mean value theorem to arrive at the expansion

Sn[u]− u∗ = Tn ◦ Tn[u]− u∗

= Tn[u]− u∗ −DF (u∗)−1Fn(Tn[u])

= Tn[u]− u∗ −DF (u∗)−1Fn(u
∗)−DF (u∗)−1DFn(z1) (Tn[u]− u∗)

= [I −DF (u∗)−1DFn(z1)](Tn[u]− u∗)−DF (u∗)−1Fn(u
∗)

= DF (u∗)−1 [DF (u∗)−DFn(z1)] (Tn[u]− u∗)−DF (u∗)−1Fn(u
∗) (4.43)

for some z1 ∈ B2ηρ(u
∗).

First, recall that there exists a z2 ∈ Bρ(u
∗) such that

Tn[u]− u∗ = DF (u∗)−1(DF (u∗)−DFn(z2))(u− u∗)−DF (u∗)−1Fn(u
∗)

= −Ξ(Wn,W, u
∗)

Q(·)
(u− u∗)−DF (u∗)−1Fn(u

∗) +Rz2 [u− u∗],
(4.44)

see the expansion of Tn[u] derived in (4.38) combined with the estimate of DF (u∗)−1(DF (u∗) −
DFn(z2))(u− u∗) provided in Lemma 4.13. Then

Sn[u]− u∗ =
Ξ(Wn,W, u

∗)

Q(·)
Ξ(Wn,W, u

∗)

Q(·)
(u− u∗) +

Ξ(Wn,W, u
∗)

Q(·)
DF (u∗)−1Fn(u

∗)

− Ξ(Wn,W, u
∗)

Q(·)
Rz2 [u− u∗] +Rz1 [Tn[u]− u∗]−DF (u∗)−1Fn(u

∗)

(4.45)

Consider the first term which consists of two-fold application of the operator Ξ(W,Wn,u∗)
Q(·) . To con-
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dense notation, we will write W̃n(x, y) =Wn(x, y)−W (x, y). Then,

Ξ(Wn,W, u
∗)

Q(·)
Ξ(Wn,W, u

∗)

Q(·)
(u− u∗)

=

∫ 1

0
W̃n(x, z)

D2(u
∗(x), u∗(z))

Q(x)

∫ 1

0
W̃n(z, y)

D2(u
∗(z), u∗(y))

Q(z)
(u(y)− u∗(y)) dydz.

The continuity of D2(u
∗(z), u∗(y)) allows for the application of Lemma 4.8, which implies that

for any ε1 > 0 there exists a constant CΞ(ε1) (again suppressing the functional dependence),

independent of n, such that∥∥∥∥(Ξ(W,Wn, u
∗)

Q(x)

)(
Ξ(W,Wn, u

∗)

Q(z)

)
(u− u∗)

∥∥∥∥
∞

≤ (ε1 + CΞ(ε1)∥W −Wn∥□) ∥u− u∗∥∞. (4.46)

We now simultaneously consider the second and final terms on the right hand side of Equation

(4.45). From Lemma 4.9 we have that there exists an ε2 > 0 and a N2 = N2(ε2) such that for any

n ≥ N2 we have ∥∥∥∥(I − Ξ(W,Wn, u
∗)

Q(x)

)
DF (u∗)−1Fn(u

∗)

∥∥∥∥
∞

≤ (1 + η)mε2,

where we have used that η, defined in (4.37), is a bound for the operator norm of Ξ(Wn,W,u∗)
Q(·) on

Xn. Next, for any ε3 > 0, Lemma 4.13 gives that there exists constants C1(ε3) and C2(ε3) such

that ∥∥∥∥(Ξ(W,Wn, u
∗)

Q(x)

)
Rz2 [u− u∗]

∥∥∥∥
∞

≤ η (ε3 + C1(ε3)∥dW − dWn∥∞ + C2(ε3)∥W −Wn∥□ + 3Lm∥z2 − u∗∥∞) ∥u− u∗∥∞.

Finally, we have that

∥Rz1 [Tn[u]− u∗]]∥∞
≤ (ε4 + C1(ε4)∥dW − dWn∥∞ + C2(ε4)∥W −Wn∥□ + 3Lm∥z1 − u∗∥∞) ∥Tn[u]− u∗∥∞.

Combining these estimates and recalling that u ∈ Bρ(u
∗)∩Xn, z1 ∈ B2ηρ(u

∗)∩Xn, z2 ∈ Bρ(u
∗)∩Xn

and Tn[u] ∈ B2ηρ(u
∗) ∩Xn we get

∥Sn[u]− u∗∥∞ ≤ ε1ρ+ (1 + η)mε2 + ηε3ρ+ 2ε4ηρ

+ (ηρC1(ε3) + 2ηρC1(ε4))∥dW − dWn∥∞
+ (ρCΞ(ε1) + ηρC2(ε3) + 2ηρC2(ε4))∥W −Wn∥□
+ (3Lm+ 12Lη2m)ρ2

(4.47)
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Select ρS > 0 so that

ρS <
1

2
min

{
ρ∗,

1

3(3Lm+ 12Lη2m)
,

1

9Lm(1 + η + 2κη)

}
, (4.48)

where κ > 3Lmρ∗ is a fixed constant arising in (4.49).

Now consider any ρ ∈ (0, ρS). Take ε1,2,3,4 > 0 so that ε1ρ+ (1+ η)mε2 + ηε3ρ+ 2ε4ηρ <
ρ
3 . Then

with ε1,2,3,4(ρ) fixed, we can select N(ρ) sufficiently large so that for any n ≥ N(ρ) it holds that

∥Sn[u]− u∗∥∞ ≤ ρ

3
+
ρ

3
+
ρ

3
= ρ

for all u ∈ Bρ(u
∗) ∩Xn. Thus, Sn : Bρ(u

∗) ∩Xn → Bρ(u
∗) ∩Xn is well-defined.

Contraction: We now proceed to show that Sn, for ρ suffiently small and n sufficiently large, is

a contraction on Bρ(u
∗) ∩Xn. As above, we will consider ρ ∈ (0, ρS) and let u1,2 ∈ Bρ(u

∗) ∩Xn.

Then, consider

∥Sn[u1]− Sn[u2]∥∞ =
∥∥DF (u∗)−1 [DF (u∗)(Tn[u1]− Tn[u2])− Fn(Tn[u1]) + Fn(Tn[u2])]

∥∥
∞ .

The mean value theorem guarantees that there exists some z1 ∈ B2ηρ(u
∗) such that

Fn(Tn[u1])− Fn(Tn[u2]) = DFn(z1) (Tn[u1]− Tn[u2]) ,

so that we then have

Sn[u1]− Sn[u2] = DF (u∗)−1 (DF (u∗)−DFn(z1)) (Tn[u1]− Tn[u2]).

Similarly, we have that there exists a z2 ∈ Bρ(u
∗) such that

Tn[u1]− Tn[u2] = DF (u∗)−1 (DF (u∗)−DFn(z2)) (u1 − u2).

Using Lemma 4.13, we then have that

Sn[u1]− Sn[u2] =
((

Ξ(W,Wn, u
∗)

Q(·)

)
+Rz1

)((
Ξ(W,Wn, u

∗)

Q(·)

)
+Rz2

)
(u1 − u2).

The analysis now resembles that performed above to demonstrate well-posedness. Indeed, for any

ε1 > 0 , there exist a constant CΞ(ε1), independent of n, such that∥∥∥∥(Ξ(W,Wn, u
∗)

Q(x)

)(
Ξ(W,Wn, u

∗)

Q(z)

)
(u1 − u2)

∥∥∥∥
∞

≤ (ε1 + CΞ(ε1)∥W −Wn∥□) ∥u1 − u2∥∞.
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For any ε2 > 0 , there exist constants C1(ε2) and C2(ε2), both independent of n, such that∥∥∥∥(Ξ(W,Wn, u
∗)

Q(x)

)
Rz2 [u1 − u2]

∥∥∥∥
∞

≤ η (ε2 + C1(ε2)∥dW − dWn∥∞ + C2(ε2)∥W −Wn∥□ + 3Lm∥z2 − u∗∥∞) ∥u1 − u2∥∞.

And again, for any ε3 > 0 , there exist constants C1(ε3) and C2(ε3), both independent of n, such

that ∥∥∥∥Rz2 (Ξ(W,Wn, u
∗)

Q(x)

)
[u1 − u2]

∥∥∥∥
∞

≤ η (ε3 + C1(ε3)∥dW − dWn∥∞ + C2(ε3)∥W −Wn∥□ + 3Lm∥z1 − u∗∥∞) ∥u1 − u2∥∞.

The final term involves the composition of the operators: Rz1(Rz2 [u1 − u2]), which each satisfy

estimate

∥Ru[v]∥∞ ≤ (ε+ C1(ε)∥dW − dWn∥∞ + C2(ε)∥W −Wn∥□ + 3Lm∥u− u∗∥∞) ∥v∥∞,

recall (4.32). Using that z2 ∈ Bρ(u
∗) ⊂ Bρ∗(u

∗) we can obtain – for a fixed εb > 0 and N(εb)

sufficiently large that there exists κ ≥ 4Lmρ∗ such that

∥Rz2 [u1 − u2]∥∞ ≤ κ∥u1 − u2∥∞. (4.49)

Then for any ε4 > 0 the following estimate holds

∥Rz1(Rz2 [u1 − u2])∥∞
≤ (ε4 + C1(ε4)∥dW − dWn∥∞ + C2(ε4)∥W −Wn∥□ + 3Lm∥z1 − u∗∥∞) ∥Rz2 [u1 − u2]∥∞
≤ κ (ε4 + C1(ε4)∥dW − dWn∥∞ + C2(ε4)∥W −Wn∥□ + 3Lm∥z1 − u∗∥∞) ∥u1 − u2∥∞

(4.50)

Aggregating the estimates above and recalling that z1 ∈ B2ηρ(u
∗) while z2 ∈ Bρ(u

∗) we arrive at

∥Sn[u1]− Sn[u2]∥∞ ≤ (ε1 + ηε2 + ηε3 + κε4) ∥u1 − u2∥∞
+ (ηC1(ε2) + ηC1(ε3) + κC1(ε4)) ∥dW − dWn∥∞∥u1 − u2∥∞
+ (CΞ(ε1) + ηC2(ε2) + ηC2(ε3) + κC2(ε4)) ∥W −Wn∥□∥u1 − u2∥∞
+ 3Lm(1 + 2η + 2κη)ρ∥u1 − u2∥∞.

