
1
Simple Calculations with MATLAB

1.1 Introduction and a Word of Warning

MATLAB is an incredibly powerful tool, but in order to use it safely you
need to be able to understand how it works and to be very precise when you
enter commands. Changing the way you enter a command, even subtly can
completely change its meaning.

The main aim of this text is to teach you to converse with MATLAB and un-
derstand its responses. It is possible to interact with MATLAB using a “phrase
book” approach, which is fine if the answer is what you expect. However it is far
better to learn the language so that you can understand the response. As well
as learning the language it is essential that you learn the grammar or syntax;
this is perhaps even more important with computer languages than conven-
tional languages! MATLAB uses an interpreter to try to understand what you
type and this can come back with suggestions as to where you might have gone
wrong: sometimes what you have written makes sense to MATLAB but does
not mean what you expect! So you need to be careful. It is crucial that you
formulate ideas clearly in your head (or on paper) before trying to translate
them into MATLAB (or any other language).

We begin by discussing mathematical operations performed on scalars1. It
is crucial that the material in this chapter is understood before proceeding, as
it forms the basis of all that is to follow2.
1 That is numbers.
2 MATLAB has a wealth of introductory material available to the user that can

2 1. Simple Calculations with MATLAB

We shall start by introducing MATLAB commands which can be typed at
the MATLAB prompt; these will ultimately form part of our vocabulary of
MATLAB commands. MATLAB already has an extensive vocabulary: however
we will learn that we can expand this set. As the name MATLAB (MATrix
LABoratory) suggests, most of the commands work with matrices and these
will be discussed in due course. We shall start with scalar operations, for which
MATLAB acts like a very powerful calculator.

1.2 Scalar Quantities and Variables

We will begin with the basic ideas of equations and variables. Try entering the
commands as they are given. Consider the following two commands:

>> a = 3

a =

3

>> b = 4;

3 These two commands are entered on separate lines; the MATLAB prompt is
denoted by >> (which does not need to be typed), as distinguished from the
standard greater than sign >. The command on the first line sets the variable
a to be equal to three (3) and that on the second line sets the variable b to
be equal to four (4). The two commands also differ because the second one
ends with a semicolon. This instructs MATLAB to execute the command but
suppress any output; whereas above we can see that the value of a has been
set to 3. These commands can be read as

set a equal to 3

set b equal to 4 (and suppress output)

Reading the commands in this way it should be clear that it is not possible
to have a command of the form 7 = x (set 7 equal to x), whereas we could
have x = 7 (set x equal to 7). These variables can now be used again, for
instance

be accessed using the commands demo or tour. There is also a good help facility
which, unsurprisingly, can be accessed by typing help followed by the command in
question. There is also a facility to use a web browser (helpdesk or helpbrowser).

3 Here, you would type a = 3, and then press RETURN, and then type b = 4; and
press RETURN again. The spaces are included purely for clarity.

1.2 Scalar Quantities and Variables 3

>> a = 3;

>> b = a+1;

>> x = a+b;

The first line sets the variable a to be equal to 3, the semicolon instructing
MATLAB to execute the command but to suppress the output. The second
line sets b to be equal to a plus one, namely 4: again the semicolon suppresses
output. The third line sets x to be a+b which is 7 (again output is suppressed).

MATLAB can be used as a very powerful calculator and its operations fall
into two basic groups: unary and binary, the former operating on one quan-
tity and the latter on two. We shall begin by considering simple arithmetic
operations, which are binary. For instance typing 3*4 generates

>> 3*4

ans =

12

Notice here that we have multiplied the two integers 3 and 4, and the answer
has been returned correctly as 12. MATLAB uses the variable ans to store the
result of our calculation, in this case the value 12, so that it can be used in
the subsequent commands. For instance the command ans*3 will generate the
result 36 (and now the variable ans will have the value 36). We could also have
used the commands a = 3; b = 4; x = a*b which can be typed on one line
and read as

set a equal to 3 (don’t output anything),

set b equal to 4 (don’t output anything)

and set x equal to a times b

Division works in exactly the same way as in the multiplication example above.
If we try the command 3/4, MATLAB returns the value 0.75.

