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Abstract7

Collective oscillations and patterns of synchrony have long fascinated researchers in the applied sci-8

ences, particularly due to their far-reaching importance in chemistry, physics, and biology. The Kuramoto9

model has emerged as a prototypical mathematical equation to understand synchronization in coupled10

oscillators, allowing one to study the effect of different frequency distributions and connection networks11

between oscillators. In this work we provide a framework for determining both the emergence and the12

persistence of synchronous solutions to Kuramoto models on large random networks and with random13

frequencies. This is achieved by appealing the theory of graphons to analyze a mean-field model coming14

in the form of an infinite oscillator limit which provides a single master equation for studying random15

Kuramoto models. We show that bifurcations to synchrony and hyperbolic synchrony patterns in the16

mean-field model can also be found in related random Kuramoto networks for large numbers of oscil-17

lators. We further provide a detailed application of our results to oscillators arranged on Erdős–Rényi18

random networks, for which we further identify that not all bifurcations to synchrony emerge through19

simple co-dimension one bifurcations.20

1 Introduction21

Many processes throughout the applied sciences can be modeled as sets of interacting periodic processes,22

particularly in neuroscience [4]. A major focus for mathematical investigation of these networks is to identify23

whether or not these oscillations fall into global patterns of synchrony. Synchrony of neuronal oscillators24

governs many cognitive tasks and functions [38, 40], including playing a critical role in memory formation25

[3, 20]. Synchrony is also important for the functioning of power grid networks [33, 36]. Alternatively,26

certain patterns of synchrony in neuronal networks have been associated with epilepsy and Parkinson’s27

disease [17, 25]. Thus, in the study of networks of oscillating processes, it is often important to determine28

whether synchrony can occur and what form it takes.29

Synchronization in the mathematical literature is often studied in the Kuramoto phase model [2, 23, 24]30

θ̇j = ωj +
K

n

n∑
k=1

Aj,k sin(θk − θj), j = 1, . . . , n. (1.1)31
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Here each θj ∈ S1 represents the relative phase of oscillator j, with ωj ∈ [−1, 1] being their intrinsic32

natural frequency, and K ≥ 0 the strength of coupling between oscillators. The matrix [Aj,k]
n
j,k=1 is a33

graph adjacency matrix encoding the network structure so that Aj,k > 0 denotes a connection between34

oscillators j and k, while Aj,k = 0 represents the absence of one. Synchronization in (1.1) occurs when35

there exists solutions satisfying θ̇j(t) = θ̇k(t) for all j, k = 1, . . . n, meaning that oscillators evolve with the36

same velocity, differing only by an initial phase offset, termed a phase-lag. When K = 0 all oscillators37

act independently and no synchronization occurs, while in the limit K → ∞ many synchronized states38

exist with |θj(t) − θk(t)| ∈ {0, π}. Thus, one concludes that there exists an intermediary coupling strength39

K = Kcrit > 0, termed the critical coupling [13, 26, 39], at which the existence of synchronized states first40

appears in (1.1). For complete graphs, i.e. Aj,k = 1 for all (j, k), Dörfler and Bullo [13] survey much of the41

current landscape, while further providing upper and lower bounds on Kcrit. However, these bounds remain42

at a finite distance from each other for all n ≥ 1. Related work in [26] provides upper bounds on Kcrit for43

dense networks, while [14] bounds the critical coupling from above based upon the specifics of the network44

topology and the intrinsic frequencies.45

In attempting to understand the onset of synchrony in (1.1) with n ≫ 1, one may formally pass to a limiting46

mean-field model47

∂θ

∂t
= Ω(x) +K

∫ 1

0

W (x, y) sin(θ(y, t)− θ(x, t))dy, (1.2)48

for a continuous function Ω : [0, 1] → [−1, 1] and a kernel W : [0, 1]2 → [0, 1]. Pioneering work in this49

direction was done by Ermentrout [15] who used (1.2) with W ≡ 1 to estimate Kcrit with all-to-all coupling50

and random frequencies in (1.1) when n ≫ 1. A second use for (1.2) is to study identically coupled oscillators,51

i.e. ωj = ωk in (1.1) for all j, k = 1, . . . , n, by having Ω be a constant function and identifying both the52

existence and stability of synchronous patterns with different network topologies. Early work in this direction53

comes from [39], which arranges the oscillators in a ring to observe patterns of synchrony whose phase-lags54

increase monotonically around it. More recent investigations have employed graphons [28] to use (1.2) to55

capture patterns of synchrony in (1.1) over random networks [8, 30, 34].56

In this paper we leverage graphon theory to capture the existence of synchronous solutions in (1.1) on random57

networks with random frequencies. This work extends contributions such as [11, 15] that use (1.2) to study58

large random Kuramoto models to justify findings for finite n ≫ 1 models of the form (1.1). Moreover,59

this work contributes to the growing literature on synchronization of Kuramoto models on random graphs60

[1, 5, 21, 27, 29, 34], while extending these studies to allow for random frequencies as well. In particular, we61

show that (1.2) provides a single master equation to identify the critical coupling in, which asymptotically62

estimates the critical coupling in classes of random Kuramoto models (1.1).63

The appeal to graphon theory allows one to think of groups of networks over different numbers of vertices64

as belonging to the same family, represented by the limiting function (the graphon) W in (1.2). Thus, for65

all n ≫ 1 and networks with adjacency matrices [Aj,k]
n
j,k=1 belonging to the same family as a graphon W ,66

our analysis shows that with frequencies {ωj}nj=1 drawn independently from a distribution on [−1, 1], with67

high probability we have that:68

1. Continuous and hyperbolic synchronous solutions in (1.2) at a fixed K lead to hyperbolic synchronous69

solutions to (1.1) at the same coupling value K,70

2. Saddle-node bifurcations at K = Kcrit of continuous synchronous solutions in (1.2) persist as saddle-71
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node bifurcations of synchronous solutions in (1.1) at some K = Kcrit,n ≈ Kcrit.72

Thus, in many cases, these results fully capture the emergence and persistence of synchronous solutions in73

(1.1) for n ≫ 1 using the single master equation (1.2). However, as we also show in this work, the emergence74

of synchronous solutions in (1.2) is not always attributed to a saddle-node bifurcation. In particular, we prove75

that for Erdős–Rényi random networks and certain distributions of random frequencies, the emergence of76

synchronous solutions in (1.2) comes from a bifurcation involving the essential spectrum. While our rigorous77

bifurcation results do not apply to such essential spectrum bifurcations, we provide numerical observations78

that indicate that even though our hypotheses do not hold, our results do. This leads one to at least79

conjecture that similar results could be obtained for more complex bifurcation scenarios only present in80

infinite-dimensional system.81

Before proceeding, we note that analysis of (1.1) for large numbers of oscillators with all-to-all coupling is82

often studied in a mean-field limit, distinct from (1.2), in which the evolution of probability densities describ-83

ing the oscillators is studied; see [23, 35, 37, 39]. Development of an analogous model incorporating network84

interactions using graphon theory was obtained in [10]. The probability density paradigm is advantageous as85

it allows for the convenient study of various time dependent solutions to (1.1) including the bifurcation of the86

incoherent state [9, 12]. That being said, we find (1.2) a more suitable tool for the mathematical treatment87

of the the existence and stability of synchronized steady states in (1.1) for classes of random networks with88

sufficiently large numbers of oscillators.89

This paper is organized as follows. In Section 2 we provide the relevant background theory for graphons.90

Then, in Section 3 we provide our hypotheses and precise statements of the main results summarized infor-91

mally above. Section 4 turns to applying these results to random Kuramoto models posed on Erdős–Rényi92

networks, including proving that we can either have saddle-node bifurcations to synchronous solutions in93

(1.2) or the more complex essential spectrum bifurcations. The proofs of our results are left to Sections 594

and 6. We conclude in Section 7 with a discussion of our findings and numerous avenues of potential future95

research.96

2 Graphons97

To obtain the results in this paper we appeal to the theory of graphons; see [6, 28]. A graphon is a symmetric98

function W : [0, 1]2 → [0, 1] that can be used to represent the edge weight W (x, y) of a graph with infinitely99

many vertices x, y ∈ [0, 1] . One can see the presence of the graphon in the mean-field model (1.2), here100

functioning as an integral kernel. Boundedness of graphons implies that they always belong to Lp([0, 1]2) for101

all p ∈ [1,∞], however a more natural measure of distance on the set of graphons is given by the cut norm,102

∥W∥□ = sup
S,T⊆[0,1]

∣∣∣∣ ∫
S×T

W (x, y) dxdy

∣∣∣∣, (2.1)103

where the supremum is taken over all measurable subsets S, T of [0, 1]. There are many other equivalent104

forms of the cut norm (see [19, Appendix E]), all of which treat the graphon not as a function as the p-norms105

would, but as an integral kernel. Indeed, [19, Lemma E.6] shows that the integral operator TW : Lp → Lq
106
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acting by107

[TW f ](x) =

∫ 1

0

W (x, y)f(y)dy (2.2)108

has operator norm bounded as ∥W∥□ ≤ ∥TW ∥p→q ≤ 2
√
2∥W∥min{1−1/p,1/q}

□ for all p, q ∈ [1,∞]. Moreover,109

convergence in the cut norm does not necessarily imply convergence in the p-norms, while the converse is110

always true since ∥W∥□ ≤ ∥W∥p for every graphon W .111

Graphons and the cut norm find significant application as a rule for generating families of finite graphs112

through sampling. Precisely, let {x1, x2, . . . , xn} be an ordered n-tuple of independent uniform random113

points drawn from [0, 1]. We describe two different random graphs generated from a single graphon W :114

1. Let H(n,W ) denote the weighted graph with vertices {1, 2, . . . , n} and edge weights W (xj , xk) between115

vertices j and k, j ̸= k. Loops are given edge weight 0.116

2. Let G(n,W ) denote the simple graph with vertices {1, 2, . . . , n} which are connected with an edge of117

weight 1 with probability W (xj , xk), j ̸= k. Loops again have an edge weight of 0.118

To compare these random graphs with their generating graphon we consider a step graphon generated by a119

graph G. To do this, partition [0, 1] into n disjoint intervals of equal length In1 , I
n
2 , . . . , I

n
n , so that the step120

function WG : [0, 1]2 → [0, 1] takes the value of the edge weight between vertices j and k of G for all x ∈ Inj121

and y ∈ Ink . Lemma 10.16 of [28] gives that the bounds122

∥WH(n,W ) −W∥□ ≤ 20√
log(n)

, ∥WG(n,W ) −W∥□ ≤ 22√
log(n)

(2.3)123

hold with probability at least 1−exp(−n/(2 log(n))) for all n ≥ 1. Thus, we achieve convergence in probability124

of the families of random graphs generated by a graphon W .125

Remark 1. Throughout this work we will always consider the sample points {x1, x2, . . . , xn} to be drawn126

independently from the uniform distribution on [0, 1]. However, there are many other ways of generating127

these sequences to achieve almost sure convergence in the cut norm [28, Lemma 11.33]. For example, one may128

fix xj = j/n for j = 1, . . . , n or drawn each xj from the uniform distribution on [(j − 1)/n, j/n]. Effectively,129

any sequence that is a good set for numerical integration, meaning130 ∫ 1

0

f(x)dx ∼ 1

n

n∑
j=1

f(xj), (2.4)131

with small error for Riemann integrable f , will do.132

We will also consider the graphon analogue of the degree of a vertex x ∈ [0, 1], given by133

dW (x) :=

∫ 1

0

W (x, y)dy. (2.5)134

The above is simply the continuum analogue of the degree of a vertex in a graph normalized by the number135

of vertices n. Along with the cut norm, another measure of convergence of graphs derived from graphons136

to their generating graphon is through their degree functions. In particular, [16, Lemma I]1 proves that for137

1This is an improved version of a result found in [42].
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any graphon W , with probability 1− ν we have138

∥dWH(n,W )
− dWG(n,W )

∥∞ = sup
x∈[0,1]

|dWH(n,W )
(x)− dWG(n,W )

(x)| ≤
√

log(2n/ν)

n
, (2.6)139

thus allowing for a comparison between the degrees of the weighted and simple graphs derived from W .140

Moreover, in many cases one can show that ∥dWH(n,W )
− dW ∥∞ converges to 0 in probability, including for141

ring graphons, i.e. W (x, y) = W (|x − y|), since the degree functions are constant [7]. Thus, combining the142

above allows one to show that at least for the case of ring graphons we can find ∥dWG(n,W )
− dW ∥∞ → 0 in143

probability as well. Our main result is achieved by assuming degree convergence, while all demonstrations144

use graphons for which we know this holds.145

3 Main Results146

We now leverage the theory of graphons from the previous section to provide our main results. In particular,147

we will prove that (1.2) is a single master equation for analyzing the existence, stability, and in some cases148

the onset of synchronous solutions for random Kuramoto models (1.1) with large numbers of oscillators149

n ≫ 1. The advantage is that, under the mild assumptions that follow, one can provide explicit results for150

infinitely many Kuramoto models with random frequencies and/or posed on random networks.151

We will begin with the following assumption that allows us to side-step the probabilistic framework of152

random graphs and graphons laid out previously. For any n ≥ 1, subdivide the interval [0, 1] into n disjoint153

intervals Inj = [(j− 1)/n, j/n) of equal length and let Wn : [0, 1]2 → [0, 1] be a step graphon on the partition154

{Inj × Ink }nj,k=1 of [0, 1]2. Similarly, let Ωn : [0, 1] → [−1, 1] be a step function on {Inj }nj=1. The values on155

the steps of Ωn will be the frequences {ωj}nj=1 for the discrete model (1.1) in what follows. We assume the156

following.157

Hypothesis 1. There exists sequences {Ωn}∞n=1 and {Wn}∞n=1, along with a continuous function Ω : [0, 1] →158