(4.51)

To obtain a contraction on Bρ(u
∗) we first notice;

3Lm(1 + 2η + 2κη)ρ <
1

3
,
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see again (4.48). Next, we select ε1,2,3,4 in such a way that

ε1 + ηε2 + ηε3 + κε4 <
1

3
.

With these quantities fixed, the constants CΞ(ε1) and C1,2(εj) become fixed and therefore by taking

N(ρ) sufficiently large we can guarantee that

∥Sn[u1]− Sn[u2]∥∞ ≤ 3

4
∥u1 − u2∥∞,

showing that Sn is a contraction mapping on the ball Bρ(u
∗) ∩Xn.

The contraction mapping theorem in conjunction with the previous lemma immediately implies the

existence of a unique fixed point of the operator Sn in the ball Bρ(u
∗). We state this fact as the

following corollary.

Corollary 4.16. There exists a ρS > 0 such that for any ρ ∈ (0, ρS) there exists a N(ρ) ≥ 1 such

that for any n ≥ N there exists a unique function u∗n(x) ∈ Xn which is a fixed point of the mapping

Sn[un] = un and satisfies

sup
x∈[0,1]

|u∗n(x)− u∗(x)| < ρ.

4.5 Finite-dimensional solution

We have now established, for all n sufficiently large, that there exists a u∗n ∈ Xn which is a fixed

point of Sn[u]. From the contraction mapping theorem, this fixed point is unique in a small ball

centered at u∗ with respect to the sup norm. We will now show that the existence of this fixed point

implies the existence of a steady-state for the finite-dimensional problem Gn(u, A). This involves

two steps: first showing that the fixed point of Sn is also a fixed point of Tn and then verifying that

this function is constant on each sub-interval in the partition of [0, 1].

Lemma 4.17. There exists a ρT > 0 such that for any ρ ∈ (0, ρT ) there exists an N(ρ) ≥ 1 such

that for any n ≥ N(ρ) there exists a unique function u∗n ∈ Xn satisfying Tn[u∗n] = u∗n and

sup
x∈[0,1]

|u∗n(x)− u∗(x)| < ρ.

As a consequence, u∗n is such that Fn(u
∗
n) = 0.

Proof. Let ρS > 0 be the bound on the ball radius guaranteed by Lemma 4.15 and let ρT > 0 be

taken small enough to satisfy 2ηρT < ρS , where we recall η is defined in (4.37). From Corollary 4.16

we have a unique function u∗n ∈ BρT (u
∗) such that Sn[u∗n] = Tn[Tn[u∗n]] = u∗n for all n sufficiently
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large. There are now two cases: (1) u∗n is a fixed point of Tn, yielding the result, or (2) u∗n is not a

fixed point of Tn.

We proceed by assuming case (2) for the purpose of contradiction. Set Tn[u∗n] = v∗n with the

assumption that v∗n ̸= u∗n. Then, Lemma 4.14 gives that v∗n ∈ B2ηρT (u
∗) because u∗n ∈ BρT (u

∗).

Using the fact that u∗n is a fixed point of Sn = Tn ◦ Tn, we have that Tn[v∗n] = u∗n as well. Hence,

Sn[v∗n] = Tn[Tn[v∗n]] = Tn[u∗n] = v∗n,

showing that v∗n is also a fixed point of Sn. However, Sn is a contraction on B2ηρT (u
∗) for all n

sufficiently large; see again Lemma 4.15. Therefore, the contraction mapping theorem guarantees

the uniqueness of the fixed point of Sn on the larger ball B2ηρT (u
∗), meaning that u∗n = v∗n. Thus,

only possibility (1) above remains, meaning that u∗n is a fixed point of Tn.

Lastly, from the definition of Tn, a fixed point of Tn is a solution of DF (u∗)−1Fn(u
∗
n) = 0. Since

Corollary 4.4 proved that DF (u∗) is invertible on Xn for all n ≥ 1, this implies Fn(u
∗
n) = 0.

At this point, we only know that the solution u∗n ∈ Xn is continuous on each sub-interval [(i −
1)/n, i/n) of [0, 1]. As a final piece of the proof of Theorem 3.1 we will show that this solution

is constant on each sub-interval and so the solution Fn(u
∗
n) = 0 corresponds to a solution of the

original finite-dimensional problem Gn(u
∗
n, An) = 0 with u∗

n ∈ Rn the vector of the values on the

steps of u∗n.

Lemma 4.18. The fixed point u∗n ∈ Xn of Tn, guaranteed by Lemma 4.17 for sufficiently large n,

is piecewise constant on each interval
[
i−1
n , in

)
.

Proof. We will argue by contradiction. Fix n sufficiently large so that u∗n ∈ Xn is the steady-

state solution guaranteed by Lemma 4.17. Suppose that for some n, there exists a sub-interval

J∗ :=
[
i−1
n , in

)
for which u∗n is not constant on it.

Since u∗n solves Fn(un) = 0, it follows that for each a ∈ J∗ we have

0 = f(u∗n(a)) +

∫ 1

0
Wn(a, y)D(u∗n(a), u

∗
n(y))dy.

Now, recall from the definition of Xn that u∗n is continuous on J∗ and that Wn(a, y) =Wn(b, y) for

all a, b ∈ J∗. Since we have assumed that u∗n is non-constant on J∗, we may further suppose that

u∗n(a) is neither a local maximum nor minimum of u∗n. Therefore, there exists a δ > 0 such that

0 = f(ζ) +

∫ 1

0
Wn(a, y)D(ζ, u∗n(y))dy

for any ζ ∈ [u∗n(a)− δ, u∗n(a) + δ].
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Let us now define the function

Π(ζ) = f(ζ) +

∫ 1

0
Wn(a, y)D(ζ, u∗n(y))dy,

which from above satisfies Π(ζ) = 0 for all ζ ∈ [u∗n(x1) − δ, u∗n(x1) + δ]. In turn, this implies

that dΠ
dζ = 0 on this interval, where differentiability of Π with respect to ζ is a consequence of

Hypothesis 1. The derivative dΠ
dζ is further found to be

dΠ

dζ
= f ′(ζ) +

∫ 1

0
Wn(x1, y)D1(ζ, u

∗
n(y))dy.

Precisely, evaluating dΠ
dζ at u∗n(a) is exactly Qn(u

∗
n(a)), which is proven, for n sufficiently large to

be non-zero in Lemma 4.10. Thus, we have a contradiction, which proves the claim.

We now summarize our contributions so far with the following proof of Theorem 3.1.

Proof of Theorem 3.1. Recall the definitions of ρS from Lemma 4.15 and recall that the constant

ρT is selected such that 2ηρT < ρS . For any ρ ∈ (0, ρT ), there exists an N(ρ) ≥ 1 such that

for any n ≥ N(ρ) the contraction mapping result in Lemma 4.15 gives the existence of a fixed

point of Sn, as summarized in Corollary 4.16. Denoting these fixed points as u∗n(x) ∈ Xn, we

have that they are locally unique functions that satisfy Fn(u
∗
n) = 0, again for any n ≥ N(ρ) (see

Lemma 4.17). These functions are shown to be piece-wise constant (perhaps by restricting to

N(ρ) larger) in Lemma 4.18 and therefore correspond to vector solutions of the finite-dimensional

problem Gn(u
∗
n, An) = 0. This concludes the proof.

5 Proof of Theorem 3.2

In this section we prove Theorem 3.2. Throughout we will denote the steady-state u∗
n ∈ Rn to be

that which is guaranteed by Theorem 3.1. Then, our approach in this section will be to first study

the stability of u∗n ∈ Xn, the step function version of u∗
n on [0, 1], as a solution of the non-local

problem Fn(u
∗
n) = 0 and leverage this stability result to the discrete finite-dimensional setting.

Recall that our standing assumption in this section is that DF (u∗) as an operator on C[0, 1] has

spectrum which is contained entirely in the left half of the complex plane and bounded away from

the imaginary axis.

The linearization of Fn(u) at the steady-state u∗n acts on v ∈ C[0, 1] according to

DFn(u
∗
n)v = −Qn(u∗n(x))v +

∫ 1

0
Wn(x, y)D2(u

∗
n(x), u

∗
n(y))v(y)dy, (5.1)
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where we recall from the previous section that

Qn(u
∗
n(x)) = −f ′(u∗n(x))−

∫ 1

0
Wn(x, y)D1(u

∗
n(x), u

∗
n(y))dy. (5.2)

Our goal is to use spectral convergence results to show that the spectrum of DFn(u
∗
n) is close to

that of DF (u∗) for n sufficiently large. The space Xn turns out to be insufficient for this purpose.

This, once again, stems from the fact the L∞ → L∞ operator norm of Ξ(Wn,W, u
∗) does not

tend to zero as n → ∞. Instead, we will consider the spectrum of DFn(u
∗
n) as an operator on

L2 where we have estimates such as (2.2) available. To carry out this argument we will first show

that the spectrum of DF (u∗) is the same on both C[0, 1] and L2; see also [12, Lemma 3.4] for a

similar finding. Operator norm convergence of DFn(u
∗
n) to DF (u∗) is then obtained in L2. This

ultimately allows us to conclude spectral stability of DFn(u
∗
n) based upon stability of DF (u∗),

finally also obtaining stability of the spectrum of the discrete operator DGn(u
∗
n).

Lemma 5.1. The spectrum of the operator DF (u∗) posed on L2 is equivalent to the spectrum on

C[0, 1], i.e.

σ(DF (u∗))|C[0,1] = σ(DF (u∗))|L2 .

Proof. We begin with the essential spectrum. Recall that in Lemma 4.1 we showed that λ ∈
σess(DF (u

∗))|C[0,1] if and only if λ ∈ Rng(−Q(x)). This characterization of the essential spectrum

also carries over to the space L2, which for completeness we now demonstrate.