It is a good idea to use meaningful variable names and we shall shortly
discuss valid forms for these.

Example 1.1 Try entering the following commands into MATLAB, but before
you do so try to work out what output you would expect.

>> 3*5*6

>> z1 = 34;

>> z2 = 17;

>> z3 = -8;

>> z1/z2

4 1. Simple Calculations with MATLAB

>> z1-z3

>> z2+z3-z1

Hopefully you should get the answers, 90, 2, 42 and −25.

Example 1.2 Here we give an example of the simple use of brackets:

>> format rat

>> a = 2; b = 3; c = 4;

>> a*(b+c)

>> a*b+c

>> a/b+c

>> a/(b+c)

>> format

In this example you should get the answers, 14, 10, 14/3 and 2/7. Hopefully this
gives you some idea that brackets make MATLAB perform those calculations
first. (The command format rat has been used to force the results to be shown
as rationals, the final command format reverts to the default, which happens
to be format short.)

1.2.1 Rules for Naming of Variables

In the examples we have seen so far we have simply used variable names which
seemed to suit the task at hand with no mention of restrictions on allowable
variable names in MATLAB. The rules for naming variables in MATLAB can
be summarised as follows:

1. Variable names in MATLAB must start with a letter and can be up to 31
characters long. The trailing characters can be numbers, letters or under-
scores (some other characters are also available but in this text we shall
stick to these). There are many choices which are forbidden as variable
names, some for very obvious reasons (such as a*b which signifies a mul-
tiplication of the variables a and b) and others for more subtle reasons (a
good example is4 a.b).

The rules for naming variables also hold for naming MATLAB files. How-
ever, in this case a single dot is allowed within the name of the file; every-
thing after the dot is used to tell MATLAB what type of file it is dealing

4 The reason this is not a valid variable name lays in the fact that MATLAB supports
object orientated programming. Because of this a.b refers to the value of the “b”
component of the object a.

1.2 Scalar Quantities and Variables 5

with (whether it be a file containing MATLAB code, or data etc). We will
see more on this later in the section on script files.

2. Variable names in MATLAB are case sensitive, so that a and A are two
different objects.

3. It is good programming practise to employ meaningful variable names.
In our initial examples we have only used very simple (but appropriate)
names: however as the examples become more complex our variable names
will be more informative.

4. Variables names should not coincide with a predefined MATLAB command
or with any user-defined subroutines. To see whether a variable name is al-
ready in use we can use the command type variable name, but it may
be better to use the command which variable name (this will tell you
whether the name variable name corresponds to an existing code or in-
trinsic function.

1.2.2 Precedence: The Order in Which Calculations Are
Performed

This represents one of the most common sources of errors and it is often the
most difficult to detect. Before proceeding we briefly comment on the question
of precedence, or the order in which commands are executed. Consider the
mathematical expression a(b + c) which you might read as “a times b plus c”
which would appear to translate to the MATLAB command a*b+c. Hopefully
you can see that this actually is equal to ab+c. The correct MATLAB command
for a(b+ c) is a*(b+c). The brackets have been used to force MATLAB to first
evaluate the expression (b+c) and then to multiply the result by a. We should
avoid falling into the trap of assuming that commands are performed from left-
to-right, for instance c+a*b is equal to c + ab (not (c + a)b as if the addition
was performed first).

At this point we should pause briefly and make sure the ideas of brackets are
firmly in place. Brackets should always appear in pairs and the mathematics
contained within brackets (or equivalently MATLAB) will be evaluated first.
Hopefully this concept is familiar to you: however it is worth reiterating, since
one of the most common problems in using MATLAB occurs due to either
unbalanced or incorrectly placed brackets. For example the commands (3+4/5)
and (3+4)/5 are obviously different, the former being 34

5 and the latter being
3+4
5 .

The most critical use of brackets, which circumvents another popular source

6 1. Simple Calculations with MATLAB

of error, is in terms of division. We should note that in the syntax of MATLAB
a/b*c is not equal to a

bc but a
b c. In order to ensure that the denominator of

the fraction is calculated first we would need to use a/(b*c), which is equal to
a
bc . Similarly for examples like a/b+c versus a/(b+c).