[−1, 1] and a graphon W : [0, 1]2 → [0, 1] so that159

lim
n→∞

∥Ωn − Ω∥∞ = 0, lim
n→∞

∥Wn −W∥□ = 0, lim
n→∞

∥dWn − dW ∥∞ = 0.160

Furthermore, the graphon W is such that for every ε > 0, there exists a δ > 0 so that for all x0 ∈ [0, 1] we161

have162 ∫ 1

0

|W (x, y)−W (x0, y)|dy < ε (3.1)163

when |x− x0| < δ and x ∈ [0, 1].164

Notice that the cut norm portion of Hypothesis 1 can be satisfied with high probability by taking Wn =165

WH(n,W ) or Wn = WG(n,W ) for all n ≥ 1, while Remark 1 indicates that many other such sequences exist.166

Furthermore, the previous section discussed conditions for the degree convergence, primarily coming from167

[42]. The condition (3.1) on W is used to prove compactness of the operator TW on the space C([0, 1]) and is168

necessary to our results. It can be easily verified in the case of continuous W , while [8, Appendix A] proves169

that it holds for piecewise continuous ring graphons. We now provide the following lemma that can be used170

to confirm the remaining portion of Hypothesis 1, with the proof left to Appendix A.171
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Lemma 3.1. Let Ω : [0, 1] → [−1, 1] be a continuous function and for each n ≥ 1 let {x1, x2, . . . , xn} be an172

ordered n-tuple of independent uniform random points drawn from [0, 1]. If the step function Ωn is assigned173

the value Ωn(x) = Ω(xj) for all x ∈ Inj and j = 1, . . . , n then174

lim
n→∞

∥Ωn − Ω∥∞ = 0175

almost surely.176

We now seek to quantify synchronous solutions of both (1.1) and (1.2) as roots of appropriate functions. A177

phase-locked solution to (1.2) takes the form θ(x, t) = Ωt+ u(x), with Ω ∈ R and u : [0, 1] → R, and solves178

F (u,Ω,K) = 0 where179

F (u,Ω,K) = Ω(x)− Ω+K

∫ 1

0

W (x, y) sin(u(y)− u(x))dy, (3.2)180

where the graphonW is fixed according to Hypothesis 1 above. One can find that any solution of F (u,Ω,K) =181

0 must have Ω =
∫ 1

0
Ω(x)dx. For sequences of step functions {Ωn}∞n=1 and {Wn}∞n=1 satisfying Hypothesis 1182

we will further define the step version of (3.2)183

Fn(u, ω
∗
n,K) = Ωn(x)− ω∗

n +K

∫ 1

0

Wn(x, y) sin(u(y)− u(x))dy, (3.3)184

for each n ≥ 1. If we further restrict u(x) to be a step function on the same steps as Ωn and Wn, solving185

Fn = 0 is equivalent to a finite-dimensional problem. This is because only the values u = {uj}nj=1 ∈ Rn on186

each step need to be found, thus solving Fn = 0 with u restricted to a step function is equivalent to solving187

[Gn(u, ω
∗
n,K)]j = 0 for each j = 1, . . . , n, where188

[Gn(u, ω
∗
n,K)]j = ωj − ω∗

n +
K

n

n∑
k=1

Aj,k sin(uk − uj), j = 1, . . . , n, (3.4)189

with ωj = Ω(xj) and Aj,k = W (xj , xk). Notice that roots of (3.4) lie in one-to-one correspondence with190

synchronous solutions of (1.1) as θj(t) = ω∗
nt+ uj for each j = 1, . . . , n.191

Since both (3.2) and (3.4) exhibit a translational invariance in the phase variables, it follows that solutions192

(if they exist) are never unique. To eliminate this redundancy, when considering solutions of equation (3.2)193

we will restrict to the space of mean-zero continuous functions, denoted194

X =

{
u ∈ C([0, 1]) :

∫ 1

0

u(x)dx = 0

}
, (3.5)195

and equipped with the supremum norm ∥ · ∥∞. We now present our first result.196

Theorem 3.2. Assume Hypothesis 1 and suppose that for a fixed K > 0 there exists u∗ ∈ X satisfying197

F (u∗,Ω,K) = 0 with Ω =
∫ 1

0
Ω(x)dx. Suppose further that the linearization of F about u∗ on X, denoted198

DF (u∗,Ω,K) : X → X, is invertible with bounded inverse. Then, for each ρ > 0, there exists an N ≥ 1199

such that for all n ≥ N there is a vector (u∗
n, ω

∗
n) ∈ Rn × R satisfying Gn(u

∗
n, ω

∗
n,K) = 0 and max{∥u∗

n −200

u∗∥∞, |Ω − ω∗
n|} < ρ, where u∗

n ∈ X is the step function representation of u∗
n over {Inj }nj=1. Furthermore,201

if u∗ is a stable solution of (3.2), then there exists an M ≥ 1 so that for all n ≥ max{N,M} the solution202
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(u∗
n, ω

∗
n) of (3.4) is stable as well.203

Theorem 3.2 describes the persistence of hyperbolic synchronous solutions to the graphon model (3.2) for204

fixed values of the coupling constant K. In particular, it states that if a hyperbolic solution of (3.2) exists,205

then with n taken sufficiently large, a similar synchronous solution can be found in (3.4) for the same coupling206

K. However, Theorem 3.2 does not deal with the onset of synchronization from a saddle-node bifurcation by207

varying the coupling coefficient K since, by definition, hyperbolicity is violated at such a bifurcation point.208

Thus, our second result will prove the persistence of such saddle-node bifurcations, under the following209

hypothesis.210

Hypothesis 2. There exists a Kcrit > 0 and u∗ ∈ X such that F (u∗,Ω,Kcrit) = 0 with Ω =
∫ 1

0
Ω(x)dx and211

the following properties212

i) The linear operator DF (u∗,Ω,Kcrit) : X → X has stable spectrum with the exception of a zero eigen-213

value with algebraic and geometric multiplicity one. Precisely, there exists a v∗ ∈ X normalized so that214 ∫ 1

0
[v∗(x)]2dx = 1 such that215

Ker(DF (u∗,Ω,Kcrit)) = span{v∗}.216

ii) The following non-degeneracy assumption holds:217 ∫ 1

0

∫ 1

0
W (x, y) sin(u∗(y)− u∗(x)) (v∗(y)− v∗(x))

2
v∗(x)dxdy∫ 1

0
(Ω(x)− Ω)v∗(x)dx

< 0. (3.6)218

The above assumption guarantees the existence of a saddle-node bifurcation in the graphon model at219

K = Kcrit. As shown in Lemma 5.1 below, the sign condition in Hypothesis 2(ii) implies the existence220

of steady-state synchronized solutions for K > Kcrit to (3.2). Alternately, one could reverse the sign to221

have synchronous solutions for K < Kcrit, but we have opted for the current presentation to best reflect our222

applications in the next section. Furthermore, we have assumed for simplicity that all other elements of the223

spectrum of DF (u∗,Ω,Kcrit) in X beyond the bifurcation eigenvalue are contained in the left half of the224

complex plane. These results are easily extended to the case where there is a finite collection of eigenvalues225

in the right half of the complex plane, but the reason we have chosen to omit this case is simply for the226

ease of presentation. No further technical hurdles exist should there be eigenvalues in the right half of the227

complex plane. We now present the following result which uses the notation Bδ(v) to denote the ball of228

radius δ > 0 about the vector v.229

Theorem 3.3. Assume Hypotheses 1 and 2. There exists a δ > 0 such that for all ρ > 0 there exists an230

N ≥ 1 so that for every n ≥ N the following is true. There is a Kcrit,n > 0 and vector (u∗
n, ω

∗
n) ∈ Rn × R231

satisfying Gn(u
∗
n, ω

∗
n,Kcrit,n) = 0 and max{∥u∗

n − u∗∥∞, |Ω−ω∗
n|, |Kcrit,n −Kcrit|} < ρ, where u∗

n ∈ X is the232

step function representation of u∗
n over {Inj }nj=1. Furthermore, there exists two smooth and distinct branches233

of solutions to Gn = 0 emanating from (u∗
n, ω

∗
n,Kcrit,n) ∈ Rn×R×R that exists for all K ∈ [Kcrit,n,Kcrit+δ],234

while there are no solutions of Gn = 0 in Bδ(u
∗
n, ω

∗
n,Kcrit,n) for all K ∈ (Kcrit − δ,Kcrit,n).235

The proofs of the above theorems are left to the latter sections of this paper, before which we demonstrate236

an application of our results in the following section. We will first prove Theorem 3.3 in Section 5. Then, in237

Section 6 we provide a commentary on the proof of Theorem 3.2 being similar, but ultimately simpler. That238
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is, the proof of Theorem 3.3 is shown to be a more involved version of Theorem 3.2 since one must account239

for the zero eigenvalue assumed by Hypothesis 2. This will be explained in more detail as one proceeds240

through the proof sections.241

4 Applications to Erdős–Rényi Networks242

In this section we apply our results to Erdős–Rényi networks. The goal here is to work with a simplified243

model that can elucidate much of our theory, while also providing some technical details that indicate that244

bifurcations to synchrony in the graphon model do not always come from a simple saddle-node bifurcation.245

That is, we see that different choices for the function Ω in (3.2) can lead to bifurcations to synchrony coming246

from the essential spectrum, which in turn means that our results in Theorem 3.3 cannot be applied as the247

assumptions are not satisfied. Nonetheless, away from these bifurcations our results in Theorem 3.2 can248

always be applied to demonstrate persistence of synchronous states onto large finite networks of coupled249

oscillators.250

4.1 Synchronous States and the Critical Threshold251

To begin, let us suppose that frequencies are drawn from a distribution with probability density function252

f : [−1, 1] → R. Then, the cumulative distribution function is given by253

F (x) =

∫ x

−1

f(s)ds, (4.1)254

so that the connection between the frequencies in (1.1) and the function Ω in (1.2) then comes from setting255

Ω(x) = F−1(x).256

Such a connection was already established in Ermentrout’s pioneering work [15]. Depending on the choice of257

Ω, our results herein return Ermentrout’s result to the finite-dimensional system to show that the Kuramoto258

critical coupling on large all-to-all networks is well-estimated by that of the graphon models’ for randomly259

distributed frequencies. This further complements the results of [13] which provides asymptotically non-260

sharp bounds in n on the critical coupling for all-to-all networks by providing the precise limiting critical261

coupling value as n → ∞ (with high probability).262

These results go beyond [13, 15] by being applicable to random networks as well. To illustrate, consider (1.2)263

with the Erdős–Rényi graphon W (x, y) = p, for some p ∈ (0, 1], for all (x, y) ∈ [0, 1]2. The corresponding264

finite-dimensional Kuramoto model (1.1) is posed on a randomly generated network G(n, p) which assigns265

edges Ai,j = Aj,i = 1 with probability p. The mean-field model takes the form266

∂θ

∂t
= Ω(x) +Kp

∫ 1

0

sin(θ(y, t)− θ(x, t))dy. (4.2)267

Note that with p = 1 we are in the all-to-all setting of [15], while p < 1 simply acts to scale the coupling268

coefficient in the mean-field model. Thus, we can provide the following adaptation of Ermentrout’s analysis269

to characterize the conditions that guarantee whether or not synchronous patterns exist in (1.2) with an270

Erdős–Rényi graphon.271
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Proposition 4.1. [15, Proposition 2] Let γ = sup |Ω(x) − Ω|/(Kp), where Ω =
∫ 1

0
Ω(x)dx. A solution to272

(4.2) is273

θ(x, t) = Ωt+ u(x) (4.3)274

where sin(u(x)) = [Ω(x)− Ω]/(Kpqγ) and (γ, q) are related through275

γ =
1

q2

∫ 1

−1

√
q2 − s2f(s)ds, (4.4)276

where f = d
dxΩ

−1 is the probability density function of the frequencies. If γ > 1, synchronization will not277

occur for this solution.278

Ermentrout goes on to study the synchronization threshold, i.e. the smallest value of K for which these279

synchronous solutions exist, using the equation (4.4). Indeed, the onset of synchronization happens at280

γ∗ = max
q≥1

1

q2

∫ 1

−1

√
q2 − s2f(s)ds, (4.5)281

which in turn leads to Kcrit = 1
pγ∗ , where we note the inclusion of the graphon probability parameter282

p ∈ (0, 1]. With this information, we provide the following lemma that can be used to verify the hypotheses283

of our main theorems. We draw the attention of the reader to [31, 32] for analogous stability results284

and calculations of the phase locked state in discrete and mean-field versions of the Kuramoto model. For285

simplicity, we will restrict ourselves to functions Ω that are odd over the midpoint x = 1/2, which is equivalent286

to considering probability distributions f that are even over [−1, 1]. This further gives that Ω = 0.287

Lemma 4.2. Suppose that Ω(x) is odd over x = 1/2, K ≥ Kcrit and let u∗(x) be the synchronous solution288

of (3.2) guaranteed by Proposition 4.1. Then, the spectrum of289

DF (u∗,Ω,K)v = Kp

∫ 1

0

cos(u∗(y)− u∗(x))[v(y)− v(x)]dy, (4.6)290

as an operator on X is real and broken into the essential and point spectrum (eigenvalues). Defining κ =291

Kpqγ and C =
∫ 1

0
cos(u∗(y))dy, we have292

1. The essential spectrum is given by the interval σess =
[
−KpC,−Kp

√
1− 1

κ2C
]

293

2. 0 is an eigenvalue of DF (u∗,Ω,K) on the space X if294

1

κC

∫ 1

0

Ω2(y)√
κ2 − Ω2(y)

dy = 1. (4.7)295

Moreover, the synchronous solution is stable if296

1

κC

∫ 1

0

Ω2(y)√
κ2 − Ω2(y)

dy < 1.297

Proof. The even symmetry of the cosine coupling function in the linearization DF (u∗,Ω,K) allows one to298

conclude that the operator is self-adjoint on L2. Thus, the spectrum is entirely real as an operator on L2.299
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Further, [8, Lemma 5.1] proves that the spectrum of this linearization is equivalent on L2 and C([0, 1]), and300

since X is a subspace of C([0, 1]), it follows that the spectrum of DF (u∗,Ω,K) : X → X is contained in the301

real line. We now proceed to characterize parts of this real spectrum and prove the stated proposition.302