Suppose that λ + Q(x) ̸= 0, meaning λ /∈ Rng(−Q(x)). Since Q(x) is continuous on [0, 1], it

follows that the function 1
λ+Q(x) is bounded. Thus, the multiplication operator v → −(λ+Q(x))v

is invertible on L2 and therefore Fredholm with index zero. The remaining integral portion of the

operator DF (u∗) is a Hilbert–Schmidt integral operator and therefore compact. Since the Fredholm

index is preserved under compact perturbations, it follows that if λ /∈ Rng(−Q(x)) then DF (u∗)−λ
is Fredholm with index zero and λ is not an element of the essential spectrum.

Suppose now that there exists a c ∈ [0, 1] such that −(λ+Q(c)) = 0. We will now verify that the

multiplication operator Qλv = −(λ + Q(·))v on L2 is not Fredholm for this choice of λ. For any

ε > 0, let Iε = (c − ε, c + ε) ∩ [0, 1] and let χε : [0, 1] → R be the indicator function associated to

this interval. Then, since Q(x) is continuous the mean value theorem for integrals gives that for

any ε sufficiently small it holds that

∥Qλχε∥22
∥χε∥22

=
1

2ε

∫ c+ε

c−ε
(Q(y) + λ)2 dy = (Q(θ(ε)) + λ)2 , (5.3)

for some θ ∈ (c − ε, c + ε). The right hand side tends to zero as ε → 0 showing that Qλ is not

bounded from below. Therefore, the open mapping theorem gives that Qλ is not onto L2. If the

zero set of Qλ has zero measure then the nullspace of the multiplication operator Qλ is trivial, and
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so by the closed range theorem [38, Theorem VII.5.1], it follows that the range of Qλ is not closed in

L2. Alternatively, if there is an open interval over which Qλ(x) ≡ 0 then the kernel of Qλ does not

have finite dimension. This implies that Qλ, and by extension DF (u∗)−λI, are not Fredholm and

thus λ ∈ σess(DF (u
∗))|L2 for any λ ∈ Rng(−Q(·)). Thus, σess(DF (u∗))|L2 = σess(DF (u

∗))|C[0,1].

We now turn to the point spectrum of DF (u∗) on L2. We will show that the point spectrum

of DF (u∗) is equivalent on L2 and C[0, 1] by verifying that all eigenfunctions and generalized

eigenfunctions in L2 are also continuous. Let λ ∈ σpt(DF (u
∗))|L2 , which from above means that

λ /∈ Rng(−Q(x)). Then there exists an associated eigenfunction v ∈ L2 such that

(−Q(x)− λ)v(x) +

∫ 1

0
W (x, y)D2(u

∗(x), u∗(y))v(y)dy = 0. (5.4)

Rearranging this expression means that v satisfies

v(x) =
1

Q(x) + λ

∫ 1

0
W (x, y)D2(u

∗(x), u∗(y))v(y)dy. (5.5)

Since λ /∈ Rng(−Q(x)) and both W and D2 are bounded, we take the supremum of the right-hand

side of (5.5) to bound v pointwise by

|v(x)| ≤ sup
x∈[0,1]

∣∣∣∣ 1

Q(x) + λ

∫ 1

0
W (x, y)D2(u

∗(x), u∗(y))v(y)dy

∣∣∣∣
≤ sup

x∈[0,1]

∣∣∣∣ 1

Q(x) + λ

∣∣∣∣ ∫ 1

0
|W (x, y)D2(u

∗(x), u∗(y))v(y)|dy

≤ η∥v∥1
≤ η∥v∥2

for some η > 0. In the above we have used the fact that functions in L2 also belong to L1 and

satisfy the inequality ∥v∥1 ≤ ∥v∥2, coming from the fact that [0, 1] has finite (Lesbegue) measure.

Thus, we see that the eigenfunction v ∈ L2 satisfies ∥v∥∞ ≤ η∥v∥2, showing that v ∈ L∞. We

can further apply Corollary 4.2 to see that both 1
Q(x)+λ and

∫ 1
0 W (x, y)D2(u

∗(x), u∗(y))v(y)dy are

continuous functions of x. Given the representation for v in (5.5), we see that v is a product of

continuous functions and thus continuous. A similar argument works for generalized eigenfunctions

and therefore σpt(DF (u
∗))|L2 ⊆ σpt(DF (u

∗))|C[0,1].

Since elements of C[0, 1] are bounded, they also belong to L2 and so trivially we have that

σpt(DF (u
∗))|C[0,1] ⊆ σpt(DF (u

∗))|L2 , which together with the above implies that σpt(DF (u
∗))|L2 =

σpt(DF (u
∗))|C[0,1]. Since the spectrum is decomposed into the point and essential spectrum, we

have shown that σ(DF (u∗))|L2 = σ(DF (u∗))|C[0,1], concluding the proof.
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Lemma 5.2. For any ε > 0 there exists an N ∈ N such that for all n ≥ N we have

∥DFn(u∗n)−DF (u∗)∥2→2 < ε.

Proof. Using the triangle inequality we express this difference as

∥DFn(u∗n)−DF (u∗)∥2→2 ≤ ∥DFn(u∗n)−DFn(u
∗)∥2→2 + ∥DFn(u∗)−DF (u∗)∥2→2. (5.6)

We will work to show that each term on the right hand side of (5.6) can be made small individually

for large enough n, which will in turn prove the lemma.

Letting v ∈ L2, using the definition of DFn(u
∗
n(x)) and DFn(u

∗(x)) we get

[DFn(u
∗
n(x))−DFn(u

∗(x))]v(x) = [−f ′(u∗n(x)) + f ′(u∗(x))]v(x)

− v(x)

∫ 1

0
Wn(x, y)[D1(u

∗
n(x), u

∗
n(y))−D1(u

∗(x), u∗(y))]dy

+

∫ 1

0
Wn(x, y)[D2(u

∗
n(x), u

∗
n(y))−D2(u

∗(x), u∗(y))]v(y)dy.

Now, recall that Lemma 4.17 gives the existence of a ρT > 0 so that for any ρ ∈ (0, ρT ) there

exists a N(ρ) ≥ 1 such that ∥u∗n − u∗∥∞ < ρ for all n ≥ N(ρ). Furthermore, Hypothesis 1 imply

that f ′, D1, and D2 are all Lipschitz continuous. For simplicity of notation, we assume that all

Lipschitz constants are simply L > 0. Thus, for any n ≥ N(ρ) with ρ < ρT , the following bounds

are immediate:

∥[−f ′(u∗n) + f ′(u∗)]v∥2 ≤ Lρ∥v∥2∥∥∥∥v(·) ∫ 1

0
Wn(·, y)[D1(u

∗
n(·), u∗n(y))−D1(u

∗(·), u∗(y))]dy
∥∥∥∥
2

≤ Lρ∥v∥2

and ∥∥∥∥∫ 1

0
Wn(·, y)[D2(u

∗
n(·), u∗n(y))−D2(u

∗(·), u∗(y))]v(y)dy
∥∥∥∥
2

≤ Lρ

∥∥∥∥∫ 1

0
v(y)dy

∥∥∥∥
2

= Lρ

∣∣∣∣∫ 1

0
v(y)dy

∣∣∣∣
≤ Lρ ∥v∥1
≤ Lρ ∥v∥2 ,

(5.7)

where, as in the proof of the previous lemma, we have used the fact that ∥v∥1 ≤ ∥v∥2 since [0, 1] is

a space of finite measure.
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We now consider the second term of inequality (5.6). Letting v ∈ L2, we have

[DFn(u
∗(x))−DF (u∗(x))]v(x) = −v(x)

∫ 1

0
[Wn(x, y)−W (x, y)]D1(u

∗(x), u∗(y))dy

+

∫ 1

0
[Wn(x, y)−W (x, y)]D2(u

∗(x), u∗(y))v(y)dy. (5.8)

Observe that D1(u
∗(x), u∗(y)) ∈ C([0, 1]× [0, 1]) and directly apply Lemma 4.7. So, for any ε > 0

there exists a C1 > 0 such that∥∥∥∥v ∫ 1

0
[Wn(·, y)−W (·, y)]D1(u

∗(·), u∗(y))dy
∥∥∥∥
2

≤ sup
x∈[0,1]

∣∣∣∣∫ 1

0
[Wn(x, y)−W (x, y)]D1(u

∗(x), u∗(y))dy

∣∣∣∣ ∥v∥2
< (ε+ C1∥dWn − dW ∥∞) ∥v∥2.

(5.9)

To control the second term on the right-hand side of (5.8) we require an L2 version of Lemma 4.8

which we construct here. We will also make use of the bound [20, Lemma E.6]

∥TW ∥2,2 ≤ 2
√
2∥W∥1/2□ , (5.10)

where TW : v →
∫ 1
0 W (x, y)v(y)dy, as defined in (4.20). We now proceed as in the proof of

Lemma 4.8.

Take any ε > 0. Then, from the continuity of D2 there exists an M ∈ N such that

D2(u
∗(x), u∗(y)) =

M∑
i,j=1

Dijζi(x)ζj(y) + ∆D(x, y) (5.11)

with ζi,j defined in (4.15) above and the remainder term bounded by |∆D(x, y)| < ε. Taking any

x ∈ [0, 1], we rewrite the last term of (5.8) using the new expansion (5.11) to get

M∑
i,j=1

∫ 1

0
[W (x, y)−Wn(x, y)]Dijζi(x)ζj(y)v(y)dy +

∫ 1

0
[W (x, y)−Wn(x, y)]∆D(x, y)v(y)dy.