Example 1.3 Determine the value of the expression a(b + c(c + d))a, where
a = 2, b = 3, c = −4 and d = −3.

Although this is a relatively simple example it is worth constructing the
MATLAB statement to evaluate the expression:

>> a = 2; b = 3; c = -4; d = -3;

>> a*(b+c*(c+d))*a

This gives the answer 124. It is worth pausing here to consider the syntax of
these commands. In the first line of this code we initialize the four variables a,
b, c and d to have the values 2, 3, −4 and −3 respectively. The commands each
end with semicolons; we have chosen to place all four commands on one line:
however they could just as easily be placed on separate lines. With the variables
assigned values we can now use them to perform calculations, such as in the
second line where we form the mathematical expression a(b + c(c + d))a. Note
all multiplications must be denoted by an asterisk and brackets have been used
to force precedence of the operation; of course the brackets must balance (for
each left bracket there is a corresponding right bracket) for the expression to
make sense.

Example 1.4 Evaluate the MATLAB expressions�

�

�

�

1+2/3*4-5

1/2/3/4

1/2+3/4*5

5-2*3*(2+7)

(1+3)*(2-3)/3*4

(2-3*(4-3))*4/5

by hand and then check answers with MATLAB.
Recall that the operations of division and multiplication take precedence over

addition and subtraction (type help precedence at the MATLAB prompt for
more details).

1.2 Scalar Quantities and Variables 7

The expressions are given by

1+2/3*4-5 = 1 +
2
3
4 − 5 = −4

3
,

1/2/3/4 = (((1/2)/3)/4) =
1
24

,

1/2+3/4*5 =
1
2

+
3
4
5 =

17
4

,

5-2*3*(2+7) = 5 − 6(9) = −49,

(1+3)*(2-3)/3*4 =
4 × (−1)

3
4 = −16

3
,

(2-3*(4-3))*4/5 = (2 − 3 × 1)
4
5

= −4
5
;

which can be verified in MATLAB; we can use the command format rat to
force MATLAB to output the results as rational numbers (that is, fractions).

We mention here MATLAB has a number of intrinsic constants which
the programmer can use, for instance pi and eps. The former is merely
π = 3.14159265 · · · and the latter is the distance from unity to the next
real number in MATLAB5. It is also possible to enter numbers using the
exponent-mantissa form. This uses the fact that numbers can be written as
“mantissa × 10exponent”, for example

Number mantissa - exponent MATLAB form
789.34 7.8934 × 102 7.8934e2
0.0001 1 × 10−4 1e-4
4 4 × 100 4
400000000000 4 × 1011 4e11

Example 1.5 Write 3432.6 in exponent-mantissa form and write 100 × 1010

in normal form.
We have

3432.6 ≡ 3.4326 × 103

and
100 × 1010 ≡ 1, 000, 000, 000, 000.

5 The smallest positive number that MATLAB can store which is different from zero
is realmin which is approximately 10−308, whilst the largest number is realmax
which approximately 10308. These intrinsic constants may be dependent upon your
version of MATLAB and/or your computer’s operating system.

8 1. Simple Calculations with MATLAB

Example 1.6 Use MATLAB to calculate the expression

b − a

b + b+a
ca

where a = 3, b = 5 and c = −3.
The code for this purpose is:	

�

�
a = 3;

b = 5;

c = -3;

x = b-a/(b+(b+a)/(c*a));

with the solution being contained in the variable x.

Example 1.7 Enter the numbers x = 45 × 109 and y = 0.0000003123 using
the exponent-mantissa syntax described above. Calculate the quantity xy using
MATLAB and by hand.

This is accomplished using the code

�

�

�
x = 45e9;

y = 3.123e-7;

xy = x*y;

Notice that here we have used a variable name xy which should not be confused
with the mathematical expression xy (that is x × y).

We can now set the values of variables and perform basic arithmetic operations.
We now proceed to discuss other mathematical operations.