First, recall from the discussion above that Ω =
∫ 1

0
Ω(x)dx = 0 since we are assuming that Ω(x) is odd303

over x = 1/2. Then, for K ≥ Kcrit we recall from Proposition 4.1 that u∗(x) = arcsin (Ω(x)/κ), where304

κ = Kpqγ ≥ 1 is as given in the statement of the lemma. Using the angle difference identity for cosine we305

obtain306

DF (u∗, 0,K)v = Kp cos(u∗(x))

∫ 1

0

cos(u∗(y))v(y)dy +Kp sin(u∗(x))

∫ 1

0

sin(u∗(y))v(y)dy

−
(
Kp cos(u∗(x))

∫ 1

0

cos(u∗(y))dy

)
v(x)

(4.8)307

A spectral decomposition of operators of this form on the Banach Space X was obtained in Lemma 4.1 of308

[8]. In particular, the essential spectrum σess, is comprised of the set of λ ∈ C lying in the range of the309

multiplication part of the operator. We therefore have310

σess =

[
−Kp

∫ 1

0

cos(u∗(y))dy,−Kp

√
1− 1

κ2

∫ 1

0

cos(u∗(y))dy

]
,311

which when κ > 1 the above interval is a strict subset of (−∞, 0), while for κ = 1 it includes the point 0.312

Next, we study the point spectrum (eigenvalues) of DF (u∗, 0,K). We therefore seek continuous functions313

v∗(x) such that DFv∗ = λv∗. To condense notation we let c(x) = cos(u∗(x)) and note that sin(u∗(x)) =314

Ω(x)/κ. It therefore holds that any eigenpair (v∗, λ) must satisfy315

λv∗(x) = Kpc(x)

∫ 1

0

c(y)v∗(y)dy +Kp
1

κ
Ω(x)

∫ 1

0

1

κ
Ω(y)v∗(y)dy −Kpc(x)v∗(x)

∫ 1

0

c(y)dy.316

Letting λ∗ = λ
Kp then we reduce to finding functions v∗ satisfying317

λ∗v∗(x) = Ac(x) +BΩ(x)− Cc(x)v∗(x), (4.9)318

where319

A =

∫ 1

0

c(y)v∗(y)dy

B =
1

κ2

∫ 1

0

Ω(y)v∗(y)dy

C =

∫ 1

0

c(y)dy.

(4.10)320

From (4.9) we find that321

v∗(x) =
Ac(x) +BΩ(x)

Cc(x) + λ∗ .322
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Now, since Ω(x) is odd over x = 1/2, it follows that c(x) is even over x = 1/2, and so we have the useful fact323 ∫ 1

0

c(y)Ω(y)

Cc(y) + λ∗ dy = 0324

With this fact we obtain the solvability conditions325

A = A

∫ 1

0

c2(y)

Cc(y) + λ∗ dy

B =
B

κ2

∫ 1

0

Ω(y)2

Cc(y) + λ∗ dy

(4.11)326

Focusing on the first integral in (4.11) we note that when λ∗ = 0 the condition reduces to327

1

C

∫ 1

0

c(y)dy = 1,328

which holds due to the definition of the constant C in (4.10). We therefore recover that v∗(x) = 1 is an329

eigenfunction of the operatorDF (u∗, 0,K) with eigenvalue zero, corresponding to the translational invariance330

in the phase variable. However, this function does not lie in the space X as it does not have mean zero. We331

therefore turn to the second integral in (4.11) and focus on solutions of I(λ∗) = 1 where332

I(λ∗) =
1

κ2

∫ 1

0

Ω2(y)

Cc(y) + λ∗ dy (4.12)333

From (4.11) the candidate function v∗(x) is an eigenfunction if I(λ∗) = 1. Taking λ∗ = 0 then requires one334

to solve335

1 =
1

κC

∫ 1

0

Ω2(y)√
κ2 − Ω2(y)

dy,336

as stated in the lemma. Finally, since eigenvalues occur whenever I(λ∗) = 0, the fact that ∂λ∗I(λ∗) < 0337

combined with I(0) < 1 implies stability of the synchronous solution. This completes the proof.338

One can see from the above result that if κ = 1 then the essential spectrum of the linearization DF (u∗,Ω,K)339

contains 0, thus meaning that neither of our results can be applied. As it turns out, not all bifurcations340

to synchrony in the graphon model (4.2) are the result of a simple saddle-node bifurcation, as described in341

Theorem 3.3, but can be attributed to bifurcations from the essential spectrum. In the following subsections342

we elucidate these cases in more detail for the reader, showing when our results can be applied and when343

they cannot.344

4.2 Bifurcations from the Essential Spectrum345

Let us begin by considering the case where frequencies are drawn from the uniform distribution on [−1, 1].346

In this case the probability density function is f(ω) = 1
2 , resulting in Ω(x) = 2x − 1. One can further find347

that γ∗ in (4.5) occurs when q = 1, meaning that κ = Kpqγ takes the value κ = 1 at the critical coupling348

Kcrit = 1
pγ∗ = 4

πp . Thus, we find that at this critical coupling parameter the essential spectrum of the349

linearization DF (u∗,Ω,Kcrit) does not satisfy the conditions to apply Theorem 3.3.350
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We can take this further by performing general calculations for any κ ≥ 1. With Ω(x) = 2x− 1 we first have351

that352

C =

∫ 1

0

√
1−

(
2x− 1

κ

)2

dx =
1

2κ

∫ 1

−1

√
κ2 − y2dy =

κ

4

[
arcsin

(y
κ

)
+

y

κ2

√
κ2 − y2

]1
−1

,353

so that354

C =
κ

2
arcsin

(
1

κ

)
+

1

2κ

√
κ2 − 1.355

On the other hand, computing the integral in (4.12) we obtain356

1

κ

∫ 1

0

(2x− 1)2√
κ2 − (2x− 1)2

dx =
1

κ

∫ 1

−1

y2√
κ2 − y2

dy =
1

κ

[
−y
√
κ2 − y2

]1
−1

+
1

2κ

∫ 1

−1

√
κ2 − y2dy.357

Notice that the final integral in the above expression is exactly C from above, and so putting this all together358

we obtain359

1

C

1

κ

∫ 1

0

Ω2(y)√
κ2 − Ω2(y)

dy = 1− 1

Cκ

√
κ2 − 1. (4.13)360

Thus, from Lemma 4.2 we see that there can only be a zero eigenvalue when κ = 1, which is the case361

discussed previously. The implication of these calculations is that for any κ > 1 the synchronous solution is362

spectrally stable with respect to perturbations in the Banach space X and further satisfies the conditions to363

apply Theorem 3.2.364

Our result in Theorem 3.2 can be applied to any K > Kcrit to provide stable synchronous solutions over365

random Kuramoto networks. However, since the essential spectrum of the linearization includes zero at366

K = Kcrit, we cannot analytically confirm the proximity of the onset of synchrony in random networks to367

that of the graphon model. Nonetheless, we are able to provide numerical results that appear to confirm that368

our results of Theorem 3.3 still hold. Figure 1 presents the identified critical coupling for 100 realizations369

of random Kuramoto models of size n = 50, 100, . . . , 1000, represented by black dots. We also provide the370

mean critical coupling value (red line) and the shaded region enclosed by blue lines represents one standard371

deviation from the mean. We provide results for all-to-all networks (p = 1) and Erdős–Rényi random372

networks (p = 0.5). For all-to-all networks the mean critical coupling at n = 1000 is 1.2758, compared with373

the graphon value of 4/π ≈ 1.2372, while the Erdős–Rényi networks have mean 2.6137, compared with their374

graphon value of 8/π ≈ 2.5465. While the relative error for Erdős–Rényi networks is only ∼ 2%, this larger375

value compared to the all-to-all networks is attributed to the slower convergence of Erdős–Rényi graphs to376

their graphon in the cut norm.377

We can also use Proposition 4.1 to compare the profiles of the synchronous solutions in random Kuramoto378

models to those of the graphon model (4.2). Figure 2 compares the graphon solution u(x) = arcsin(2x− 1)379

to the synchronous profiles on a n = 500 oscillator network at its critical coupling value. Synchronous380

solutions are plotted as {(xj , θj)}500j=1, where xj are drawn independently from the uniform distribution on381

[0, 1]. Recall that the frequencies are given by ωj = Ω(xj). Again, we see strong agreement with the graphon382

prediction, particularly in the case of all-to-all networks (p = 1). The Erdős–Renyi network (p = 0.5) shows383

more random fluctuations in the profile, coming from the random network topology, but still retains the384

same basic profile as that predicted by the graphon model.385

Having κ = 1 at the critical coupling value is not unique to uniformly distributed frequencies. In [15]386

Ermentrout identifies numerous distributions for which γ∗ occurs when q = 1, thus having the essential387
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Figure 1: Each black dot on both figures is the location of the critical coupling value of (1.1) on an Erdős–Rényi graph
with edge probability p = 1 (top) and p = 0.5 (bottom) and frequencies ωj drawn from the uniform distribution on
[−1, 1]. For each network size n there are 100 random realizations of system (1.1), with the red line representing the
mean across n and the shaded region bounded by blue dashed lines denoting one standard deviation from the mean.

spectrum of the linearization about the solution guaranteed by Proposition 4.1 touch the imaginary axis388

in the complex plane. Again we emphasize that our results in Theorem 3.2 can be applied away from389

K = Kcrit, while despite Theorem 3.3 not being applicable to describe the onset of synchrony in random390

Kuramoto networks, it appears that similar results to Theorem 3.3 still hold in this more complex situation391

of bifurcations from the essential spectrum.392

To better emphasize the point here, we provide another demonstration. Consider frequencies drawn from393

the Cauchy distribution, f(ω) = 2
π(1+ω2) , which in this case gives γ∗ ≈ 0.8284, occurring at q = 1 in394

(4.4). With this distribution (4.2) has Ω(x) = tan(π4 (2x − 1)), giving a synchronous solution profile of395

u(x) = arcsin(tan(π4 (2x− 1))) at the critical coupling value Kcrit ≈ 1/(0.8284p). Figure 3 presents the same396

results as Figure 2, but now with frequencies drawn from the Cauchy distribution. The all-to-all (p = 1)397

network of n = 500 oscillators has a critical coupling value of 1.2100, compared with Kcrit taking the value398

1.2071, while this realization of an Erdős–Rényi network (p = 0.5) of n = 500 oscillators has critical coupling399

2.4265, with Kcrit being 2.4272 (since p = 0.5 here).400
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Figure 2: Comparison of the synchronous solution at the critical coupling with n = 500 oscillators and frequencies
drawn from the uniform distribution (red dots) against the continuum synchronous profile θ(x) = arcsin(2x−1) (black
line) to (4.2). Synchronous solutions are plotted as {(xj , θj)}500j=1 with each xj drawn independently from the uniform
distribution on [0, 1] to generate the frequencies ωj = Ω(xj). Left: All-to-all coupling (p = 1). Right: Erdős–Rényi
random network (p = 0.5).

4.3 Co-dimension One Bifurcations to Synchrony401

We now turn our attention to the situation where the bifurcation to synchrony occurs through a saddle-402

node bifurcation due to an isolated eigenvalues crossing the imaginary axis. In particular, any probability403

distribution for which γ∗ in (4.5) occurs at a value q > 1 will necessarily give κ > 1, which in turn provides404

that the essential spectrum is bounded away from the imaginary axis per Lemma 4.2. This then allows for405

the application of our results in Theorem 3.3, while away from any bifurcation point we further have the406

persistence results of Theorem 3.2.407

For example, consider frequencies drawn from the distribution with density408

f(ω) =
1

π
√
1− ω2

, (4.14)409

which has cumulative distribution function F (ω) = 1
2 − 1

π arcsin(ω) and in turn gives Ω(x) = − cos(πx). In410

this case one may compute that γ∗ ≈ 0.6715, occurring at q ≈ 1.1002. Since the maximizing value of q is411

larger than 1, it follows that at Kcrit ≈ 1.4892/p we have κ < 1. Moreover, we can check that the zero412

eigenvalue condition (4.7) is true, thus giving a standard saddle-node bifurcation at Kcrit to synchronous413

solutions in the graphon model. At K = Kcrit we have κ = q ≈ 1.1002, which gives414

C =

∫ 1

0

√
1− cos2(πy)/κ2dy ≈ 0.7388

=⇒ 1

κC

∫ 1

0

cos2(πy)√
κ2 − cos2(πy)

dy ≈ 1.0000,

415

thus at least numerically confirming the presence of a zero eigenvalue at K = Kcrit which is separated from416

the essential spectrum.417

In Figure 4 we see our results in application through the continuation of synchronous solutions in an n =418
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Figure 3: Comparison of the synchronous solution at the critical coupling with n = 500 oscillators and fre-
quencies drawn from the distribution with density (4.14) (red dots) against the continuum synchronous profile
θ(x) = arcsin(tan(π

4
(2x − 1))) (black line) to (4.2). Synchronous solutions are plotted as {(xj , θj)}500j=1 with each

xj drawn independently from the uniform distribution on [0, 1] to generate the frequencies ωj = Ω(xj). Left: All-to-all
coupling (p = 1). Right: Erdős–Rényi random network (p = 0.5).