The first term in the above can be bounded as∥∥∥∥∥∥
M∑
i,j=1

∫ 1

0
[W (·, y)−Wn(·, y)]Dijζi(·)ζj(y)v(y)dy

∥∥∥∥∥∥
2

≤M2 sup
i,j

|Dij |∥TWn−W ∥2,2∥v∥2

≤M2 sup
i,j

|Dij |2
√
2∥Wn −W∥1/2□ ∥v∥2,
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where we have used (5.10). The second term containing the remainder ∆D can be controlled

directly using |W (x, y)−Wn(x, y)| ≤ 1 and |∆D(x, y)| < ε, wherein one has∥∥∥∥∫ 1

0
[W (x, y)−Wn(x, y)]∆D(x, y)v(y)dy

∥∥∥∥
2

≤ ε

∥∥∥∥∫ 1

0
v(y)dy

∥∥∥∥
2

= ε

∣∣∣∣∫ 1

0
v(y)dy

∣∣∣∣ ≤ ε∥v∥2.

We conclude that for any ε > 0 there is a C2, independent of n, such that∥∥∥∥∫ 1

0
[W (x, y)−Wn(x, y)]D2(u

∗(x), u∗(y))v(y)dy

∥∥∥∥
2

≤ (ε+ C2∥W −Wn∥1/2□ )∥v∥2. (5.12)

Now we assemble all these pieces to arrive at the proof of this Lemma. Let ε > 0 and v ∈ L2.

Recall the Lipschitz bound L > 0 and take ρ < min{ε/(7L), ρT }. Then from Theorem 3.1 there is

some N1 ∈ N such that for n ≥ N1 we have that ∥u∗n−u∗∥∞ < ρ. Furthermore, there are constants

C1, C2 > 0, independent of n, such that∥∥∥∥v ∫ 1

0
[Wn(·, y)−W (·, y)]D1(u

∗(·), u∗(y))dy
∥∥∥∥
2

≤
(ε
7
+ C1∥dWn − dW ∥∞

)
∥v∥2∥∥∥∥∫ 1

0
[Wn(·, y)−W (·, y)]D2(u

∗(·), u∗(y))v(y)dy
∥∥∥∥
2

≤
(ε
7
+ C2∥W −Wn∥1/2□

)
∥v∥2.

From Hypothesis 2 there is an N2 ∈ N such that for n ≥ N2 we have both ∥dWn −dW ∥∞ < ε/(7C1)

and ∥W −Wn∥1/2□ < ε/(7C2). So, putting this all together gives that for n ≥ max{N1, N2} we have

∥[DFn(u∗n)−DF (u∗)]v∥2 = ∥[DFn(u∗n)−DFn(u
∗)]v + [DFn(u

∗)−DF (u∗)]v∥2

≤
(
3Lρ+

ε

7
+ C1∥dWn − dW ∥∞ +

ε

7
+ C2∥W −Wn∥1/2□

)
∥v∥2

<

(
3Lε

7L
+

2ε

7
+
C1ε

7C1
+
C2ε

7C2

)
∥v∥2

= ε∥v∥2.

Since this holds for any v ∈ L2, it follows that ∥[DFn(u∗n) − DF (u∗)]v∥2→2 < ε, concluding the

proof.

Corollary 5.3. If there exists γ > 0 so that

σ(DF (u∗))|C[0,1] ⊂ {z ∈ C| Re(z) < −γ},

then there exists an N ∈ N such that for all n ≥ N we have

σ(DFn(u
∗
n))|L2 ⊂ {z ∈ C| Re(z) < −γ},

Proof. From Lemma 5.2 we conclude that ∥DFn(u∗n)∥2,2 is uniformly bounded by some R > 0 and
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so its spectrum lies inside the ball of radius R centered at 0 in the complex plane, denoted BR(0).

We define the half-plane Λγ := {z ∈ C : Re(z) < −γ} and the compact set Kγ = BR(0) \ Λγ .

Clearly Kγ lies inside the resolvent set C\σ(DF (u∗))C[0,1] = C\σ(DF (u∗))L2 . Then [21, Theorem

IV.3.1] gives that there is a δ > 0 such that the resolvent set C \ σ(DFn(u∗n)) belongs to Kγ if

∥DFn(u∗n) −DF (u∗)∥2,2 < δ. Lemma 5.2 guarantees this is possible for n sufficiently large, so we

conclude σ(DFn(u
∗
n))|L2 ⊆ Λγ .

Finally we relate these results about the step-graphon operator DFn(u
∗
n) back to the original

discrete operator DGn(u
∗
n) which we claim in Theorem 3.2 has only stable eigenvalues.

Lemma 5.4. Any eigenvalue λ of the matrix DGn(u
∗
n)) ∈ Rn×n necessarily belongs to σ(DFn(u

∗
n))L2.

Proof. Fix a value of n ≥ 1 and suppose λ is an eigenvalue of DGn(u
∗
n) with associated eigenvector

v ∈ Rn. Using this eigenvector we define the step function v(x) ∈ Xn which takes the constant

value of the ith component of v on the subinterval [(i − 1)/n, i/n), for each i = 1, . . . , n. By

construction v ∈ L2 since it is bounded. For an arbitrary i = 1, . . . , n and x ∈ [(i − 1)/n, i/n) we

have

[DFn(u
∗
n)]v(x) = f ′(u∗n(x))v(x) + v(x)

∫ 1

0
Wn(x, y)D1(u

∗
n(x), u

∗
n(y))dy

+

∫ 1

0
Wn(x, y)D2(u

∗
n(x), u

∗
n(y))v(y)dy

= f ′((u∗
n)i)vi +

vi
n

n∑
j=1

(An)i,jD1((u
∗
n)i, (u

∗
n)j) +

1

n

n∑
j=1

(An)i,jD2((u
∗
n)i, (u

∗
n)j)vj

= (DGn(u
∗
n)v)i

= λvi

= λv(x).

This is true for any x ∈ [(i− 1)/n, i/n) and any i = 1, . . . , n, thus giving that v is an eigenfunction

of DFn(u
∗
n). Hence, λ ∈ σ(DFn(u

∗
n))|L2 , completing the proof.

We conclude the section by summarizing how our work here proves Theorem 3.2.

Proof of Theorem 3.2. Assume the conditions for Theorem 3.1 are met and let N ∈ N be such

that for all n ≥ N there exists a u∗
n satisfying Gn(u

∗
n) = 0. Further assume that DF (u∗) is stable,

specifically that there exists a γ > 0 such that σ(DF (u∗))C[0,1] ⊆ Λγ := {z ∈ C : Re(z) < −γ}.
Lemma 5.1 guarantees that σ(DF (u∗))L2 ⊆ Λγ . Then from Lemma 5.2 and Corollary 5.3, we know

that there exists an M ∈ N such that for n ≥M we have σ(DFn(u
∗
n)) ⊆ Λγ . Finally we can apply

Lemma 5.4 to conclude that σ(DGn(u
∗
n)) ⊆ Λγ . Therefore, for n ≥ max(N,M) the steady-state

u∗
n to the dynamical system (1.1) is stable.
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Remark 3. While we do not state a specific result here, we remark that the operator norm

convergence presented in Lemma 5.2 could be used to prove spectral convergence results for steady-

states which have a finite number of unstable eigenvalues. We refer to Section 6.2 for an example

of such a system.

6 Examples

In this section, we study several examples that will illustrate our main results. In Section 6.1,

we study the famous Kuramoto model and show the existence of twisted state solutions for a

certain class of ring graphons. In Section 6.2 we study the existence of steady-states in a version

of the Wilson-Cowan model. Section 6.3 provides an application of our results to a Lotka–Volterra

model from population ecology. The main goal of this example is to demonstrate that for certain

parameters we can show that Tn is itself a contraction without going to Sn as in our proofs. Our

final example in Section 6.4 is meant to demonstrate how our results can be extended to situations

beyond those covered by our main results. That is, we again study a Lotka–Volterra model, but

now on a bipartite graphon which does not directly satisfy Hypothesis 2(2). We show that if the

problem is broken up properly then the individual components do satisfy our hypotheses, allowing

for the extension of our results.

6.1 Twisted states in the Kuramoto Model

As discussed in the introduction, graphons have long been applied to the study of coupled oscillators.

Our goal here is therefore to showcase how our results can be applied to complement and extend

well-known results from the literature. In particular, we return to the illustrative Kuramoto model

[24] from the introduction, which describes the behavior of a system of oscillators whose coupling

is encoded as a graph on n vertices as follows

dui
dt

=
1

n

n∑
j=1

Aij sin(2π(uj − ui)). (6.1)

Here u = (u1, . . . , un) ∈ Rn describes the phases, taken modulo 1, of n oscillators with pairwise

coupling strength which is encoded in the n× n adjacency matrix A = [Ai,j ]1≤i,j≤n.

A common setting for (6.1) is to arrange the oscillators on a ring with distance-dependent coupling

between them. Thus, our application here will involve ring graphons to mimic this scenario. The

graphon analogue of (6.1) is given by

du

dt
=

∫ 1

0
R(|x− y|) sin(2π(u(y)− u(x))) dy, (6.2)
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where R denotes our ring graphon, as given in Section 2.2. This equation was studied previously

in [36], although without reference to graphons, with the intention of having the results for (6.2)

hold for (6.1) when the adjacency matrix is a deterministic weighted graph derived from R and

n is large. Our results make this connection rigorous by showing that solutions in the infinite-

dimensional setting persist to the large network. Moreover, our results further provide that the

same results hold (with high probability) when the underlying network structure in (6.1) is a

random graph whose connection probabilities come from the graphon R.

We now proceed by following the procedure of [36]. The equation (6.2) has an explicit family

of stationary solutions given by u∗(x) = m
(
x− 1

2

)
for any integer m. These states are called

m-twisted states as the solution covers the circle m times in one cycle around the ring. Here the

constant shift of −m/2 is chosen to guarantee that the solution has mean zero over x ∈ [0, 1], but

the shift invariance of (6.1) allows for any shift to be chosen, including 0 which was the choice in

the introduction.