1.2.3 Mathematical Functions

Before we proceed let us try some more of the “calculator” functions (that is,
those which are familiar from any scientific calculator).

Arithmetic functions +, -, / and *.

Trigonometric functions sin (sine), cos (cosine) and tan (tangent) (with their
inverses being obtained by appending an a as in asin, acos or atan).
These functions take an argument in radians, and the result of the inverse
functions is returned in radians. It should be noted these are functions and
as such should operate on an input; the syntax of the commands is sin(x)
rather than sin x.

1.2 Scalar Quantities and Variables 9

Exponential functions exp, log, log10 and ˆ. These are largely self explana-
tory, but notice the default in MATLAB for a logarithm is the natural
logarithm lnx. The final command takes two arguments (and hence is a
binary operation) so that aˆb gives ab.

Other functions There are a variety of other functions available in MATLAB
that are not so commonly used, but which will definitely be useful:

round(x) Rounds a number to the nearest integer
ceil(x) Rounds a number up to the nearest integer
floor(x) Rounds a number down to the nearest integer
fix(x) Rounds a number to the nearest integer towards zero
rem(x,y) The remainder left after division
mod(x,y) The signed remainder left after division
abs(x) The absolute value of x
sign(x) The sign of x
factor(x) The prime factors of x

There are many others which we will meet throughout this book. We note that
the final command factor gives multiple outputs.

We now construct some more involved examples to illustrate how these
functions work.

Example 1.8 Calculate the expressions: sin 60◦ (and the same quantity squared),
exp(ln(4)), cos 45◦ − sin 45◦, ln exp(2 + cosπ) and tan 30◦/(tanπ/4 + tanπ/3).

We shall give the MATLAB code used for the calculation together with the
results:

>> x = sin(60/180*pi)

x =

0.8660

>> y = xˆ2

y =

0.7500

>> exp(log(4))

10 1. Simple Calculations with MATLAB

ans =

4

>> z = 45/180*pi; cos(z)-sin(z)

ans =

1.1102e-16

>> log(exp(2+cos(pi)))

ans =

1

>> tan(30/180*pi)/(tan(pi/4)+tan(pi/3))

ans =

0.2113

The values of these expressions should be
√

3/2, 3/4, 4, 0, 1 and 1/(3 +
√

3).
Notice that zero has been approximated by 1.1102e-16 which is smaller than
the MATLAB variable eps, which reflects the accuracy to which this calculation
is performed.

It is worth going through the previous example in order to practise the
command syntax. Getting this right is crucial since it is only through mastering
the correct syntax (that is, the MATLAB language) that you will be able to
communicate with MATLAB. When you first start programming it is common
to get the command syntax confused. To emphasise this let’s consider some of
the commands above in a little more detail. Let us start with f(x) = x sin x: the
MATLAB command to return a value of this expression is x*sin(x) and not
x*sinx or xsin(x). The command x*sinx would try to multiply the variable
x by the variable sinx; unless the variable sinx is defined (it isn’t) MATLAB
would return an error message

??? Undefined function or variable ’sinx’.

Similarly the command xsin(x) tries to evaluate the MATLAB function xsin,
which isn’t defined, at the point x. Again MATLAB would return an error

1.2 Scalar Quantities and Variables 11

message, in this case

??? Undefined function or variable ’xsin’.

In cases such as these MATLAB provides useful information as to where we
have gone wrong; information we can use to remedy the syntax error in our
piece of code. This simple example emphasises the need to read your code very
carefully to ensure such syntax errors are avoided.

It is essential that arguments for functions are contained within round
brackets, for instance cos(x) and that where functions are multiplied
together an asterisk is used, for instance f(x) = (x+2) cos x should be
written (x+2)*cos(x).

Important Point

Example 1.9 The functions we used in the previous example all took a single
argument as input, for example sin(x). Mathematically we can define functions
of two or more variables. MATLAB has a number of intrinsic functions of this
type (such as the remainder function rem). To see how these are employed
in MATLAB we consider two examples of such functions, one of which takes
multiple inputs and returns a single output and the other which takes a single
input and returns multiple outputs.