500 oscillator Kuramoto model on an Erdős–Rényi network with p = 0.5 and frequencies drawn from the419

distribution with density given by (4.14). We plot the order parameter, given by420

r =
1

n

∣∣∣∣ n∑
j=1

eiθj
∣∣∣∣, (4.15)421

at a synchronous solution against the coupling coefficient K. The bifurcation to synchrony in Figure 4422

comes from a saddle-node bifurcation at K ≈ 3.0328, a 2% relative error from the graphon prediction of423

Kcrit ≈ 2.9784. By following the eigenvalues of the Kuramoto system linearized about the synchronous424

solution, we find that a single eigenvalue crosses zero at the critical coupling point (denoted by a red dot)2.425

The synchronous solutions along the upper curve in the bifurcation diagram are the finite-dimensional426

analogues of the graphon solution u∗ given in Proposition 4.1, as guaranteed to exist by Theorem 3.2.427

The synchronous solution at the saddle-node bifurcation point is plotted in Figure 5 and compared to428

θ(x) = arcsin(− cos(πx)/1.1002), coming from Proposition 4.1 at q = 1.1002. For further comparison, we429

also plot a solution from an all-to-all network (p = 1) at its critical coupling point K ≈ 1.4756, with a 1%430

relative error of the graphon model prediction of Kcrit ≈ 1.4892. We do not include a bifurcation diagram431

for this case as it is nearly identical to that in Figure 4.432

5 Proof of Theorem 3.3433

In this section, we prove Theorem 3.3. In particular, we show that under Hypotheses 1 and 2 a saddle-node434

bifurcation to synchrony in the graphon model (1.2) implies the existence of a saddle-node bifurcation to435

synchrony in the discrete model (1.1) for n ≫ 1 occurring at a critical coupling constant Kcrit,n → Kcrit as436

2There is always an eigenvalue at 0 that corresponds to the translational invariance of the Kuramoto system. Our analysis
is performed in the space X precisely to quotient out this eigenvalue.

15



Figure 4: Left: Continuation of synchronous solutions in n = 500 oscillator random Kuramoto model on an Erdős–
Rényi network with p = 0.5 and frequencies distributed according to the density (4.14). Plotted is the order parameter
(4.15) versus the coupling coefficient K with a saddle-node bifurcation leading to onset of synchronization denoted by
a red dot at K ≈ 3.0328. Linearized stability is indicated by a solid curve, while unstable solutions are along dashed
curves. Right: Eigenvalues of the linearization about the synchronous solution at two points along the bifurcation
curve indicated by green squares, showing a single eigenvalue cross at the bifurcation point (emphasized in green).
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Figure 5: Comparison of the synchronous solution at the critical coupling with n = 500 oscillators and fre-
quencies drawn from the Cauchy distribution (red dots) against the continuum synchronous profile θ(x) =
arcsin(− cos(πx)/1.1002) (black line) to (4.2). Synchronous solutions are plotted as {(xj , θj)}500j=1 with each xj drawn
independently from the uniform distribution on [0, 1] to generate the frequencies ωj = Ω(xj). Left: All-to-all coupling
(p = 1). Right: Erdős–Rényi random network (p = 0.5).
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n → ∞. We consider the graphon equation437

du

dt
= Ω(x)− Ω+K

∫ 1

0

W (x, y) sin(u(y, t))− u(x, t)))dy, (5.1)438

with Ω =
∫ 1

0
Ω(x)dx fixed throughout. Then, as in Section 3, we define439

F (u,K) = Ω(x)− Ω+K

∫ 1

0

W (x, y) sin(u(y)− u(x))dy,440

where we suppress the dependence of F on Ω since it is fixed throughout. By definition, steady-state solutions441

of (5.1) at a fixed value of K correspond to solutions of the equation F (u,K) = 0.442

To analyze the discrete problem we re-cast the adjacency matrix A ∈ Rn×n as a step-graphon Wn : [0, 1]2 →443

[0, 1] and study the nonlocal equation444

dun

dt
= Ωn(x)− ω∗

n +K

∫ 1

0

Wn(x, y) sin(un(y, t)− un(x, t))dy, (5.2)445

where ω∗
n =

∫
Ωn(x)dx is also fixed throughout and Wn(x, y) is the step graphon representation of the graph.446

Notice that with this choice of ω∗
n we have447

|Ω− ω∗
n| =

∣∣∣∣ ∫ 1

0

[Ω(x)− Ωn(x)]dx

∣∣∣∣→ 0,448

as n → ∞, coming from the assumption that ∥Ω− Ωn∥∞ → 0 as n → ∞ in Hypothesis 1.449

This section is broken down as follows. First, in § 5.1 we provide a center manifold reduction for (5.1) and450

prove that a saddle-node bifurcation takes place at Kcrit when we assume Hypothesis 2. Then, in § 5.2451

we perform a similar center manifold reduction for the step graphon model (5.2), in turn showing that a452

saddle-node bifurcation takes place at Kcrit,n nearby Kcrit when n ≫ 1. Finally, in § 5.3 we show that our453

obtained solutions to (5.2) are piecewise constant on the intervals {Inj }nj=1, which in turn yields that they454

correspond to steady-states of the finite-dimensional equation (3.4), completing the proof.455

5.1 Center manifold Reduction for the Graphon Equation456

Hypothesis 2 outlines sufficient conditions so that the graphon equation (5.1) undergoes a saddle-node457

bifurcation describing the emergence of a stable synchronized state when the coupling constant K exceeds458

the critical coupling constant Kcrit > 0. Associated to this bifurcation is a local center manifold on which459

the reduced dynamics can be written in the canonical/normal form of a saddle-node bifurcation. Our main460

result will show that, for n ≫ 1, the random graph system will also undergo a saddle-node bifurcation461

to synchrony at some critical value Kcrit,n near Kcrit. The construction of a center manifold in that case462

will rely on properties of the center manifold for the graphon equation. Therefore, in this subsection we463

will review the construction of a center manifold for the graphon equation (5.1) and the associated reduced464

dynamics on that center manifold.465
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Recall the definition of the closed subspace X of mean-zero functions in C([0, 1]), introduced earlier as466

X =

{
u ∈ C([0, 1]) |

∫ 1

0

u(x)dx = 0

}
.467

Note that F maps the Banach Space X back into itself. Now, by assumption we have there is some468

u∗ ∈ X so that at K = Kcrit that F (u∗,Kcrit) = 0. Let L denote the linearization of F about u∗ at469

(K,Ω) = (Kcrit,
∫ 1

0
Ω(x)dx), acting on functions v ∈ X by470

Lv = Kcrit

∫ 1

0

W (x, y) cos(u∗(y)− u∗(x))(v(y)− v(x))dy. (5.3)471

We now state the center manifold result for the graphon equation.472

Lemma 5.1. Under the assumptions of Hypothesis 2, there exists δ > 0 and a decomposition X = Xc ⊕Xs
473

so that the system (5.1) has a local center manifold described by the graph Ψ : Xc× [Kcrit−δ,Kcrit+δ] → Xs.474

The graph is Ck for any k > 2. Letting K = Kcrit+ K̃ with K̃ ∈ [−δ, δ], the reduced dynamics on this center475

manifold are described by the scalar ordinary differential equation476

dwc

dt
= aK̃ + bw2

c +O(w3
c , K̃wc, K̃

2),477

where478

a = − 1

Kcrit

∫ 1

0

[Ω(x)− Ω]v∗(x)dx =

∫ 1

0

∫ 1

0

W (x, y) sin (u∗(y)− u∗(x)) v∗(x)dydx479

b = −Kcrit

2

∫ 1

0

∫ 1

0

W (x, y) sin(u∗(y)− u∗(x)) (v∗(y)− v∗(x))
2
v∗(x)dydx. (5.4)480

Finally, sign (ab) < 0.481

Proof. The result follows from an application of [18, Theorem 3.3]. We verify that our system satisfies482

the conditions required for this result in Appendix B. We emphasize that the center manifold is local and483

only valid in some neighborhood of the origin. This requires the use of a cut-off function applied to the484

nonlinearity to control the Lipschitz constant of the nonlinearity; see Appendix B of [18] and [41].485

The sign condition on the coefficients a and b ensures that bifurcating steady-states exist for K > Kcrit486

as assumed in Hypothesis 2, while a reversal of the sign would simply give that the steady-states exist for487

K < Kcrit but not effect any other portion of the proof.488

5.2 Center-Manifold Reduction for the Step Case489

We now turn our attention to the step function Kuramoto system (5.2). We will derive center manifold490

results in analogy to the one obtained for the graphon equation (5.1) that hold for all n ≫ 1. That is,491

in this section we will prove the existence of a center manifold and perform a reduction to it for the step492

function model (5.2), eventually proving the existence of a saddle-node bifurcation for (5.2) occurring in a493

neighborhood of the graphon bifurcation point (Kcrit, u
∗(x)).494
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To begin, let495

un(t, x) = u∗(x) + vn(t, x), K = Kcrit + K̂.496

Then the perturbation vn satisfies the equation497

dvn
dt

= Fn(un,K) := Ωn(x)− ω∗
n + (Kcrit + K̂)

∫ 1

0

Wn(x, y) sin(u
∗(y) + vn(t, y)− u∗(x)− vn(t, x))dy, (5.5)498

where we again suppress the dependence on the frequency ω∗
n since it will be fixed for each n ≥ 1 throughout.499

We perform our analysis in the Banach Space Xn given by500

Xn =

{
u ∈ L∞

∣∣∣∣ ∫ 1

0

u(x)dx = 0 and u(x) is continuous on each interval

[
i− 1

n
,
i

n

)}
. (5.6)501

The linearization of Fn about (u∗,Kcrit) is thus denoted as Ln and acts on functions v ∈ Xn by502

Lnv := DFn(u
∗,Kcrit)v = Kcrit

∫ 1

0

Wn(x, y) cos(u
∗(y)− u∗(x))(v(y)− v(x))dy,503

The following lemma characterizes the spectrum of the linear operator Ln. Recall that v
∗ ∈ X is the kernel504

element of DF (u∗,Kcrit).505

Lemma 5.2. There exists constants ζ > 0, r ∈ (0, ζ), and ε0 ∈ (0, ζ − r) such that for all ε ∈ (0, ε0) there506

exists an N ≥ 1 such that for all n ≥ N the following is true:507

1. The linear operator Ln : Xn → Xn has a simple eigenvalue λn with |λn| < ε,508

2. The associated eigenfunction v∗n(x) ∈ Xn, normalized such that
∫ 1

0
[v∗n(x)]

2dx = 1, satisfies509

∥v∗n − v∗∥∞ < ε, (5.7)510

for all n ≥ N ,511

3. The remainder of the spectrum lies in the ball {z ∈ C | |z + ζ| < r}, and512

4. The spectral projection onto v∗n is513

P c
nf = v∗n(x)

∫ 1

0

f(y)v∗n(y)dy = v∗n(x)⟨f, v∗n⟩,514

with the stable projection defined via P s
n = I − P c

n.515

Proof. The proof mimics that of Lemma 5.1 and 5.2 of [8] and so we sketch the argument here. First, from516

[8, Lemma 5.1] the spectrum of the linear operator L is equivalent on C([0, 1]) and L2([0, 1]). Next, the517

arguments in [8, Lemma 5.2] give that ∥L − Ln∥2→2 → 0 as n → ∞. This follows from the assumption518

that ∥Wn − W∥□ → 0, ∥dWn − dW ∥∞ → 0, and ∥Ω − Ωn∥∞ → 0 as n → ∞ in Hypothesis 1. Recall519

that Hypothesis 2 gives that L has a single eigenvalue at 0 with eigenfunction v∗ with the remainder of520

the spectrum bounded away from the imaginary axis. Putting all of this together gives that there exists521

constants ζ > 0, r ∈ (0, ζ), and ε0 > 0 so that Bε0(0) ∩ {z ∈ C | |z + ζ| < r} is empty and, due to [22,522
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Theorem IV.3.1], for any ε ∈ (0, ε0) there exists a N sufficiently large so that for any n ≥ N the spectrum523

of Ln : Xn → Xn is contained in the set {z ∈ C | |z + ζ| < r} ∪Bε(0). The fact that Bε(0) contains a single524

isolated eigenvalue of Ln : Xn → Xn with algebraic multiplicity one follows from [22, Theorem IV.3.16].525

This result also implies that ∥v∗n − v∗∥2 → 0.526

To obtain (5.7) we decompose the linear operators into the sum of a multiplication operator and an integral527

operator as528

Lv = Q(x)v + T [v]

Lnv = Qn(x)v + Tn[v].
(5.8)529

Note that the essential spectrum of L is exactly the range of Q(x); see [8, Lemma 4.1]. Thus, Q(x) ̸= 0 since530

the essential spectrum is assumed to be stable and belongs to the ball {z ∈ C | |z + ζ| < r}. Then,531

Lv∗ − Lnv
∗
n = Q(x)v∗(x) +

∫ 1

0

W (x, y) cos(u∗(y)− u∗(x))v∗(y)dy −Qn(x)v
∗
n(x)

−
∫ 1

0

Wn(x, y) cos(u
∗(y)− u∗(x))v∗n(y)dy

= Q(x)(v∗(x)− v∗n(x)) + (Q(x)−Qn(x))v
∗
n(x)

+

∫ 1

0

(W (x, y)−Wn(x, y)) cos(u
∗(y)− u∗(x))v∗(y)dy

+

∫ 1

0

Wn(x, y) cos(u
∗(y)− u∗(x))(v∗(y)− v∗n(y))dy.

(5.9)532

Since Lv∗ − Lnv
∗
n = λnv

∗
n we rearrange the above to obtain533

Q(x)(v∗(x)− v∗n(x)) = λnv
∗
n + (Qn(x)−Q(x))v∗n(x)

−
∫ 1

0

(W (x, y)−Wn(x, y)) cos(u
∗(y)− u∗(x))v∗(y)dy

−
∫ 1

0

Wn(x, y) cos(u
∗(y)− u∗(x))(v∗(y)− v∗n(y))dy.