The linearization of (6.2) about a twisted state results in the linear operator DF (u∗) : C[0, 1] →
C[0, 1] acting on v ∈ C[0, 1] by

DF (u∗)v = 2π

∫ 1

0
R(|x− y|) cos(2πm(y − x))[v(y)− v(x)]dy. (6.3)

As detailed in Section 2.2, ring graphons have Fourier series expansions of the form

R(|x− y|) =
∑
k∈Z

cke
2πik(x−y), (6.4)

with ck = c−k ∈ R. This allows for a precise characterization of the spectrum of DF (u∗) since the

Fourier basis functions are eigenfunctions3. To observe this, note that

DF (u∗)v = −2πcmv + 2π

∫ 1

0

∑
k∈Z

cke
2πik(x−y) cos(2πm(y − x))v(y)dy,

where we see that in this case we have Q(x) = 2πcm. Then,

DF (u∗)
(
e2πiℓx

)
= λℓe

2πiℓx, λℓ = π (cℓ+m + cℓ−m − 2cm) . (6.5)

Note that λ0 = 0 for any m ∈ Z, coming from the symmetry cm = c−m. This is a consequence of

the aforementioned translation invariance of solutions to (6.2), giving that the spectrum of DF (u∗)

always includes 0. To account for this symmetry we restrict solutions to the space of mean-zero

3The Fourier basis functions completely characterize the spectrum since they form an orthogonal basis for L2 and
Lemma 5.1 proves that the spectrum of DF (u∗) is equivalent on C[0, 1] and L2.

47



functions, defined as

Yn =

{
u ∈ Xn

∣∣∣∣ ∫ 1

0
u(x)dx = 0

}
.

This removes the translational eigenvalue, and the twisted state is a spectrally stable solution of

(6.2) if λℓ < 0 for all ℓ ̸= 0. We comment on the details of using the subspace Yn instead of Xn in

our proofs in Appendix C, while here only noting that all of our results go through after quotienting

out the translational symmetry of (6.2).

Details for guaranteeing λℓ < 0 for all ℓ ∈ Z\{0} were worked out for the small-world graphon (2.6)

with q = 0 and p, α ∈ (0, 1) in [36]. Precisely, it is shown that λℓ < 0 for all ℓ if |m|α < µπ, where

µ ≈ 0.6626 is obtained by solving

tan(πµ) =
2πµ

2− (πµ)2
. (6.6)

Furthermore, a proof of nonlinear stability of the twisted state, as a solution of the graphon equation

(6.2) was obtained in [29]. These ideas combine to imply that there exist ring graphons R(|x− y|)
for which stable twisted state solutions of (6.2) are known to exist. These results can further be

leveraged to apply the results of this manuscript. For example, in the introduction we saw Figure 1

that presented twisted states as solutions to (6.2) with α = 0.2, p = 1/(2πα) ≈ 0.8, and q = 0, as

well as the solutions guaranteed (with high probability) by Theorem 3.1 on a random graph with

n = 200 vertices. With this value of α all twisted states in Figure 1 are stable, as expected from

Theorem 3.2.

Remark 4. One ring graphon structure that can immediately be ruled out from the application of

our results is that of Erdős–Réyni graphons where W (x, y) is constant. The reason for this can be

traced to the fact that in (6.4) the coefficients ck are all zero aside from c0 = p. Consulting (6.5)

one observes that λ = 0 is an eigenvalue of infinite multiplicity which prevents the existence of a

bounded inverse for the linearization. It turns out that (6.1) posed on sequences of finite graphs

converging to an Erdős–Réyni graphon cannot be guaranteed to support the same structures as

the limiting graphon equation. We refer the interested reader to [28] where (6.1) is considered on

both complete and Paley graphs which converge to the same constant graphon in cut norm. On

complete graphs the twisted states are shown to always be stable, while on Paley graphs they are

always unstable. This discrepancy between graphs with the same limiting graphon highlights the

necessity of DF (u∗) having a bounded inverse in our results.
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6.2 The Wilson-Cowan Model

As a second example we consider a model of excitation in neural networks. It takes the form of a

modified Wilson-Cowan model, as defined in [32],

dui
dt

= −ui +
λ

n

n∑
j=1

Aij
1

1 + exp(µ− δuj)
, i = 1, . . . , n. (6.7)

Here ui represents the excitation level of the i-th neuron, which decays due to the linear self-

interaction term and is sustained by couplings to other nodes. Here µ and δ are parameters that

define the activation threshold. Natural settings for neuronal models such as (6.7) are over large

networks, which motivates analyzing the mean-field graphon version, given by

du

dt
= −u(x) + λ

∫ 1

0

W (x, y)

1 + exp(µ− δu(y))
dy. (6.8)

In this subsection we will identify stable steady-states of (6.8) and apply our results to demonstrate

the existence of steady-states to (6.7) over classes of large, random networks.

Prior to stating our first result, we recall that a graph whose vertices all have the same degree

is called regular. Similarly a graphon can be called regular, or degree-constant, if dW (x) =∫ 1
0 W (x, y) dy = Ω ∈ R for all x ∈ [0, 1]. This family of graphons include many commonly stud-

ied types like Erdős-Rényi and ring graphons. The next lemma shows that this system has up

to three constant steady-state solutions when W is regular. We will omit the proof since it is a

straightforward computation.

Lemma 6.1. Let W be a regular graphon so that dW (x) = Ω ∈ [0, 1]. Then, (6.8) has a family of

constant steady-state solutions defined implicitly by

u∗ =
λΩ

1 + exp(µ− δu∗)
, (6.9)

which for each Ω ∈ [0, 1] has either one, two, or three solutions.

We can visualize the presence of multiple solutions to the implicit equation (6.9) by treating Ω as

a bifurcation parameter. Indeed, for fixed (µ, δ, λ) we can rearrange to get

Ω =
1

λ
u∗
(
1 + eµ−δu

∗
)
. (6.10)

This bifurcation curve is plotted in Figure 4 with (µ, δ, λ) = (4, 1, 22), where one sees the presence

of a region of bistability wherein two co-existing stable steady-states can be found. For example,

at the value Ω = 0.5 which is firmly inside the region of bistability, one finds a stable homogeneous

state u∗ ≈ 0.25 of low excitation and another at u∗ ≈ 11 for high excitation. These stable states
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(a) (b)

Figure 4: Homogeneous steady-states for the Wilson-Cowan type model (6.8). The left panel plots homoge-
neous steady-states for degree constant graphons as a function of the degree. Note the region of bistability.
In the right panel we plot λ/(1 + exp(µ− δu∗) and u∗

Ω . Intersections of these curves represent steady-states
and bistability is observed as Ω is varied.

are separated by an intermediate unstable homogeneous state.

For exposition, let us consider the simple case of an Erdős–Réyni graphon W (x, y) = p ∈ (0, 1).

Then Ω = p, so we can investigate the stability of the homogeneous states for fixed parameters

(µ, δ, λ) depending on the value of p. The linearization about a homogeneous steady-state to (6.8)

takes the form

[DF (u∗)v](x) = −v(x) + λ

∫ 1

0

W (x, y)δ exp(µ− δu∗)

(1 + exp(µ− δu∗))2
v(y) dy. (6.11)

In the case of an Erdős–Réyni graphon we can greatly simply the above linearization to get

[DF (u∗)]v(x) = −v(x) +R(u∗, p, λ, δ, µ)

∫ 1

0
v(y)dy, (6.12)

where we denote the constant, parametrically-dependent term

R(u∗, p, λ, δ, µ) =
δ(u∗)2eµ−δu

∗

λp
. (6.13)

As was the case with the Kuramoto model, the eigenfunctions of DF (u∗) are the Fourier basis

functions. We state our results on the spectrum of DF (u∗) in the following lemma, which again is

stated without proof.

Lemma 6.2. Let W (x, y) = p ∈ [0, 1] for all (x, y) ∈ [0, 1]2 and suppose u∗ is a homogeneous

steady-state solution to (6.8). Then, the spectrum of the linearization of (6.8) consists of only

two points −1 and −1 +R(u∗, p, λ, δ, µ). The multiplicity of the eigenvalue −1 +R(u∗, p, λ, δ, µ) is

one with an eigenspace spanned by the constant function on [0, 1]. The eigenvalue −1 has infinite

multiplicity.
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(a) (c)

(b)

Figure 5: Left: Constant steady-state for (6.8) using W (x, y) = p = 0.5 and λ = µ = δ = 1 gives u∗ ≈ 0.15,
shown in blue. Nearby steady-states for (6.7) with ER random graphs on 10 and 200 vertices shown in red.
Right: Eigenvalues for DF (u∗) using ER random graphs on n vertices arrayed vertically for each n.

Therefore, from Lemma 6.2 we see that if R(u∗, p, λ, δ, µ) < 1 then the homogeneous steady-

state u∗ to (6.8) is stable. In this case, Theorems 3.1 and 3.2 can be applied, guaranteeing, with

high probability, the existence of a nearly homogeneous steady steady-state for (6.7) posed on a

sufficiently large Erdős–Réyni random graph. We can further validate our analysis with numerical

experiments. Some findings are presented Figure 5 where we compare identified steady-states of

(6.7) with n = 100 and 1000 nodes. Realization of the network with fewer nodes results in a

numerical solution that is not particularly close to the homogeneous solution of the continuum

model (6.8). However, for larger values of n the steady-state solution on the random graph is

found to closely resemble the homogeneous solution from the graphon equation. Furthermore, in

accordance with Theorem 3.2, we see that the steady-state of the discrete problem (6.7) inherits the

stability of homogeneous solution and the eigenvalues of DGn appear to converge to the spectrum

of DF , as depicted in Figure 5.

Remark 5. As we mentioned above, system (6.8) exhibits bistability for some choices of parame-

ters. This is illustrated in Figure 4 where two stable branches of homogeneous states are connected

by a branch of unstable homogeneous states. The branches meet at saddle-node bifurcations where

R(u∗, p, λ, δ, µ) = 1 and DF (u∗) has a zero eigenvalue with multiplicity one. Since DF (u∗) is

not invertible at these points our results do not apply. The study of tracking bifurcations from a

continuum model back down to the discrete model will the focus of future research.

6.3 Lotka-Volterra Competition Model

The Lotka–Volterra model can be employed to describe the interaction of competing or cooperating

species [19, 35]. Letting ui denote the abundance of the ith species, then a (competitive) Lotka–
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Volterra model for n ≥ 1 interacting species is given by

dui
dt

= ui(1− ui)−
λ

n

n∑
j=1

Aijuiuj . (6.14)

Here A = [Aij ]1≤i,j≤n is a matrix whose non-zero entries represent the existence of a competitive

interaction between two species. Here we are assuming that each species undergoes simple logistic

growth in the absence of the other species, while we have state-dependent quadratic interactions

between the species.