Our first example is the MATLAB function rem. The command rem(x,y)

calculates the remainder when x is divided by y. For example 12345 = 9 ×
1371 + 6, so the remainder when 12345 is divided by 9 is equal to 6. We can
determine this with MATLAB by simply using rem(12345,9).

An example of a command which takes a single input and returns multiple
outputs is factor which provides the prime decomposition of an integer. For
example

>> factor(24)

ans =

[2 2 2 3]

Here the solution is returned as an array of numbers as the answer is not a
scalar quantity. We could just as easily used the command x = factor(24) to
set x equal to the array [2 2 2 3]. We can now check MATLAB has correctly

12 1. Simple Calculations with MATLAB

determined the prime decomposition of the number 24 by multiplying the ele-
ments of the array x together; this is most readily achieved by using another
intrinsic function prod(x).

1.3 Format: The Way in Which Numbers
Appear

Before we proceed we stop to discuss this important topic. This can be simply
illustrated by the following example:

Example 1.10 Consider the following code�

�

�

�

s = [1/2 1/3 pi sqrt(2)];

format short; s

format long; s

format rat; s

format ; s

this generates the output

>> format short; s

s =

0.5000 0.3333 3.1416 1.4142

>> format long; s

s =

0.50000000000000 0.33333333333333 3.14159265358979 1.41421356237310

>> format rat; s

s =

1/2 1/3 355/113 1393/985

>> format ; s

s =

0.5000 0.3333 3.1416 1.4142

1.4 Vectors in MATLAB 13

There are other options for format which you can see by typing help format.
The default option is format short (which can be reverted back to by simply
typing format). The above options are

short – 5 digits

long – 15 digits

rat – try to represent the answer as a rational.

You should note that whilst format rat is very useful, it can lead to misleading
answers (in the above example clearly π is not equal to 355/113). At the start
of a calculation it is a good idea to ensure that the data is being displayed
in the appropriate format. In this example we have performed an operation
on four numbers at once using the vector construction in MATLAB. We now
proceed to discuss this further.

1.4 Vectors in MATLAB

One of the most powerful aspects of MATLAB is its use of vectors (and ul-
timately matrices) as objects. In this section we shall introduce the idea of
initiating vectors and how they can be manipulated as “MATLAB objects”.

1.4.1 Initialising Vector Objects

We shall start with simple objects and construct these using the colon symbol:�
�

�
�r = 1:5;

This sets the variable r to be equal to the vector [1 2 3 4 5] (and the semi-
colon suppresses output, as normal). This is a row vector, which we can see by
typing size(r) (which returns [1 5], indicating that r has one row and five
columns). This simple way of constructing a vector r = a:b creates a vector r
which runs from a to b in steps of one. We can change the step by using the
slightly more involved syntax r = a:h:b, which creates the vector r running
from a to b in steps of h, for instance�
�

�
�

r = 1:2:5;

s = 1:0.5:3.5;

14 1. Simple Calculations with MATLAB

gives r = [1 3 5] and s = [1 1.5 2 2.5 3 3.5]. We note that if the inter-
val b-a is not exactly divisible by h, then the loop will run up until it exceeds
b, for instance t = 1:2:6 gives t = [1 3 5]. We can also initiate vectors by
typing the individual entries; this is especially useful if the data is irregular, for
instance t = [14 20 27 10];. There are many other ways of setting up vec-
tors and for the moment we shall only mention one more. This is the command
linspace: this has two syntaxes�
�

�
�

s = linspace(0,1);

t = linspace(0,1,10);

Here s is set up as a row vector which runs from zero to one and has one
hundred elements and t again runs from zero to one but now has ten elements.
Note here that to set up a vector which runs from zero to one in steps of 1/N , we
can use w = 0:1/N:1 or W = linspace(0,1,N+1). (For example trying typing
s=0:0.1:1.0; length(s). You will find that s has eleven elements!). The
command linspace is especially useful when setting up mathematical functions
as we shall discover in the next section.

1.4.2 Manipulating Vectors and Dot Arithmetic

We shall now talk about the idea of calculations involving vectors and for this
purpose we shall discuss dot arithmetic. This allows us to manipulate vectors
in an element-wise fashion rather than treating them as mathematical objects
(in fact for addition and subtraction this is the same thing).