(5.10)534

Then ∥v∗ − v∗n∥∞ may now be controlled by the supremum norms of the terms on the right hand side of the535

previous equation. In particular, |λn| → 0 as just shown and ∥Qn(x)−Q(x)∥∞ → 0 due to [8, Lemma 4.10].536

Since v∗ ∈ C([0, 1]) we also have that537 ∥∥∥∥∫ 1

0

(W (x, y)−Wn(x, y)) cos(u
∗(y)− u∗(x))v∗(y)dy

∥∥∥∥
∞

538

can be made arbitrarily small by taking n sufficiently large; see [8, Lemma 4.7]. Also, Hölder’s inequality539

implies540

lim
n→∞

∥∥∥∥∫ 1

0

Wn(x, y) cos(u
∗(y)− u∗(x))(v∗(y)− v∗n(y))dy

∥∥∥∥
∞

≤ lim
n→∞

∥v∗ − v∗n∥2 = 0.541
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We apply a similar argument to Lnv
∗
n = λnv

∗
n, re-writing to obtain542

v∗n(x) = − 1

Qn(x)− λn

∫ 1

0

Wn(x, y) cos(u
∗(y)− u∗(x))v∗n(y)dy.543

Then after noting that Qn(x)−λn ̸= 0 applying Hölder’s inequality to the second term proves that ∥v∗n∥2 = 1544

implies uniform boundedness of ∥v∗n∥∞ for all large n, which in turn can be used to show that both ∥λnv
∗
n∥∞545

and ∥(Qn −Q)v∗n∥∞ converge to 0 as n → ∞. This completes the proof.546

547

Remark 2. For an N ≥ 1 sufficiently large, Lemma 5.2 provides the following decomposition of the space548

Xn for all n ≥ N :549

Xn = Xc
n ⊕Xs

n, Xs
n = Rng(P s

n) = ker(P c
n) ⊂ Xn.550

Moving forward we will let Ls
n = Ln|Xs

n
, the restriction of L to the stable space Xs

n.551

We now proceed to transform system (5.5) into a form suitable for an application of the parameter-dependent552

center manifold theorem. The first step is to introduce new coordinates so that the transformed system553

dṽn
dt

= Hn(ṽn, K̃), (5.11)554

satisfies Hn(0, 0) = 0. To accomplish this, we will find solutions of the equations555

0 = ⟨Fn(u
∗ + vn,Kcrit + K̂), v∗n⟩

0 = P s
n

(
Fn(u

∗ + vn,Kcrit + K̂)
)
.

(5.12)556

Denote the system (5.12) as Hn(K̂, vn) where Hn : R×Xs
n → R×Xs

n.557

Lemma 5.3. There exists an N ≥ 1 such that for any n ≥ N there exist K∗
n ∈ R and ϕs

n ∈ Xs
n such that558

Hn(K
∗
n, ϕ

s
n) = 0.559

Additionally, it holds that560

lim
n→∞

|K∗
n| = 0, lim

n→∞
∥ϕs

n∥∞ = 0. (5.13)561

Proof. Begin by taking N large enough to guarantee that the results of Lemma 5.2 holds for all n ≥ N .562

Thus, we may assume for the remainder of the proof that the spectrum of Ls
n is contained in the set563

{z ∈ C | |z + ζ| < r}. This set avoids the imaginary axis and therefore Ls
n is invertible as an operator on564

Xs
n.565

Consider n large and fixed. We proceed as in the proof of the implicit function theorem. Expand566

Hn(K̂, ϕ) = Hn(0, 0) +DHn(0, 0)

(
K̂

ϕ

)
+Nn(K̃, ϕ),567

where568

DHn(0, 0) =

(
⟨Wn[u

∗], v∗n⟩ 0

P s
nWn[u

∗] Ls
n

)
,569
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where we have introduced the notation Wn[u
∗] =

∫ 1

0
Wn(x, y) sin(u

∗(y)−u∗(x))dy. We require DHn(0, 0) to570

be invertible, and since Ls
n is invertible onXs

n, we see thatDHn(0, 0) is invertible if and only if ⟨Wn[u
∗], v∗n⟩ ≠571

0. Perform the following expansion:572

⟨Wn[u
∗], v∗n⟩ = ⟨W[u∗], v∗⟩+ ⟨Wn[u

∗]−W[u∗], v∗n⟩+ ⟨W[u∗], v∗n − v∗⟩,573

where we have introduced the shorthand W[u∗] =
∫ 1

0
W (x, y) sin(u∗(y)− u∗(x))dy for simplicity. Note that574

W[u∗] = −K−1
crit(Ω(x) − Ω), while the non-degeneracy condition (3.6) in Hypothesis 2 guarantees that the575

denominator, ⟨Ω(x) − Ω, v∗⟩, is nonzero. Consequently, ⟨W[u∗], v∗⟩ ≠ 0. Recalling that 0 ≤ W (x, y) ≤ 1,576

combining Lemma 5.2 and Hölder’s inequality gives that for any ε > 0 we have the bound |⟨W[u∗], v∗n−v∗⟩| ≤577

ε for all n sufficiently large. Next, we have that578

⟨Wn[u
∗]−W[u∗], v∗n⟩ =

∫ 1

0

∫ 1

0

[Wn(x, y)−W (x, y)] sin(u∗(y)− u∗(x))v∗n(x)dydx

=

∫ 1

0

v∗n(x)

∫ 1

0

[Wn(x, y)−W (x, y)] sin(u∗(y)− u∗(x))dydx

(5.14)579

The assumption that ∥dW − dWn
∥∞ → 0 as n → ∞ then implies that580

lim
n→∞

sup
x∈[0,1]

∣∣∣∣∫ 1

0

[Wn(x, y)−W (x, y)] sin(u∗(y)− u∗(x))dy

∣∣∣∣ = 0, (5.15)581

as shown in [8, Lemma 4.7]. These facts combine to imply that, by perhaps taking n larger than the N582

required for Lemma 5.2, ⟨Wn[u
∗], v∗n⟩ ≠ 0 and therefore DHn(0, 0) is invertible for all n sufficiently large. In583

addition to invertibility, we require that the operator norm of DHn(0, 0)
−1 is uniformly bounded in n. We584

will verify that (Ls
n)

−1 is uniformly bounded in n which will then imply the same for DHn(0, 0)
−1. First,585

note that since the spectrum of Ls
n is contained in the ball |z + ζ| < r; see Lemma B.1, then Ls

n can be586

inverted by Neumann series as587

(Ls
n)

−1w =

∞∑
k=0

(
Ls
n + ζ

ζ

)k (−w

ζ

)
.588

We then have that589

(Ls
n)

−1 =
[
I − (Ls − Ls

n)(L
s)−1

]−1
(Ls)−1.590

Since ∥Ls − Ls
n∥2→2 → 0 as n → ∞ then we then obtain that ∥(Ls

n)
−1∥2→2 is uniformly bounded in n.591

Suppose for the sake of contradiction that (Ls
n)

−1 is not uniformly bounded in n as an operator on Xs
n. This592

would imply that there exists a sequence wn ∈ Xs
n for which ∥wn∥∞ = 1 but for which ∥(Ls

n)
−1wn∥∞ → ∞593

as n → ∞. Let vn = (Ls
n)

−1wn. Then ∥wn∥2 ≤ ∥wn∥∞ and ∥vn∥2 is uniformly bounded in n. Then594

Ls
nvn = wn assumes the form595

wn = P s
n

[
Kcrit

∫ 1

0

Wn(x, y) cos (u
∗(y)− u∗(x)) (vn(y)− vn(x))dy

]
.596
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We then re-arrange to solve implicitly597

vn = wn

Qn(x)
+ Kcrit

Qn(x)

∫ 1

0
Wn(x, y) cos (u

∗(y)− u∗(x)) vn(y)dy +
1

Qn(x)

∫ 1

0
Qn(y)vn(y)v

∗
n(y)dy598

− Kcrit

Qn(x)

∫ 1

0

∫ 1

0
Wn(x, y) cos (u

∗(y)− u∗(x)) vn(y)v
∗
n(x)dydx, (5.16)599

where we recall that Qn(x) is the multiplication part of the operator Ln which is uniformly bounded away600

from zero for n sufficiently large; see Lemma B.1. Hölder’s inequality applied to the three integrals in (5.16)601

then implies that uniform boundedness of vn in L2([0, 1]) implies uniform boundedness in Xs
n.602

We now consider Hn(0, 0), given by603

Hn(0, 0) =

(
⟨Ωn(x)− ω∗

n +KcritWn[u
∗], v∗n⟩

P s
n (Ωn(x)− ω∗

n +KcritWn[u
∗])

)
.604

Note that605

Ωn(x)− ω∗
n +KcritWn[u

∗] = Ωn(x)− ω∗
n +Kcrit(Wn[u

∗]−W[u∗]) +KcritW[u∗]

= Ωn(x)− Ω(x) + Ω− ω∗
n +Kcrit(Wn[u

∗]−W[u∗]).
606

By assumption we have that ∥Ω− Ωn∥∞ → 0 as n → ∞, which further gives that |Ω− ω∗
n| → 0 as n → ∞.607

Combining these facts with the estimate (5.15) gives608

lim
n→∞

∥Ωn(x)− ω∗
n +KcritWn[u

∗]∥∞ = 0,609

which then implies that ∥Hn(0, 0)∥∞ → 0 as n → ∞.610

Next, consider the operator611

Tn(K̂, ϕ) = − (DHn(0, 0))
−1 Hn(0, 0)− (DHn(0, 0))

−1 Nn(K̂, ϕ).612

We will show that this operator is a contraction on the Banach space Zn = R⊕Xs
n, where a z = (z1, z2) ∈ Zn613

with z1 ∈ R and z2 ∈ Xs
n and Zn is endowed with the norm ∥(z1, z2)∥Zn

:= max{|z1|, ∥z2∥∞}. Define614

hn = − (DHn(0, 0))
−1 Hn(0, 0).615

Since DHn(0, 0) is boundedly invertible on Zn and ∥Hn(0, 0)∥∞ → 0, we have that ∥hn∥Zn
→ 0 as n → ∞616

as well.617

The nonlinear terms further satisfy the following estimate618

∥N (K̂, ϕ)∥∞ ≤ C1|K̂|∥ϕ∥∞ + C2∥ϕ∥2∞, (5.17)619

for some fixed positive constants C1 and C2. Next, let (K̂, ϕ) ∈ Bρ(0) = {z ∈ Zn| ∥z∥Zn
< ρ} ⊂ Zn for some620

ρ ∈ (0, 1) to be selected subsequently. Then, the estimates on the nonlinear terms give the bound621

∥Tn(K̂, ϕ)∥∞ ≤ ∥hn∥∞ +
∥∥DHn(0, 0)

−1
∥∥(C1|K̂|∥ϕ∥∞ + C2∥ϕ∥2∞

)
≤ ∥hn∥Zn + C̃1ρ

2,
(5.18)622
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for some C̃1 > 0 independent of ρ so long as ρ < 1.623

Now, let za and zb be any two elements of Bρ(0). A similar chain of reasoning to what was carried out above624

leads to the estimate625

∥Tn(za)− Tn(zb)∥Zn ≤ C̃2ρ∥za − zb∥Zn , (5.19)626

for some fixed constant C̃2 > 0 independent of ρ so long as ρ < 1. Taking ρ = min{ 1
2max{C̃1,C̃2}

, 1
2}.627

Then since ∥hn∥∞ → 0, we find that for all n taken sufficiently large, the above estimates guarantee that628

∥hn∥∞ < ρ
2 and we have that Tn : Bρ(0) → Bρ(0) is a contraction on Zn with contraction constant at most629

1
2 . Therefore, for all n taken sufficiently large there exists a unique fixed point (K̃∗

n, ϕ
∗
n) ∈ Bρ(0).630

We conclude by establishing the convergence facts stated in (5.13). A priori, the contraction mapping631

theorem only states that these fixed points lie in Bρ(0). However, if we define sn = Tnhn we can combine632

the fact that ∥hn∥Zn
→ 0 with the bounds on the nonlinear term in (5.17) to find that ∥sn∥Zn

→ 0 as633

well. Then a corollary of the contraction mapping theorem implies that the fixed point (K̃∗
n, ϕ

∗
n) satisfies634

∥(K̃∗
n, ϕ

∗
n) − sn∥Zn ≤ κ

1−κ∥hn − sn∥Zn where κ is the contraction constant associated to the contraction635

mapping. We therefore obtain636

∥(K̃∗
n, ϕ

∗
n)− sn∥Zn

≤
1
2

1− 1
2

∥hn − sn∥Zn
637

which in turn can be rearranged to find that638

∥(K̃∗
n, ϕ

∗
n)∥Zn ≤ ∥hn∥Zn + 2∥sn∥Zn .639

Since we have already established that ∥hn∥Zn
, ∥sn∥Zn

→ 0 as n → ∞, we arrive at the results (5.13). This640

completes the proof of the lemma.641

We now consider the following transformations642

vn = ϕs
n + ṽn

K = Kcrit +K∗
n + K̃.