As in the previous subsection, we will focus on the case of Erdős–Réyni graphons. The purpose for

this is primarily to illustrate that the proofs of our main results can be simplified in this limited

scenario. First, for pair-wise interactions that occur randomly with some probability p ∈ [0, 1], the

limiting graphon system for (6.14) is given by

ut = u(1− u)− λp

∫ 1

0
u(x)u(y)dy. (6.15)

We summarize our findings for (6.15) with the following lemma, which is again stated without proof

due to its simplicity.

Lemma 6.3. The constant function u∗ = 1/(1 + λp) is a steady-state solution to (6.15). Further-

more, the linearization about this steady-state results in the linear operator whose action on C[0, 1]

is given by

[DF (u∗)v](x) =
−1

1 + λp
v(x)− λ

1 + λp

∫ 1

0
pv(y)dy, (6.16)

and has spectrum consisting of two points: −1
1+λp and −1. The spectral element −1

1+λp has infinite

multiplicity, while −1 is an eigenvalue of multiplicity 1 with eigenspace spanned by the constant

functions.

From Lemma 6.3 we see that for any λ > 0 we have that the homogeneous steady-state u∗ =

1/(1+λp) of (6.15) is stable. Theorem 3.1 and Theorem 3.2 then imply the existence and stability

of steady-states of (6.14) for n large and with high probability. Steady state solutions of (6.14) are

located numerically in Figure 6.

In terms of the mathematical analysis presented in this paper, one interesting aspect of this example

is that it sometimes allows for a simpler route to prove the existence result Theorem 3.1. The

homogeneous steady-state in Lemma 6.3 exists for all λ > 0, but when λ ∈ (0, 1) we can show that

Tn is a contraction on Xn, using the notation of Section 4. Indeed, here we have

Ξ(Wn,W, u
∗)

Q(x)
v =

∫ 1

0
λ [p−Wn(x, y)] v(y)dy.
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(a) (b)

Figure 6: Left: steady-state solutions of the Lotka-Volterra model. For a constant graphon with p = 1/2 and
λ = 1 the graphon equation in (6.15) has the solution u∗ = 2/3 which is depicted in blue. For a random
realization on n = 200 nodes we find a nearby solution vector to (6.14) shown in red. Right: The steady-state
for the system (6.14) with a random realization on n = 1000 nodes.

If Wn(x, y) only takes values of zero or one, as it would in the case of a random graph, then the

operator norm ∥∥∥∥Ξ(Wn,W, u
∗)

Q(·)

∥∥∥∥
Xn→Xn

≤ λ max{p, 1− p}

and the operator Tn will be a contraction if this operator norm is less one. Of course, one way to

guarantee this is to have λ ∈ (0, 1), while one can take larger values of λ so long as p is taken so that

λ max{p, 1− p} < 1. Therefore, in this limited case one does not require using the second-iterate

mapping Sn to prove the result of Theorem 3.1.

6.4 Ecological Competition with Mutualistic Interactions

Our final example is one of practical interest, but also lies outside the direct scope of the analysis

presented already. We discuss this example briefly, both to illustrate the issues with directly

applying our main result to this class of problems, but also to demonstrate how our methods could

be generalized to study systems of this form.

The model in question is one of ecological dynamics under mutualistic interactions motivated by

models presented in [15]. We again consider a Lotka–Volterra model, similar to (6.14), but now with

cooperative interaction and interaction matrix given in the form of a bi-partite graph. Precisely,

the model takes the form
dui
dt

= ui(1− ui) +
λ

n

n∑
j=1

Aijuiuj , (6.17)
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and the non-local graphon counterpart is

ut = u(1− u) + λ

∫ 1

0
W (x, y)u(x)u(y)dy, (6.18)

where we recall that the bi-partite graphon is defined for any p ∈ [0, 1] by

W (x, y) =

p if min{x, y} ≤ α, max{x, y} > α,

0 otherwise.
(6.19)

We summarize our findings with the follow lemma.

Lemma 6.4. Consider (6.18) and suppose that (λ, p, α) are such that λ2p2α(1 − α) < 1. Then,

(6.18) has a piecewise constant steady-state solution given by

u∗(x) =


1+λp(1−α)

1−λ2p2α(1−α) 0 ≤ x < α,

1+λpα
1−λ2p2α(1−α) α ≤ x ≤ 1.

Proof. The result is obtained by assuming the form

u∗(x) =

u∗1 0 ≤ x < α

u∗2 α ≤ x ≤ 1.

for a solution to (6.18). Plugging this into (6.18) results in the linear matrix equation(
−1 λp(1− α)

λpα −1

)(
u∗1
u∗2

)
=

(
−1

−1

)
, (6.20)

for which the solution is given in the statement of the lemma. This concludes the proof.

The main obstacles in leveraging the result of Lemma 6.4 to apply our results in Section 3 are as

follows. First, bipartite graphons as given in (6.19) are neither degree constant when α ̸= 1/2 nor

ring graphons and so it might not be the case that degree convergence in the L∞ norm can be

obtained to satisfy Hypothesis 2(1). Precisely, if the discontinuities of the associated sequence of

step graphons Wn do not align with the one at x = α in the generating graphon W , then uniform

degree convergence cannot be obtained. This would be the case if x = α lies between (i − 1)/n

and i/n for some n ≥ 1 and i = 1, . . . , n. Second, it is no longer clear whether the operator TK in

our proofs is compact since bipartite graphons do not satisfy Hypothesis 2(2). Again, this comes

from the jump discontinuity at x = α. Finally, there is the issue that the steady-state solution in

Lemma 6.4 is not continuous over x ∈ [0, 1], thus not satisfying Hypothesis 3.
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(a) (b)

Figure 7: (a) A pixel plot for a random realization of a bipartite graph on 200 vertices generated from the
graphon (6.19) with (p, α) = (0.5, 0.3). (b) The steady-state solution from Lemma 6.4 (blue, solid) compared
to the steady-state solution to the discrete system (6.17) on the random bipartite random graph from the left
panel (red, dots).

Nonetheless, we believe that our analysis could be adapted to study the persistence of steady-

states in (6.18). The first step is properly constructing the step graphon Wn(x, y) to achieve degree

convergence. Fixing a number of vertices n ≥ 1, define n1 = ⌊αn⌋ and n2 = n − n1. One then

defines a partition of [0, 1] using the points

xi =


α

(
i−1
n

)
i = 1, . . . , n1,

α+ (1− α)

(
i−n1−1

n

)
i = n1 + 1, . . . , n.

Notice that this discretizes the subintervals [0, α) and [α, 1] separately with a potentially different

step size for the different subintervals. However, this discretization allows for the construction of

random graphs and associated step-graphons which will converge (with high probability) to the

bipartite graphon; in both the cut norm and uniformly in the degree function.

The other two outstanding issues pertain to the jump discontinuity at x = α in both the bipartite

graphon and the steady-state u∗(x) in Lemma 6.4. To circumvent this we could instead replace

statements and assumptions using the Banach space C[0, 1] with the Banach space

Y =

{
u ∈ L∞[0, 1]

∣∣∣∣ u(x) is continuous on [0, α) and [α, 1]

}
.

Essentially this Banach space would break the analysis up into two pieces, one using continu-

ous functions on the interval [0, α) and the other using continuous functions on [α, 1]. Since the

bipartite graphon is continuous on each of these subintervals, Hypothesis 2(2) could be verified

independently for each subinterval. Thus, we anticipate that our results could be recovered by
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breaking the problem into two in this way, although we do not pursue this analysis here. In Fig-

ure 7 we present a numerical computation of a steady-state solution for (6.17) defined on a bipartite

graph as compared to the graphon equilibrium which provides further evidence for our hypothesis.

Similar generalizations should be able to be made for a graphon with any finite number of jump

discontinuities.

7 Discussion

Reaction-diffusion equations over networks of the form (1.1) provide a general framework to model a

number of systems of applied interest. Many realistic systems require complex interaction matrices

A that may only be described in a probabilistic sense, thus often making general statements about

the system difficult. To avoid case-by-case investigations of these discrete reaction-diffusion systems

it is common to (formally) let the number of nodes tend to infinity and study the associated mean-

field equations, generally taking the form (1.2). Working with the spatially continuous limiting

problem is often easier (see Section 6 for a few examples) and it provides only one equation as

opposed to the numerous variations possible for the choices of interaction matrices A within a certain

class. However, after completing the study of the mean-field equation (1.2) one is still tasked with

leveraging this information to say something about the behavior of the finite-dimensional system

(1.1) that initiated the investigation, at least for sufficiently large networks.

The purpose of this research study was to demonstrate that important structures of the mean-field

equations provide the existence of related structures in large discrete systems that are close to

the limiting problem. Importantly, these results allow one to study a single infinite-dimensional

problem to almost surely provide information about networked reaction-diffusion equations with

large random interaction matrices. In our case the structures of interest were steady-states and

we used the now well-developed theory of graphons to arrive at our results. These results are

complementary to related investigations in [27] that leverage graphon theories to guarantee finite-

time proximity of solutions between finite networked dynamical systems and their limiting mean-

field graphon equation.

There are many possible extensions we believe are immediately amenable to our methods. First,

while we focused only on systems of scalar equations, there is little doubt that these methods can

be adapted to apply to settings where there are multiple dependent variables for each node n.