To see how dot arithmetic works let’s consider a simple example:

>> a = [1 2 3];

>> 2*a;

ans =

2 4 6

Suppose now we try to multiply a vector by a vector, as in

>> a = [1 2 3];

>> b = [4 5 6];

>> a*b

??? Error using ==> *

Inner matrix dimensions must agree.

1.4 Vectors in MATLAB 15

An error message appears because both a and b are row vectors and therefore
cannot be multiplied together. Suppose however that what we really want to
achieve is to multiply the elements of vector a by the elements of vector b in
an element by element sense. We can achieve this in MATLAB by using dot
arithmetic as follows

>> a = [1 2 3];

>> b = [4 5 6];

>> a.*b

ans =

4 10 18

A glance at the answer shows that MATLAB has returned a vector containing
the elements

[a1b1, a2b2, a3b3].

The . indicates to MATLAB to perform the operation term by term and the *
indicates we require a multiplication. We can also do a term by term division
with

>> a = [1 2 3];

>> b = [4 5 6];

>> a./b

ans =

0.2500 0.4000 0.5000

The result is, as we would expect,[
a1

b1
,
a2

b2
,
a3

b3

]
.

Example 1.11 We shall create two vectors running from one to six and from
six to one and then demonstrate the use of the dot arithmetical operations:

16 1. Simple Calculations with MATLAB

�

�

�

�

s = 1:6;

t = 6:-1:1;

s+t

s-t

s.*t

s./t

s.ˆ2

1./s

s/2

s+1

This produces the output

>> s+t

ans =

7 7 7 7 7 7

>> s-t

ans =

-5 -3 -1 1 3 5

>> s.*t

ans =

6 10 12 12 10 6

>> s./t

ans =

0.1667 0.4000 0.7500 1.3333 2.5000 6.0000

>> s.ˆ2

ans =

1 4 9 16 25 36

1.5 Setting Up Mathematical Functions 17

>> 1./s

ans =

1.0000 0.5000 0.3333 0.2500 0.2000 0.1667

>> s/2

ans =

0.5000 1.0000 1.5000 2.0000 2.5000 3.0000

>> s+1

ans =

2 3 4 5 6 7

These represent most of the simple operations which we may want to use.

We note that in order for these operations to be viable the vectors need to be
of the same size (unless one of them is a scalar – as in the last three examples).

1.5 Setting Up Mathematical Functions

Following on from the previous section we discuss how one might evaluate a
function. It is crucial that you understand this section before you proceed.

We revisit the topics introduced in the previous section and discuss the
ways in which you can set up the input to the function

Example 1.12 Set up a vector x which contains the values from zero to one
in steps of one tenth.

This can be done in a variety of ways:

18 1. Simple Calculations with MATLAB

�

�

�

�

% Firstly just list all the values:

x = [0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0];

% Use the colon construction

x = 0:0.1:1.0;

% Or use the command linspace

x = linspace(0,1,11);

As noted previously we note that there are eleven values between zero
and one (inclusive) for a step length of one tenth. You may want to try
linspace(0,1,10) and see what values you get.

Each of these methods are equally valid (and more importantly will produce
the same answer) but the latter two are probably preferable, since they are
easily extended to more elements.

We now wish to set up a simple mathematical function, say for instance
y = x2. Initially you may want to type xˆ2 but this will generate the error
message

??? Error using ==> ˆ

Matrix must be square.

This is because this operation is trying to perform the mathematical operation
x × x and this operation is not possible. Instead we need to use y=x.ˆ2 which
gives

>> y = x.ˆ2

y =

Columns 1 through 7

0 0.0100 0.0400 0.0900 0.1600 0.2500 0.3600

Columns 8 through 11

0.4900 0.6400 0.8100 1.0000

Here we see that each element of x has been squared and stored in the array
y. Equivalently we could use y = x.*x;.

Example 1.13 Construct the polynomial y = (x + 2)2(x3 + 1) for values of x

from minus one to one in steps of 0.1.