(5.20)643

Define Hn : Xn × R → Xn so that ṽn solves (5.11) with644

Hn(ṽn, K̃) = Ωn − ω∗
n + (Kcrit +K∗

n + K̃)Wn [u
∗ + ϕs

n + ṽn] ,645

where we continue with the notation Wn[u] =
∫ 1

0
Wn(x, y) sin(u(y) − u(x))dy introduced in the previous646

proof. According to Lemma 5.3 it follows that Hn(0, 0) = 0. Moreover,647

DṽnHn(0, 0) = (Kcrit +K∗
n)DWn[u

∗ + ϕs
n]

DK̃Hn(0, 0) = Wn[u
∗ + ϕs

n].
(5.21)648

Lemma 5.4. Let L̃n = DṽnHn(0, 0). For all ε > 0 there exists an Ñ ≥ 1 such that for all n ≥ N the linear649

operator L̃n : Xn → Xn has a simple eigenvalue λ̃n with |λ̃n| < ε and associated eigenfunction ṽ∗n(x) ∈ Xn,650
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normalized so that ⟨ṽ∗n, ṽ∗n⟩ = 1, satisfying651

∥v∗n − ṽ∗n∥∞ < ε, (5.22)652

Furthermore, the remainder of the spectrum lies in the ball653

{z ∈ C | |z + ζ| < r}654

and the spectral projection onto the eigenspace of the isolated eigenvalue λ̃n is655

P̃ c
nf = ṽ∗n(x)

∫ 1

0

f(y)ṽ∗n(y)dy = ṽ∗n(x)⟨f, ṽ∗n⟩.656

A stable projection is defined via P̃ s
n = I − P̃ c

n.657

Proof. Write658

L̃n = Ln +K∗
nDWn[u

∗ + ϕs
n] +Kcrit (DWn[u

∗ + ϕs
n]−DWn[u

∗]) .659

By (5.13) it follows that660

∥L̃n − Ln∥∞→∞ → 0,661

as n → ∞. The result then follows from spectral convergence results as in [22, Theorem IV.3.1 and Theorem662

IV.3.16].663

We now decompose the solution into664

ṽn(t, x) = wc
n(t)ṽ

∗
n(x) + ṽsn(t, x),665

where wc
n ∈ R and ṽsn ∈ X̃s

n.666

Proposition 5.5. There exists an N ≥ 1 and an ε > 0 such that for any n ≥ N there exists667

1. open neighborhoods Bc
ε(0) ⊂ X̃c

n and Bs
ε(0) ⊂ X̃s

n,668

2. an open interval IK = (−ε, ε), and669

3. for any k > 2, a Ck mapping Ψn : R× R× R → X̃s
n,670

such that the manifold671

Mn =
{
wc

nṽ
∗
n +Ψn(w

c
n, K̃, λ̃n) | wc

n ∈ R
}
, (5.23)672

is a locally invariant center manifold. For any fixed |K̃| < ε, Mn contains all solutions in Bc
ε(0) × Bs

ε(0)673

which remain bounded for all time.674

Moreover, we obtain the following facts regarding the reduced flow on the center manifold and the description675

of the manifold itself:676

i) The center manifold admits the following expansion677

Ψn(w
c
n, K̃, λ̃n) = Ψn,010K̃ +O

((
wc

n + K̃ + λ̃n

)2)
, (5.24)678
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for some Ψn,010 ∈ X̃s
n.679

ii) The reduced equation on the center manifold assumes the form680

dwc
n

dt
= λ̃nw

c
n + anK̃ + bn(w

c
n)

2 +O(wc
nK̃, wc

nλ̃n, K̃
2, |wc

n + K̃ + λ̃n|3) (5.25)681

where682

an =

∫ 1

0

∫ 1

0

Wn(x, y) sin (u
∗(y) + ϕs

n(y)− u∗(x) + ϕs
n(x)) ṽ

∗
n(x)dydx

bn = −Kcrit +K∗
n

2

∫ 1

0

∫ 1

0

Wn(x, y) sin (u
∗(y) + ϕs

n(y)− u∗(x) + ϕs
n(x)) (ṽ

∗
n(y)− ṽ∗n(x))

2
ṽ∗n(x)dydx.

(5.26)

683

Furthermore, an → a and bn → b as n → ∞.684

Proof. The function Hn is a Ck mapping for any k > 0 so the existence of a Ck center manifold follows [18,685

Theorem 3.3]. The proof is presented in Appendix C.686

Corollary 5.6. For all sufficiently large n, the discrete equation (5.2) has a saddle-node bifurcation at687

coupling parameter Kcrit,n satisfying688

lim
n→∞

|Kcrit,n −Kcrit| = 0.689

Proof. We examine the reduced flow within the center manifold given in (5.25). Recall from Lemma 5.4 that690

for n ≫ 1 the eigenvalue λ̃n is small. Thus, we take n sufficiently large to apply the results of our previous691

findings and then introduce the rescalings692

λn = ηµ, wc
n = ηz, K̃ = η2κ,693

where |η| is a small quantity and we neglect the dependence of (µ, z, κ) on n to simplify the presentation.694

With this rescaling, equilibrium solutions on the center manifold (5.25) satisfy695

0 = η2
(
µz + anκ+ bnz

2
)
+O(η3).696

Upon dividing through by η2, solving the leading order quadratic equation µz + anκ + bnz
2 = 0 gives the697

existence of two branches of equilibria which coalesce at698

z∗ = − µ

bn
, κ =

µ2

4anbn
.699

The implicit function theorem allows one to smoothly perturb this critical point in η about η = 0, and so700

reverting to the original coordinates we obtain the existence a saddle-node bifurcation in (5.25) occurring at701

K̃ =
λ̃2
n

4anbn
+O(λ̃3

n).702
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Reverting further to (5.20) we obtain703

Kcrit,n = Kcrit +K∗
n +

λ̃2
n

4anbn
+O(λ̃3

n). (5.27)704

Since we haveK∗
n, λ̃n → 0 as n → ∞ via Lemmas 5.3 and 5.4, respectively, we have now proven all statements705

the corollary.706

The result of the work in this section is that we have demonstrated that under the assumptions of Theorem 3.3707

we have shown that a saddle-node bifurcation also takes place in the step function model (5.2). Moreover,708

this bifurcation takes place at Kcrit,n, as given in (5.27) which asymptotically approaches Kcrit as n → ∞.709

Note however that we have not proven Theorem 3.2 in its entirety yet though since we have not returned710

to the finite-dimensional model Gn in (3.4), representing the right-hand-side of the Kuramoto model (1.1).711

This final step is taken care of in the following subsection.712

5.3 Finite-Dimensional Solutions713

Up to this point, we have only dealt with the step graphon equation (5.2), whose steady-states correspond to714

solving Fn(un,K) = 0 in (3.3). As was discussed in Section 3, if we have that some pair (u∗
n,K

∗) ∈ Xn ×R715

solves Fn(u
∗
n,K

∗) = 0 with u∗ piecewise constant over the intervals {Inj }nj=1, then Fn = 0 completely reduces716

to the finite-dimensional problem Gn = 0 in (3.4) at the same K = K∗. Thus, here we provide a result717

showing that under the assumptions of Proposition 5.5 all steady-state solutions on the center manifold Mn,718

as defined in (5.23), are piecewise constant over the intervals {Inj }nj=1. This in turn will complete the proof719

of Theorem 3.3 as it brings us back to the finite-dimensional Kuramoto model.720

Lemma 5.7. Let N ≥ 1 and ε > 0 be as guaranteed by Proposition 5.5. Then, for every n ≥ N , every721

steady-state solution on the center manifold Mn in (5.23) is piecewise constant over the intervals {Inj }nj=1.722

Proof. The proof of this result is exactly the same as that of [8, Lemma 4.18], and so here we only sketch723

out the details at a high level for the reader. First, the linearization of Fn, denoted DFn, about any root724

u∗
n ∈ Xn at a fixed value of K is broken up into two pieces: a nonlocal Hilbert–Schmidt integral operator725

and a multiplication operator. The multiplication operator v(x) 7→ Qn(x)v(x) takes the form726

Qn(x) = −K

∫ 1

0

cos(u∗
n(y)− u∗

n(x))dy.727

Further, the spectrum ofDFn(u
∗
n,K) is broken into disjoint sets defined as those λ ∈ C for whichDFn(u

∗
n,K)−728

λ is a non-invertible Fredholm operator (the point spectrum) and when it is not a Fredholm operator (the729

essential spectrum). The result [8, Lemma 4.1] proves that the essential spectrum is exactly equal to the730

range of Qn. Moreover, Lemma 5.4 proves that the essential spectrum must be confined to the left half of731

the complex plane for any steady-state solution (u∗
n,K) ∈ Mn, giving that Qn(x) < 0 for all x ∈ [0, 1] and732

n ≥ N , and in particular Qn(x) ̸= 0 everywhere. One then achieves the proof of this result by assuming that733

for some fixed n the solution u∗
n is non-constant over one of the subintervals {Inj }nj=1. The contradiction is734

reached by showing that this would imply that Qn(x) = 0 for some x, which we have already argued cannot735

happen.736
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With Lemma 5.7 we have now proven Theorem 3.3 in its entirety. The most important takeaway from the737

sketch of the proof above is that it is only the stability of the essential spectrum that is used to show that738

solutions of Fn = 0 are piecewise constant. Thus, our results could be applied more broadly to capture739

other bifurcations in random Kuramoto networks, as well as prove the existence of higher-dimensional center740

manifolds using only the nonlocal graphon model (1.2).741

6 Comments on the Proof of Theorem 3.2742

We provide only a brief commentary on the proof of Theorem 3.2. This is because it is can be seen as an743

application of our previous result [8, Theorem 3.1]. Alternatively, one can arrive at the proof following in a744

manner similar to that of Theorem 3.3 in the previous section. Precisely, the proof of Theorem 3.2 is similar745

to that of Lemma 5.3 in a simplified setting. This is because according to the assumptions of Theorem 3.2746

the spectrum DF (u∗,K) is bounded away from the imaginary axis, meaning that there is no need to divide747

Xn since Xc
n = ∅ in this case. This means that we need only solve Fn(u

∗ + vn,K) = 0 for vn ∈ Xn, while748

the linearization DFn(u
∗,K) is boundedly invertible on Xn. The existence of such a vn is obtained with a749

nearly identical application of the contraction mapping theorem, but now keeping in mind that K is fixed,750

thus simplifying the problem slightly. Finally, an identical result to Lemma 5.7 will show that the solution751

u∗ + vn ∈ Xn is piecewise constant over the intervals {Inj }nj=1 since the essential spectrum is again bounded752

away from the imaginary axis.753

7 Discussion754

In this paper we have developed a framework for characterizing both the onset and persistence of synchronous755

solutions to random Kuramoto models through the study of a single master nonlocal equation. The result756

is an applicable way of studying random networks of coupled oscillators to predict both when synchronous757

solutions exist and what they look like. A major application of our work herein was to Erdős–Rényi networks758

in Section 4, where we leveraged and extended Ermentrout’s pioneering work in [15]. With this application we759

also saw that bifurcations to synchrony in the graphon equation do not always come in the form of a standard760

saddle-node bifurcation, thus rendering our Theorem 3.3 inapplicable in this scenario. In particular, we were761

able to prove that in some cases the onset of synchrony comes from bifurcations involving the essential762

spectrum, a situation that warrants a follow-up investigation. Interestingly, we saw that while bifurcations763

from the essential spectrum may violate our theoretical assumptions, the results still seem to hold in that764

both the critical coupling point and the shape of the synchronous solutions are predicted by the master765

graphon equation.766

While the application in this manuscript was to coupled oscillators, we believe that they are broadly ap-767

plicable to patterns and oscillations over a variety of randomly networked dynamical systems. That is,768

Theorem 3.2 is mostly a particular instantiation of the previous work [8] which used nonlocal graphon mod-769

els to predict the existence of steady-states to dynamical systems on networks. Thus, it seems reasonable to770

expect that our bifurcation results from Theorem 3.3 could similarly be extended to more general networked771

dynamical systems, as well as other co-dimension one bifurcations. Moreover, extending our center manifold772

results (see Lemma 5.1 and Proposition 5.5) to more general networked systems would provide a method of773
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Figure 6: Bifurcation diagrams comparing random small-world Kuramoto networks (blue) with the graphon model
(black) as the order parameter (4.15) versus the coupling coefficient K. The Kuramoto networks have n = 1000
oscillators arranged over a random weighted graph H(1000,W ) (left) and a random simple graph G(1000,W ) (right).

obtaining invariant manifolds for dynamical systems on random networks.774

While the extension of our results to other dynamical systems is interesting, there still remains much to775

work on the coupled oscillator models considered herein. That is, our applications exclusively focused on776

Erdős–Rényi networks, but our theoretical results can be applied to a much wider range of graphon families.777

This therefore could open up the study of (1.2) with different graphons to better understand synchronization778

in (1.1) when both the frequencies and the network are random. For example, in Figure 6 we provide the779

bifurcation diagram (in black) for the graphon model (1.2) with the small-world graphon780

W (x, y) =

0.9 min{1− |x− y|, |x− y|} ≤ 0.25

0.1 otherwise,
(7.1)781

and frequencies drawn from the distribution (4.14). We see what appears to be three distinct saddle-node782

bifurcations at K = 4.99, 5.01, 7.30, all of which could be applicable to our analysis. For comparison, we783

further provide continuations of synchronous solutions (in blue) for the Kuramoto model (1.1) on random784

weighted H(1000,W ) and simple G(1000,W ) graphs (using the notation of Section 2) of n = 1000 oscilla-785

tors. While the finite-dimensional saddle-node bifurcations are close to the graphon model prediction, much786

analysis is required to demonstrate that our theorems apply to the results in the figure. Precisely, (i) are787

the bifurcations a standard saddle-node or something more complicated from the essential spectrum, and788

(ii) can we prove that all bifurcating solutions to the graphon model are continuous? Such questions and789

applications remain for a follow-up investigation.790

Finally, we note that we have focused on graphons defined on the canonical space [0, 1]. Extensions to other791

probability spaces is feasible, as laid out in [19]. In particular, we expect that our results can be extended792

to graphons taking the form W (x,y) where x = (x1, x2) ∈ [0, 1] × [0, 1] with the natural frequency of an793

oscillator given by Ω(x1), while the probability of a connection between an oscillator with latent position794

(x1,j , x2,j) and (x1,k, x2,k) is given by W (xj ,xk) = W (x2,j , x2,k) thus decorrelating the intrinsic frequencies795

of each oscillator and their network structure. We expect this to be a straightforward extension of the work796

herein, but leave the details to a follow-up investigation.797
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A Proof of Lemma 3.1802