Second, we sketched out in Section 6.4 that while our compactness assumption Hypothesis 2(2)

does not hold for bipartite graphons, our approach can be adapted to handle these graphons as

well. Thus, it seems that a relatively minor variation of our hypotheses could incorporate bipartite,

stochastic block model, and various other graphons that arise in application which do not satisfy

our assumptions in their current form. Third, we could have considered inhomogeneous reaction

functions, i.e. state-dependent reaction terms of the form fi(ui) for each i.
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Beyond these extensions, there remains much larger questions that we wish to pursue in follow-up

investigations. For example, there are now two notable extensions of graphons, graphops [17] and

embedded vertexon-graphons [8], that are able to capture more diverse graph structures. Thus,

formulating our theory in terms of one or both of these graphon extensions would significantly

extend the applicability of our results. In terms of dynamical assumptions, the most obvious gen-

eralization is to cases where DF (u∗) fails to be invertible due to the existence of an isolated zero

eigenvalue of finite multiplicity. Such investigations would likely include a parameter dependence

in (1.1) to unfold various bifurcations in the mean-field limit and provide insight into the behavior

of the nearby finite-dimensional systems, similar to what was done in [7]. Cases where the oper-

ator DF (u∗) fails to be invertible due to the essential spectrum including 0 are more challenging

and determining stability or instability without knowing particular information about the discrete

network structure may not be possible, as illustrated in [28].
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A Verifying Hypothesis 2(2) for ring graphons

At first glance, it may appear that Hypothesis 2(2) is difficult to verify if given a graphon. Here

we show that this assumption can always be shown to hold for ring graphons. We begin with their

definition.

Definition A.1. A graphon W : [0, 1]× [0, 1] → [0, 1] is said to be a ring graphon if there exists

a function R : [0, 1] → [0, 1] which is 1-periodic, piecewise continuous, and satisfies W (x, y) =

R(|x− y|) for all x, y ∈ [0, 1].

Notable examples of ring graphons are Erdös–Réyni and small-world graphons, while bipartitie

graphons are not rings. We now demonstrate that Hypothesis 2(2) holds for ring graphons.

Lemma A.2. Let W be a ring graphon. Then for any ε > 0, there exists a δ > 0 so that for every

x0 ∈ [0, 1] it holds that ∫ 1

0
|W (x0, y)−W (x, y)|dy < ε

when |x− x0| < δ, where | · | is taken modulo 1 by the periodicity of the ring graphon.

Proof. First, by definition sinceW is a ring graphon, there exists a 1-periodic, piecewise continuous
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function R so thatW (x, y) = R(|x−y|). This proof is then carried out by induction on the number

of jump discontinuities in the function R.

Let us begin by assuming that R is continuous. That is, R has 0 jump discontinuities. Continuity

of R : [0, 1] → [0, 1] further implies uniform continuity since [0, 1] is compact, and the result follows

immediately from this. Thus, the base case of k = 0 jump discontinuities holds.

Now, let us assume that if R has k ∈ N∪{0} or less jump discontinuities the lemma holds. We now

consider the case that there are k + 1 jump discontinuities in R. Let ξ ∈ [0, 1] be the location of

one such jump discontinuity. Without loss of generality we can assume that ξ ∈ (0, 1) since R is 1-

periodic. Then, R restricted to the sub-intervals [0, ξ] and [ξ, 1] has k or fewer jump discontinuities.

Therefore, by our inductive hypothesis we have that for all ε > 0 there is a δ1 > 0 so that for all

x0 ∈ [0, 1] we have ∫ ξ−δ1

0
|R(|x0 − y|)−R(|x− y|)|dy < ε

3
,

when |x0 − x| < δ1 and |x0 − y| < ξ, and∫ 1

ξ+δ1

|R(|x0 − y|)−R(|x− y|)|dy < ε

3
,

when |x0 − x| < δ1 and |x0 − y| > ξ. Furthermore, letting

l = lim
x→ξ−

R(x), r = lim
x→ξ+

R(x),

we further have that there exists a δ2 > 0 which guarantees that 2|r − l|δ2 < ε/3. Thus, setting

δ = min{δ1, δ2, 1−ξ2 , ξ2}, it follows that for all |x0 − x| < δ we have

∫ 1

0
|W (x0, y)−W (x, y)| dy =

∫ 1

0
|R(|a− y|)−R(|x− y|)| dy

≤
∫ ξ−δ

0
|R(|x0 − y|)−R(|x− y|)|dy

+

∫ 1

ξ+δ
|R(|x0 − y|)−R(|x− y|)| dy + 2|l − r|δ

<
ε

3
+
ε

3
+
ε

3

= ε,

where we have used the fact that |W (x0, y) −W (x, y)| ≤ 1 for all x0, x, y ∈ [0, 1]. Thus, we have

proven the inductive step and completed the proof.
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B Proof of Lemma 4.5

In this appendix we provide the proof of Lemma 4.5. The proof is broken down into components that

correspond to the items enumerated in the statement of the lemma. We remark that the continuity

of the functions ψj,k(y) in the spectral projections is essential to our proof of Theorem 3.1. We

suspect this fact is perhaps already known in the literature, but absent a suitable reference and for

the benefit of the reader we provide a full proof here in part (3) below.

(1) By the definition (4.8), TK is given by

TKv =
1

Q(x)

∫ 1

0
W (x, y)D2(u

∗(x), u∗(y))v(y)dy.

Since Q(x) is continuous, nonzero, and positive, we have that compactness of TK : Xn → Xn will

follow from compactness of the operator

Xn ∋ v 7→
∫ 1

0
W (x, y)D2(u

∗(x), u∗(y))v(y)dy,

which was proven to be compact in the proof of Lemma 4.1. Thus, TK : Xn → Xn for all n ≥ 1 is

compact, proving point (1).

(2) Since we have now shown that TK : Xn → Xn is compact, the existence of only a finite number

of eigenvalues with real part greater than or equal to one is an immediate corollary. Compactness

further implies that each eigenvalue has a finite algebraic multiplicity. An analogous argument as

performed in Lemma 4.3 shows that the spectrum of TK is independent of the space Xn and the

corresponding eigenfunctions and generalized eigenfunctions are all continuous.

(3) Let J ≥ 0 be the number of eigenvalues of TK with real part greater than or equal to 1. Let

mj ≥ 1 be the multiplicity of the jth eigenvalue, denoted λj ∈ C, for each j = 1, . . . , J . For any

fixed n ≥ 1, let Pλj : Xn → Xn be the spectral projection associated to λj and define

P =

J∑
j=1

Pλj , P̃ = I − P.

Then the eigenvalues λj and their generalized eigenspaces decompose Xn as

Xn = Xλ1 ⊕Xλ2 ⊕ · · · ⊕XλJ ⊕ X̃n, (B.1)

where each Xλj = PλjXn is finite-dimensional. As a result of point (2) we have that Xλj ⊂ C[0, 1]

for all j.

We now focus on a specific λj and construct the spectral projection associated to this eigenvalue.

We work first in the space C[0, 1] and then show that this expression remains valid on the larger
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space Xn.

To condense notation, we will set LK := I − TK . Since λj ̸= 1 for all j = 1, . . . , J we have that

the multiplication operator v → (1− λj)v is invertible and hence Fredholm with index zero. Then,

since TK is compact, it further follows that Lk − λjI is also Fredholm with index zero. Identical

arguments can be applied to show that the operator (LK−λjI)mj is also Fredholm with index zero.

Consequently, since mj is the algebraic multiplicity of the eigenvalue λj there necessarily exists mj ,

linearly independent functions spanning ker ((LK − λjI)
mj ). These (generalized) eigenfunctions

which we denote {φj,k(x)}
mj

k=1 span Xλj . Recall again that φj,k ∈ C[0, 1] from point (2).

Next, since (LK − λjI) is Fredholm index zero then dimker ((L∗
K − λjI)

mj ) = mj , where the dual

operator L∗
K acts on the dual space C[0, 1]∗. The Riesz Representation Theorem [22, Theorem 36.6]

guarantees that for each θα ∈ C[0, 1]∗ there exists an α ∈ BV [0, 1] such that θα can be expressed

as the integral

θα(v) =

∫ 1

0
v(x)dα(x).

The above representation of the dual space of C[0, 1] together with the identity θα[LK(v)] =

L∗
K [θα](v) then implies that

L∗
K [θα](v) =

∫ 1

0
v(x)dα(x)−

∫ 1

0

∫ 1

0
K(x, y)v(y)dydα(x), (B.2)

where K(x, y) = W (x, y)D2(u
∗(x), u∗(y)). Since W (x, y) is non-negative and |D2(u

∗(x), u∗(y))|
is continuous it follows from nearly identical arguments to those in Corollary 4.2 that x 7→∫ 1
0 |K(x, y)v(y)|dy is continuous as function of x. Then

∫ 1
0

∫ 1
0 |K(x, y)v(y)|dydα(x) exists and

Fubini’s Theorem [22, Theorem 35.4] allows one to switch the order of integration in (B.2). Thus,

(B.2) becomes

L∗
K [θα](v) =

∫ 1

0
v(x)dα(x)−

∫ 1

0
v(y)

∫ 1

0
K(y, x)dα(y)dx

for an arbitrary v ∈ C[0, 1] .

Next, for θα to be an element of ker(L∗
K − λjI) it must hold that

0 = (L∗
K − λjI)θα(v) = (1− λj)

∫ 1

0
v(x)dα(x)−

∫ 1

0
v(y)

∫ 1

0
K(y, x)dα(y)dx, (B.3)

for all v ∈ C[0, 1]. It therefore holds that there exists a function ψα(x) such that θα admits the

representation

θαv =

∫ 1

0
v(x)ψα(x)dx.
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Putting this together with (B.3) implies that this function ψα must also satisfy

(1− λj)ψα(x)−
∫ 1

0
K(y, x)ψα(y)dy = 0. (B.4)

SinceW (x, y) =W (y, x), we use Hypothesis 2-2 and repeat the compactness argument in Lemma 4.1

culminating in (4.5) to conclude that
∫ 1
0 K(y, x)ψα(y)dy is a continuous function of x. From (B.4)

we then obtain that

ψα(x) =
1

1− λj

∫ 1

0
K(y, x)ψα(y)dy

and therefore ψα(x) ∈ C[0, 1].

We now construct the spectral projection P in (4.9). If mj = 1, we will show that there exist

φj ∈ ker(LK − λjI) and a ψj ∈ C[0, 1] such that

Pλjv =

∫ 1

0
φj(x)v(y)ψj(y)dy.

We require Pλjφj = φj while Pλj [(LK − λj)w] = 0 for all w ∈ C[0, 1]. The first condition requires∫ 1

0
φj(y)ψj(y)dy = 1, (B.5)

while the second requires∫ 1

0

(
(1− λj)w(y)−

∫ 1

0
K(y, z)w(z)dz

)
ψj(y)dy = 0,

for any w ∈ C[0, 1]. For the second condition, since w and ψj are continuous we can change the

order of integration so that this condition assumes the form∫ 1

0
w(y)

(
(1− λj)ψj(y)−

∫ 1

0
K(z, y)ψj(z)dz

)
dy = 0,

which is satisfied for all w ∈ C[0, 1] if ψj is chosen to be the unique (since we are assuming

momentarily that the dimker(L∗
K − λjI) = 1), up to scalar multiplication, function that satisfies

(B.4). The integral on the left hand side of (B.5) is always non-zero as otherwise the operator

v 7→
∫ 1
0 v(y)ψj(y)dy ∈ C[0, 1]∗ would be trivial since we can decompose C[0, 1] = span{φj} ⊕

Rng{Lk − λjI}. The condition (B.5) effectively selects a unique scalar multiple of the function

ψj(x).

We now consider the case where the algebraic multiplicity of λj exceeds one, i.e. the case where

mj > 1. Since dimker ((L∗
K − λj)

mj ) = mj , one can verify by a similar argument as to the case

of mj = 1 that there exists mj linearly independent functions {ψj,k}
mj

k=1 ⊂ C[0, 1] such that the
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bounded linear functionals

v 7→
∫ 1

0
v(y)ψj,k(y)dy

span the kernel of (L∗
K − λjI)

mj .

Since Xλj is finite-dimensional, there exist gj,k ∈ C[0, 1]∗, k = 1, . . . ,mj , so that the spectral

projection onto Xλj will therefore take the form

Pλjv =

mj∑
k=1

gj,k[v]φj,k(x).

Furthermore, each gj,k ∈ C[0, 1]∗ can be represented as a linear combination of the mj functionals

spanning ker ((L∗
K − λjI)

mj ):

gj,k[v] =

∫ 1

0
v(y)

(mj∑
l=1

bk,lψj,l(y)

)
dy,

for some constants bk,l. Each gj,k must satisfy

v ∈ Rng ((LK − λjI)
mj ) =⇒ gk[v] = 0 (B.6)

and gj,k[φj,l] = δkl for all 1 ≤ k, l ≤ mj .

It therefore remains to uniquely solve, for each k, the mj conditions gk[φj,l] = δkl for the mj

coefficients bk,l. Solvability of this system of equations relies on the invertibility of a Gram-like

matrix which follows from the linear independence of the φk,j(x) and ψj,l(y). With this solution

we can define ψ̃k,l(y) =
∑mj

l=1 bk,lψj,l(y) and then drop the tildes so that the spectral projection

assumes the form written in (4.9).

The spectral projection formula in (4.9) has been derived for v ∈ C[0, 1], but the same operator

describes the projection for v ∈ Xn, for any n ≥ 1. To see this, let v ∈ Xn and consider w =

(LK − λj)v. Then we have

gj,k[w] =

∫ 1

0
[(LK − λj)v]ψj,l(y)dy

=

∫ 1

0
(1− λj)v(y)ψj,l(y)dy −

∫ 1

0

∫ 1

0
K(y, z)v(z)dzψj,l(y)dy

=

∫ 1

0
(1− λj)v(y)ψj,l(y)dy −

∫ 1

0
v(y)

∫ 1

0
K(z, y)ψj,l(z)dzdy

=

∫ 1

0
v(y)

(
(1− λj)ψj,l(y)−

∫ 1

0
K(z, y)ψj,l(z)dz

)
dy,

(B.7)

where we have used Fubini’s theorem to switch the order of integration in the second to last line,
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owing to the fact that y 7→
∫ 1
0 K(y, z)v(z)dz is continuous in y for v ∈ Xn. The final line implies

that gj,k[(LK − λj)v] = 0 for all v ∈ Xn. A similar argument applies to generalized eigenfunctions.

Since Xλj ⊂ C[0, 1] the range of Pλj is again Xλj yielding the spectral projection. This concludes

the proof of point (3).

(4) We now return to the problem of inverting DF (u∗) and obtaining the formula (4.10). Let

v ∈ Xn and set w = DF (u∗)v. Our goal is to obtain an expression for v in terms of w.

We begin by dividing DF (u∗)v = w by the non-zero function −Q(x) to reduce the problem of

inverting DF (u∗) to that of solving

(I − TK)v = − w

Q(·)
.

Recall the decomposition of the space Xn into a finite sum of invariant subspaces. Write

v = v1 + v2 + . . . vJ + ṽ

− w

Q(·)
= w1 + w2 + · · ·+ wJ + w̃,

(B.8)

where vj = Pλjv ∈ Xλj , wj = Pλj (−w
Q) ∈ Xλj , ṽ = P̃ v ∈ X̃n and w̃ ∈ X̃n. Owing to invariance

of these subspaces, we can invert I − TK on all of Xn by inverting the operator restricted to each

subspace.

Consider firstXλj . We must solve (I−TK)vj = wj . ButXλj is simply the span of the eigenfunctions

and generalized eigenfunctions of TK associated to the eigenvalue λj . Therefore (I − TK)vj =

(1 − λj)vj + Nλj [vj ] where the linear operator Nλj : Xλj → Xλj is nilpotent. This means that

we can solve (I − TK)vj = wj for any wj ∈ Xλj by reduction to a finite-dimensional problem. In

particular we can write vj =
∑
sj,kφj,k(x) and wj =

∑
rj,kφj,x(x). Note that rj,k = gj,k

[
− w
Q(·)

]
.

Invertibility within this subspace implies that we can write each sj,k as a linear combination of the

rj,k. This implies that there exist coefficients cj,k,l such that

vj =

mj∑
k,l=1

φj,k(x)

∫ 1

0
cj,k,lψj,l(y)

(
−w(y)
Q(y)

)
dy.

Repeating this procedure over all vj we obtain the second expression in (4.10).

It remains to invert (I−TK) restricted to the invariant subspace X̃n. The spectrum of TK restricted

to this subspace lies strictly to the left of the line Re(λ) = 1 by construction. By point (2), the

spectrum of TK is independent of the space Xn and therefore the spectral radius of TK , restricted to

X̃n is independent of n. Thus, there exists a constant ξ > 0, independent of n such that σ (TK)|X̃n

is contained inside a ball centered at −ξ with radius less than ξ + 1. Then the spectral radius of
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the rescaled operator ξ+TK
1+ξ , restricted to X̃n is strictly less than one and therefore by re-arranging

(I − TK) = (I + ξ)− (ξ + TK) = (1 + ξ)

(
I − TK + ξ

1 + ξ

)
, (B.9)

then we can solve (1− TK)ṽ = w̃ using Neumann series. Writing

w̃ = P̃

(
−w
Q(·)

)
the Neumann series provides the first term in the summation on the right-hand-side of (4.10).

Thus, we have proved point (4) of the lemma.

C Details for the Kuramoto Model

In Section 6.1 we commented that to apply Theorem 3.1 to twisted states in the Kuramoto model

one is required to quotient out the translational symmetry of the model. We proposed that the

analysis undertaken in this work can be generalized to the Kuramoto model by replacing the

function space Xn with a subspace Yn of mean-zero functions. We now provide the necessary

details that substantiate our statements.

First we show that DF (u∗) is invertible on Yn. Linearizing the Kuramoto model about a twisted

state u∗(x) = m(x− 1/2) with any m ∈ Z yields

DF (u∗)v = −2πcmv + 2π

∫ 1

0
W (x, y) cos(2πm(y − x))v(y)dy. (C.1)

In Section 6.1 we have assumed that all elements of the spectrum of DF (u∗) are negative aside

from the isolated eigenvalue of algebraic multiplicity one at λ = 0 whose eigenspace is spanned by

constant functions. This zero eigenvalue comes exactly from the translational symmetry. To invert

DF (u∗) we have DF (u∗)v = w, requiring one to solve

(I − TK)v = − w

2πcm
, (C.2)

where in the case of the Kuramoto model we have

TK =
1

cm

∫ 1

0
W (x, y) cos(2πm(y − x))v(y)dy, (C.3)

which is a compact as an operator on Yn. For a spectrally stable twisted state solution of the

Kuramoto model, the spectrum of TK is real and assumes values strictly less than one with the

exception an isolated eigenvalue at λ = 1 with constant eigenfunction. The spectral projection onto
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this eigenfunction is simply Pv =
∫ 1
0 v(y)dy. Then,

DF (u∗)v = DF (u∗)Pv +DF (u∗)(I − P )v = DF (u∗)(I − P )v. (C.4)

Since the range of I − P is exactly Yn and the spectrum of DF (u∗) on Yn is bounded away from

zero, it therefore holds that DF (u∗) is invertible on Yn and can be expressed via Neumann series

after perhaps shifting and rescaling the operator in a analogous manner as (B.9).

With the invertibility of DF (u∗) on Yn, we now recall that Tn is defined by

Tn[u] = u−DF (u∗)−1Fn(u).

We claim that Tn maps Yn back into itself. To verify this, we must show that Fn(u) ∈ Yn for any

u ∈ Yn. This fact follows from the following calculation∫ 1

0
Fn(u)dx =

∫ 1

0

∫ 1

0
Wn(x, y) sin(2π(u(y)− u(x)))dydx

= −
∫ 1

0

∫ 1

0
Wn(x, y) sin(2π(u(x)− u(y)))dydx

= −
∫ 1

0

∫ 1

0
Wn(y, x) sin(2π(u(y)− u(x)))dydx

= −
∫ 1

0

∫ 1

0
Wn(x, y) sin(2π(u(y)− u(x)))dydx

= −
∫ 1

0
Fn(u)dx.

(C.5)

Therefore,
∫ 1
0 Fn(u)dx = 0, meaning Fn(u) is mean-zero and is in turn an element of Yn for any

u ∈ Yn. This makes the mapping Tn : Yn → Yn well defined and the remainder of the proof proceeds

as in the proof of Theorem 3.1.
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