Begin by assuming that Ω : [0, 1] → [−1, 1] is a continuous function and for each n ≥ 1 let {x1, x2, . . . , xn} be803

an ordered n-tuple of independent uniform random points drawn from [0, 1]. Define the empirical distribution804

function805

Fn(x) =
1

n

n∑
j=1

χ(xj ,∞)(x),806

where χS(x) is the indicator function associated to the set S. We further consider the generalized inverse of807

Fn, the empirical quantile function, given by808

Gn(x) = xj for x ∈
[
j − 1

n
,
j

n

)
.809

Note that the Glivenko–Cantelli Theorem implies that810

∥Fn − F∥∞ = sup
x

|Fn(x)− x| → 0811

as n → ∞ almost surely, where F (x) = x is the cumulative distribution function for the uniform distribution812

on [0, 1]. We will now show that ∥Gn−G∥∞ → 0 as n → ∞ almost surely as well, where G(y) = F−1(y) = y.813

Letting ε > 0, there exists N ≥ 1 so that for all n ≥ N we have ∥Fn − F∥∞ < ε with probability 1.814

Now, suppose that for some n ≥ N there exists a yn such that |Gn(yn) − yn| > ε. We will show that815

this is a probability 0 event when n ≥ N , which in turn shows that ∥Gn − G∥∞ → 0 as n → ∞ almost816

surely. Indeed, there exists a j ∈ {1, . . . , n} so that yn ∈ Inj and monotonicity of G(y) = y implies that817

the maximal deviation between Gn and G in Inj occurs at an endpoint of this interval. At the left endpoint818

ζℓ = (j − 1)/n = F (xj), we use the fact that Gn(ζ) = xj to get819

|Gn(ζ)− ζ| = |xj − Fn(xj)| > ε.820

The equality above shows that |Gn(ζ) − ζ| > ε happens with probability 0 for n ≥ N , showing that821

|Gn(yn)− yn| ≤ |Gn(ζ)− ζ| < ε with probability 1.822

The above shows that ∥Gn − G∥∞ → 0 as n → ∞ almost surely. Finally, note that Ωn(x) = Ω(Gn(x)) for823

each n ≥ 1. Since Ω is assumed continuous, it follows that ∥Ωn −Ω∥∞ = ∥Ω ◦Gn −Ω ◦G∥∞ → 0 as n → ∞824

almost surely, completing the proof.825
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B Proof of Lemma 5.1826

We verify the hypothesis of the parameter-dependent center manifold theorem; see [18, Theorem 3.3]. Let827

u(t, x) = u∗(x) + v(t, x) and K = Kcrit + K̃ in (5.1). Then,828

dv

dt
= F [u∗ + v,Kcrit + K̃]. (B.1)829

For the ease of presentation, let us denote H(v, K̃) = F [u∗ + v,Kcrit + K̃]. Note that H is smooth in its830

arguments, H(0, 0) = 0, and DvH(0, 0) is the linear operator L described previously. Thus, equation (B.1)831

assumes the form required for an application of Theorem 3.3 of [18]. The spectral properties required for an832

application of this result are spelled out in the following lemma.833

Lemma B.1. The linearization L : X → X has the following properties:834

i) The spectrum σ(L) as an operator on X has the decomposition σ = σ0 ∪ σs where σ0 = {0} and there835

exist an α > 0 such that836

sup
λ∈σs

Re(λ) < −α.837

ii) Restricted to the class of continuous mean-zero functions X, the algebraic multiplicity of zero as an838

eigenvalue of L is one and there exists a function v∗ ∈ X normalized such that the (central) spectral839

projection P c : X → X has the following representation840

P cf = v∗(x)

∫ 1

0

f(y)v∗(y)dy.841

iii) There exists a ξ > 0 and r < ξ − α such that842

σs ⊂ {z ∈ C | |z + ξ| < r} ,843

with (stable) spectral projection P s = I − P c.844

iv) Let Xs = RngP s and define Ls = L|Xs . Then Ls generates an analytic semigroup on Xs, which we845

denote eL
st. Moreover, the following estimate holds846

∥eL
st∥ ≤ Ce−αt, (B.2)847

for any t > 0.848

v) Let f ∈ Cη(R, Xs) where ∥f∥η = supt∈R
(
e−η|t|∥f(t, ·)∥∞

)
Then849

dvs
dt

= Lsvs + f(t),850

has a unique solution given by851

vs(t) =

∫ t

−∞
e(t−τ)Ls

P sf(τ)dτ.852

Furthermore, there exist a continuous function κ(η) such that ∥vs∥Cη
≤ κ(η)∥f∥Cη

for η sufficiently853

small.854
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Proof. Conclusion (i) is simply a re-statement of part (i) of Hypothesis 2. Hypothesis 2 also gives that the zero855

eigenvalue is simple by assumption. Then (ii) follows from self-adjointness of the operator L = DF (u∗,Kcrit)856

which implies that the eigenfunction and adjoint eigenfunction are identical. Since 0 ≤ W (x, y) ≤ 1, the857

linear operator L is bounded and therefore the stable spectrum is contained in a ball as stated in (iii). Recall858

that the absence of unstable spectrum was also assumed in Hypothesis 2. As a result of (iii), the operator859

Ls is bounded and its spectrum is separated from the imaginary axis and can be contained in a sector. The860

resolvent operator can be constructed by Neumann series:861

(Ls − λ)−1 =
−1

(λ+ ξ)

∞∑
k=0

(
Ls + ξ

λ+ ξ

)k

.862

There exists a φ ∈
(
π
2 , π

)
and a constant Ξ > 0 such that for any λ satisfying |arg(λ+α)| < φ the following863

resolvent estimate holds:864

∥∥∥(λ+ α) (Ls − λ)
−1
∥∥∥
∞→∞

≤

∥∥∥∥∥(λ+ α)

∞∑
k=0

(
Ls + ξ

λ+ ξ

)k
1

(λ+ ξ)

∥∥∥∥∥
∞→∞

≤ Ξ.865

Thus, the linear operator Ls is sectorial and the existence of an analytic semigroup obeying the temporal866

bound (B.2) follows from standard arguments. These estimates can be used to verify v), with κ(η) = 2Cα
α2−η2867

and η < α. We omit the details of this calculation.868

Lemma B.1 confirms the necessary hypotheses to apply [18, Theorem 3.3] and therefore provides the existence869

of a center manifold to our graphon model. This center manifold can be written as the graph870

M =
{
wcv∗ +Ψ(wc, K̃) | wc ∈ R

}
,871

where Ψ : R × R → Xs is Ck in its arguments for any k > 2. The manifold is invariant and contains all872

solutions that remain locally bounded for all t ∈ R. The reduced equation on the center manifold is obtained873

by874

dwc

dt
= ⟨F (u∗ + wcv∗ +Ψ(wc, K̃),Kcrit + K̃), v∗⟩. (B.3)875

We next expand876

F (u∗ + wcv∗ +Ψ(wc, K̃),Kcrit + K̃) = LΨ+
K̃

Kcrit
LΨ+ K̃

∫ 1

0

W (x, y) sin(u∗(y)− u∗(x))dy

+ (Kcrit + K̃)R(wcv∗ +Ψ(wc, K̃)),

(B.4)877

where we introduce R(wcv∗ + Ψ(wc, K̃)) as a remainder term to capture all higher-order terms in the878

expansion. Letting hc(w
c, K̃) denote the right hand side of (B.3), we note that hc(w

c, K̃) = aK̃ + O(2)879

where a = − 1
Kcrit

⟨Ω−Ω, v∗⟩ =
∫ 1

0
W (x, y) sin(u∗(y)−u∗(x))dy. Then, the mapping Ψ satisfies the invariance880

condition881

(DwcΨ)hc(w
c, K̃) = P s

(
F (u∗ + wcv∗ +Ψ(wc, K̃),Kcrit + K̃)

)
. (B.5)882

To obtain an expansion for Ψ we begin with the linear ansatz:883

Ψ(wc, K̃) = Ψ10w
c +Ψ01K̃ +O(2),884
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where Ψ10 and Ψ01 are elements of Xs. Substituting this first-order expansion into (B.5) and retaining only885

linear terms, we obtain the solvability condition886

aΨ10K̃ = wcLsΨ10 + K̃LsΨ01 + K̃P s

(∫ 1

0

W (x, y) sin(u∗(y)− u∗(x))dy

)
,887

from which we obtain Ψ10 = 0 and888

Ψ01 = −(Ls)−1P s

(∫ 1

0

W (x, y) sin(u∗(y)− u∗(x))dx

)
.889

We now compute higher-order expansions for the reduced equation on the center manifold. With the above890

determined linear terms in Ψ, we now obtain891

hc(w
c, K̃) = ⟨F (u∗ + wcv∗ +Ψ(wc, K̃),Kcrit + K̃), v∗⟩

= ⟨K̃
∫ 1

0

W (x, y) sin(u∗(y)− u∗(x))dy + (Kcrit + K̃)R(wcv∗ +Ψ(wc, K̃)), v∗⟩
(B.6)892

Since Ψ lacks linear terms in wc and R is quadratic in its argument we obtain that the reduced equation on893

the center manifold has the expansion894

dwc

dt
= aK̃ + b(wc)2 +O

(
wcK̃, K̃2, |wc + K̃|3

)
,895

where b is given in (5.4). This concludes the proof of Lemma 5.1.896

C Proof of Proposition 5.5897

We will apply the center manifold theorem to the system of898

dṽn
dt

= Hn(ṽn, K̃),899

where we recall900

Hn(ṽn, K̃) = Ωn − ω∗
n + (Kcrit +K∗

n + K̃)Wn [u
∗ + ϕs

n + ṽn]

= L̃nṽn + K̃Wn[u
∗ + ϕs

n] + K̃DWn[u
∗ + ϕs

n]ṽn + (Kcrit +K∗
n + K̃)Rn(ṽn)

(C.1)901

By Lemma 5.4, the linearization L̃n has a simple eigenvalue near the origin (for n sufficiently large) while902

the remainder of the spectrum is separated from the imaginary axis and contained in a ball lying strictly to903

the left of the line Re(λ) = −α.904

We therefore obtain an analogous result to that of Lemma B.1 which we state now.905

Lemma C.1. There exists a N ≥ 1 such that for all n ≥ N the linearization L̃n : Xn → Xn has the906

following properties907

i) The spectrum σ(L̃n) as an operator on Xn has the decomposition σ = σ̃0 ∪ σ̃s where σ̃0 = {λ̃n} and908
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for α > 0 as in Lemma B.1 it holds that909

sup
λ∈σ̃s

Re(λ) < −α.910

ii) Restricted to the space Xn the algebraic multiplicity of λ̃n as an eigenvalue of L̃n is one and there911

exists a function ṽ∗n(x) ∈ Xn normalized such that the (central) spectral projection has the following912

representation913

P̃ c
nf = ṽ∗n(x)

∫ 1

0

f(y)ṽ∗n(y)dy.914

iii) For ξ > 0 and r < ξ − α as in Lemma B.1, we have that915

σ̃s ⊂ {z ∈ C | |z + ξ| < r} ,916

with (stable) spectral projection P̃ s
n = I − P̃ c

n.917

iv) Let X̃s
n = RngP̃ s and define L̃s

n = L̃n|X̃s
n
. Then L̃s

n generates an analytic semigroup on X̃s
n which we918

denote eL̃
s
nt. Moreover, the following estimate holds919

∥eL̃
s
nt∥ ≤ Ce−αt,920

for any t > 0 and a constant C independent of n.921

v) Let f ∈ Cη̃(R, X̃s
n). Then922

dṽsn
dt

= L̃s
nṽ

s
n + f(t),923

has a unique solution given by924

ṽsn(t) =

∫ t

−∞
e(t−τ)L̃s

n P̃ s
nf(τ)dτ.925

Furthermore, there exist a continuous function κ̃(η̃) such that ∥ṽsn∥Cη̃
≤ κ̃(η̃)∥f∥Cη̃

for η̃ sufficiently926

small.927

Proof. Properties (i) through (iii) follow from the spectral results obtained in Lemma 5.4. The primary928

challenge is to validate that the constant C in (iv) can be chosen independent of n, after which (v) follows929

from calculations analogous to those in Lemma B.1. As we did in Lemma B.1, we obtain a formula for the930

resolvent operator via Neumann series:931

(
L̃s
n − λ

)−1

w = −
∞∑
k=0

(
L̃s
n + ξ

λ+ ξ

)k
w

(λ+ ξ)
,932

where ξ > 0 is as given in property (iii). Since the spectrum of the shifted operator L̃s
n + ξ is contained933

strictly inside a ball of radius r we therefore have the resolvent operator is bounded for any |λ + ξ| > r.934

Furthermore, there exists a φ ∈
(
π
2 , π

)
such that for any λ satisfying |arg(λ+α)| < φ the following resolvent935
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estimate holds:936

∥∥∥∥(λ+ α)
(
L̃s
n − λ

)−1
∥∥∥∥
∞→∞

≤

∥∥∥∥∥∥(λ+ α)

∞∑
k=0

(
L̃s
n + ξ

λ+ ξ

)k
1

(λ+ ξ)

∥∥∥∥∥∥
∞→∞

≤ Ξn.937

We now verify that Ξn can be taken independently of n. Our strategy is as follows. We show that the938

resolvent operator is uniformly bounded on L2 and then use this to derive uniformity with respect to the939

norm on Xn.940

The second resolvent identity;941 (
L̃s
n − λ

)−1

− (Ls − λ)
−1

=
(
L̃s
n − λ

)−1 (
Ls − L̃s

n

)
(Ls − λ)

−1
,942

implies that943 (
L̃s
n − λ

)−1

=
[
I − (Ls − L̃s

n) (L
s − λ)

−1
]−1

(Ls − λ)
−1

.944

Note that the inverse of the terms in the square brackets may be obtained from a Neumann series expansion945

provided that ∥L̃s
n − Ls∥2→2 is sufficiently small. Therefore, when considered as an operator on L2([0, 1]),946

the operator norm convergence of L̃s
n → Ls implies the following resolvent bound947 ∥∥∥∥(L̃s

n − λ
)−1

∥∥∥∥
2→2

≤ Θ

|λ+ α|
, (C.2)948

for some constant Θ > 0 and independent of n.949

In the case of X̃s
n equipped with the supremum norm we no longer have operator norm convergence in950

general; see [8]. So, suppose for the sake of contradiction that951 ∥∥∥∥(L̃s
n − λ

)−1
∥∥∥∥
∞→∞

≤ Ξn

|λ+ α|
,952

but with Ξn → ∞. This would imply that there exists a sequence wn ∈ X̃s
n with ∥wn∥∞ = 1 but for953

which vn =
(
L̃s
n − λ

)−1

wn satisfies ∥vn∥∞ → ∞ as n → ∞. Since ∥wn∥2 ≤ ∥wn∥∞ the resolvent estimate954

(C.2) implies that ∥vn∥2 is uniformly bounded. We then argue as in the proof of Lemma 5.2. Recall that955

L̃n = (Kcrit +K∗
n)DWn[u

∗ + ϕs
n]. Let956

Q̃n(x) = −(Kcrit +K∗
n)

∫ 1

0

Wn(x, y) cos (u
∗(y) + ϕs

n(y)− u∗(x)− ϕs
n(x)) dy,957

be the multiplication part of the operator L̃n. Recall the definition ofQn(x) in (5.8). We note that Lemma 5.4958

implies that ∥Qn(x)− Q̃n(x)∥∞ → 0 as n → ∞. Therefore Q̃n(x)− λ ̸= 0 for |λ+ ξ| > r and n sufficiently959
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large. Recalling that L̃s
n = P̃ s

nL̃n, we express960

wn = (Q̃n(x)− λ)vn + (Kcrit +K∗
n)

∫ 1

0

Wn(x, y) cos(u
∗(y) + ϕs

n − u∗(x)− ϕs
n(x))vn(y)dy

− ṽ∗n

[∫ 1

0

ṽ∗n(y)Q̃n(y)vn(y)dy

+ (Kcrit +K∗
n)

∫ 1

0

∫ 1

0

ṽ∗n(x)Wn(x, y) cos(u
∗(y) + ϕs

n − u∗(x)− ϕs
n(x))vn(y)dydx

]
.

(C.3)961

This can be re-arranged as962

vn(x) =
wn(x)

Q̃n(x)− λ
− (Kcrit +K∗

n)

Q̃n(x)− λ

∫ 1

0

Wn(x, y) cos(u
∗(y) + ϕs

n(y)− u∗(x)− u∗(y))vn(y)dy

+
ṽ∗n

Q̃n(x)− λ

[∫ 1

0

ṽ∗n(y)Q̃n(y)vn(y)dy

+ (Kcrit +K∗
n)

∫ 1

0

∫ 1

0

ṽ∗n(x)Wn(x, y) cos(u
∗(y) + ϕs

n(y)− u∗(x)− ϕs
n(x))vn(y)dydx

]
.

(C.4)963

Hölder’s inequality then implies that uniform boundedness of vn in L2 translates to uniform boundedness of964

vn in X̃s
n equipped with the L∞ norm. The stated temporal bound in (iv) can then be obtained by standard965

estimates. Property (v) follows as in the proof of Lemma B.1 and we omit the details. This completes the966

proof.967

In contrast to the construction of the center manifold in the graphon case, in this situation we no longer968

have a zero eigenvalue, but rather an isolated eigenvalue close to the origin. To account for this, following969

[18], we instead study the equation dṽn
dt = Jn(ṽn, K̃, ν) where970

Jn(ṽn, K̃, ν) = Mnṽn + K̃Wn[u
∗ + ϕs

n] + νP̃ c
nṽn + K̃DWn(u

∗ + ϕs
n)ṽn + (Kcrit +K∗

n + K̃)Rn(ṽn),971

see (C.1) for reference but with the linear operator L̃n replaced with972

Mn = L̃n − λ̃nP̃
c
n.973

The spectrum of Mn on the space Xn consists of an algebraically simple isolated eigenvalue at the origin974

with the rest of the spectrum being contained in the set Re(λ) ≤ −α for n sufficiently large. Therefore the975

equation dṽn

dt = Jn(ṽn, K̃, ν) satisfies the hypothesis of the center manifold theorem given in [18, Theorem976

3.3]. The manifold can be expressed as a graph977

Mn,ν =
{
wc

nṽ
∗
n +Ψn

(
wc

n, K̃, ν
)

| wc
n ∈ R

}
,978

where the function Ψn : R3 → X̃s
n is Ck for any k > 2.979

The reduced equation on the center manifold is obtained as980

dwc
n

dt
=
〈
(ν − λ̃n)P̃

c
n(w

c
nṽ

∗
n) + Ωn + (Kcrit +K∗

n + K̃)Wn

[
u∗ + ϕs

n + wc
nṽ

∗
n +Ψn

(
wc

n, K̃, ν
)]

, ṽ∗n

〉
. (C.5)981
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Let hc,n(w
c
n, K̃, ν) denote the right hand side of (C.5). We note that hc,n(w

c
n, K̃, ν) = anK̃ + O(2) where982

an = ⟨Wn[u
∗+ϕs

n], ṽ
∗
n⟩ and O(2) denotes terms that are at least quadratic in the variables (wc

n, K̃, ν). Then,983

the mapping Ψn satisfies984 (
Dwc

n
Ψn

)
hc,n(w

c, K̃, ν) = P̃ s
n

(
Ωn(x) + (Kcrit +K∗

n + K̃)Wn[u
∗ + ϕs

n + wc
nṽ

∗
n +Ψn(w

c
n, K̃, ν)]

)
. (C.6)985

To obtain an expansion for Ψn we begin with the linear ansatz:986

Ψn(w
c
n, K̃, ν) = Ψn,100w

c
n +Ψn,010K̃ +Ψn,001ν +O(2),987

where Ψn,··· are elements of X̃s
n. Substituting into (C.6) and retaining only linear terms we obtain the988

solvability condition989

anΨn,100K̃ = wc
nL̃

s
nΨn,100 + K̃L̃s

nΨn,010 + νL̃s
nΨn,001 + K̃P̃ s

nWn[u
∗ + ϕs

n],990

from which we obtain Ψn,100 = Ψn,001 = 0 while991

Ψn,010 = −(L̃s
n)

−1P̃ s
nWn[u

∗ + ϕs
n].992

Since Ψn lacks linear terms in wc
n and Rn is quadratic in its argument we obtain that the reduced equation993

on the center manifold has the expansion994

dwc
n

dt
= νwc

n + anK̃ + bn(w
c
n)

2 +O
(
wc

nK̃, K̃2, |wc + K̃ + ν|3
)
,995

where an and bn are given in (5.26).996

The proof of the center manifold theorem in [18] requires the use of a cut-off function that then describes997

the size of the neighborhood on which the center manifold reduction is valid. In what follows we establish998

uniformity in large n of the size of this neighborhood of validity.999

Following [18] let Vn =
(
ṽn, K̃, ν

)T
and1000

Ln =

 Mn Wn[u
∗] ⟨·, ṽ∗n⟩

0 0 0

0 0 0

 , Nn(Vn) =

 K̃DWn[u
∗ + ϕs

n]ṽn + (Kcrit +K∗
n + K̃)Rn(ṽn)

0

0

 ,1001

so that the system is recast as1002

∂tVn = LnVn +Nn(Vn).1003

The spectrum of Ln is unchanged while the algebraic multiplicity of zero is now three. There exist center and1004

stable projections associated to these spectral sets which we denote Pc
n and Ps

n. Note that these projections1005

have the following structure1006

Pc
n =

 P̃ c
n ∗ 0

0 1 0

0 0 1

 , Ps
n =

 P̃ s
n ∗ 0

0 0 0

0 0 0

 ,1007
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where the ∗ denote non-zero terms which will not be relevant to the remaining analysis. A smooth cut-off1008

function is selected to modify the nonlinearity. The following modified nonlinearity is considered1009

N ε
n(ṽn, K̃) = χ

(
∥(wc

n, K̃, ν)∥∞
ε

)
Nn(ṽn, K̃),1010

where χ : R → R is a smooth cutoff function satisfying χ(x) = 0 if |x| ≤ 1 and χ(x) = 0 if |x| ≥ 2. This gives1011

that the system is unchanged when |wc| ≤ ε, |K̃| ≤ ε, and |ν| ≤ ε, i.e. N ε
n(ṽn, K̃) = N (ṽn, K̃) whenever1012

|⟨ṽn, ṽ∗n⟩| ≤ ε and |K̃| < ε. Then, the contraction mapping employed in the proof of the center manifold1013

requires control of three terms: the function κn(η) appearing in Lemma C.1 and the quantities1014

δ0,n(ε) = sup
K̃∈R,ν∈R,v∈X̃c

n×Bε(0)⊂X̃s
n

{
∥Pc

nN ε
n(v, K̃)∥∞, ∥Ps

nN ε
n(v, K̃)∥∞

}
δ1,n(ε) = sup

K̃∈R,ν∈R,v∈X̃c
n×Bε(0)⊂X̃s

n

{
∥DVPc

nN ε
n(v, K̃)∥∞→∞, ∥DVPs

nN ε
n(v, K̃)∥∞→∞

}
.

(C.7)1015

We now provide the following estimates.1016

Lemma C.2. Under the assumptions of Lemma C.1, there exist positive constants C0 and C1, independent1017

of n, such that1018

δ0,n(ε) ≤ C0ε
2, δ1,n(ε) ≤ C1ε, (C.8)1019

for any ε > 01020

Proof. The ε-scaling in both estimates stems from the quadratic nature of the nonlinearity Nn(v, K̃) and1021

smoothness of the cut-off function, so the main item to prove is that the scaling constants C0 and C1 may1022

be chosen independent of n.1023

To condense notation, let1024

Q(x, y) = u∗(y) + ϕs
n(y)− u∗(x)− ϕs

n(x), ∆v(x, y) = ṽn(y)− ṽn(x).1025

Then1026

Rn(ṽn) =

∫ 1

0

Wn(x, y) [sin (Q(x, y) + ∆v(x, y))− cos(Q(x, y))∆v(x, y)− sin(Q(x, y))] dy. (C.9)1027

Combining the fact that 0 ≤ Wn(x, y) ≤ 1 with Taylor’s Theorem gives ∥ṽn∥2∞ only1028

∥Rn(ṽn)∥∞ ≤ 1

2
sup

(x,y)∈[0,1]2

∣∣∆v(x, y)
2
∣∣ ≤ ∥ṽn∥2∞.1029

We therefore obtain1030

∥N (1)
n (ṽn, K̃)∥∞ ≤ ∥DWn[u

∗ + ϕs
n]∥∞→∞|K̃|∥ṽn∥∞ + |Kcrit +K∗

n + K̃|∥ṽn∥2∞,1031

where N (1)
n denotes the first, and only non-zero, entry of Nn. We have a coarse bound for the operator norm1032
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∥DWn[u
∗ + ϕs

n]∥∞→∞ ≤ 2 after recalling that1033

DWn[u
∗ + ϕs

n]w =

∫ 1

0

Wn(x, y) cos (u
∗(y) + ϕs

n(y)− u∗(x)− ϕs
n(x)) (w(y)− w(x))dy1034

and provided |K̃| ≤ Kcrit/2 we also obtain |Kcrit +K∗
n + K̃| ≤ 2Kcrit for n sufficiently large since we have1035

shown in Lemma 5.3 that K∗
n → 0. This provides an n-independent bound1036

∥N (1)
n (ṽn, K̃)∥∞ ≤ 2|K̃|∥ṽn∥∞ + 2Kcrit∥ṽn∥2∞.1037

Then owing to the structure of the center projection Pc
n we have that1038

Pc
nNn(ṽn, K̃) =

 P̃ c
nN

(1)
n

0

0

 ,1039

and therefore we obtain1040

∥Pc
nN ε

n(ṽn, K̃)∥∞ ≤ 2(1 +Kcrit)∥ṽ∗n∥2∞ε2,1041

where the additional ∥ṽ∗n∥2∞ comes from the application of P̃ c
n to N (1)

n through the results of Lemma C.1.1042

Similarly, the stable projection yields the stated estimate for δ0,n(ε) in (C.8).1043

The verification that C1 may be chosen independently of n follows from a similar line of analysis so we omit1044

the details.1045

1046

We now have the existence of a locally invariant center manifold depending on the artificial parameter ν.1047

Taking ν = λ̃n for n sufficiently large so that |λ̃n| < ε, we then recover the result stated in Proposition 5.5.1048
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chrony in cortical networks: history, concept and current status. Frontiers in integrative neuroscience,1133

3:543, 2009.1134

[41] A. Vanderbauwhede and G. Iooss. Center manifold theory in infinite dimensions. In Dynamics reported:1135

expositions in dynamical systems, pages 125–163. Springer, 1992.1136

[42] R. Vizuete, F. Garin, and P. Frasca. The Laplacian spectrum of large graphs sampled from graphons.1137

IEEE Transactions on Network Science and Engineering, 8(2):1711–1721, 2021.1138

42


	Introduction
	Graphons
	Main Results
	Applications to Erdős–Rényi Networks
	Synchronous States and the Critical Threshold
	Bifurcations from the Essential Spectrum
	Co-dimension One Bifurcations to Synchrony

	Proof of Theorem 3.3
	Center manifold Reduction for the Graphon Equation
	Center-Manifold Reduction for the Step Case
	Finite-Dimensional Solutions

	Comments on the Proof of Theorem 3.2
	Discussion
	Proof of Lemma 3.1
	Proof of Lemma 5.1
	Proof of Proposition 5.5