1.5 Setting Up Mathematical Functions 19

Here it would be laborious to type out all the elements of the vector so instead
we use the colon construction. We shall also define f = (x+2) and g = x3 +1,
so that we have the code:	

�

�
x = -1:0.1:1;

f = x+2;

g = x.ˆ3+1;

y = (f.ˆ2).*(g);

In the construction of g we have used the dot arithmetic to cube each element
and then add one to it. When constructing y we firstly square each element
of f (with f.ˆ2) and then multiply each element of this by the corresponding
element of g.

You should make sure that you are able to understand this example.

Example 1.14 Construct the function y =
x2

x3 + 1
for values of x from one to

two in steps of 0.01.
Here we merely give the solution:	

�

�
x = 1:0.01:2;

f = x.ˆ2;

g = x.ˆ3+1;

y = f./g;

(We could have combined the last three lines into the single expression y =

x.ˆ2./(x.ˆ3+1);).

For the moment it may be a good idea to use intermediate functions when
constructing complicated functions.

Example 1.15 Construct the function

y(x) = sin
(

x cos x

x2 + 3x + 1

)
,

for values of x from one to three in steps of 0.02.
Here, again, we use the idea of intermediate functions

20 1. Simple Calculations with MATLAB

	

�

�
x = 1:0.02:3;

f = x.*cos(x);

g = x.ˆ2+3*x+1;

y = sin(f./g);

NB MATLAB will actually calculate f/g and in this case it will return a
scalar value of −0.1081. Unfortunately this will not generate an error but it
will mean that the answer is not a vector as we should be expecting.

1.6 Some MATLAB Specific Commands

We shall now introduce a couple of commands which can be used to make cal-
culations where the input can take a variety of forms. The first command is
polyval. This command takes two inputs, namely the coefficients of a polyno-
mial and the values at which you want to evaluate it. In the following example
we shall use a cubic but hopefully you will be able to see how this generalises
to polynomials of other orders.

Example 1.16 Evaluate the cubic y = x3 + 3x2 − x − 1 at the points x =
(1, 2, 3, 4, 5, 6). We provide the solution to this example as a commented code:�

�

�

�

% Firstly set up the points at which the polynomial

% is to be evaluated

x = 1:6;

% Enter the coefficients of the cubic (note that

% these are entered starting with the

% coefficient of the highest power first

c = [1 3 -1 -1];

% Now perform the evaluation using polyval

y = polyval(c,x)

Note that in this short piece of code everything after the % is treated by MAT-
LAB as a comment and so is ignored. It is good practice to provide brief, but
meaningful, comments at important points within your code.

1.6 Some MATLAB Specific Commands 21

It is important that you remember to enter the coefficients of the poly-
nomial starting with the one associated with the highest power and
that zeros are included in the sequence.

Important Point

We might want to plot the results of this calculation and this can be simply
accomplished using the plot command. Consider the following example:

Example 1.17 Plot the polynomial y = x4 +x2 −1 between x = −2 and x = 2
(using fifty points).	

�

�
x = linspace(-2,2,50);

c = [1 0 1 0 -1];

y = polyval(c,x);

plot(x,y)

This produces the output

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−5

0

5

10

15

20

In the next chapter we shall discuss plotting in more detail and show how plots
can be customised.

There are many other commands which allow us to manipulate polynomials:
perhaps one of the most useful ones is the roots. The polynomial is defined in
the same way as in the previous examples. The input to the routine is simply
these coefficients and the output is the roots of the polynomial.

Example 1.18 Find the roots of the polynomial y = x3 − 3x2 + 2x using the

22 1. Simple Calculations with MATLAB

command roots.�
�

�
�

c = [1 -3 2 0];

r = roots(c)

This returns the answers as zero, two and one.

In fact the converse command also exists, which is poly. This takes the roots
and generates the coefficients of the polynomial having those roots (which is
monic, that is the coefficient of the highest term is unity).

1.6.1 Looking at Variables and Their Sizes

Before we proceed we mention a couple of useful commands for seeing which
variables are defined. To list the variables which are currently defined we can
use the command whos. This will give a list of the variables which are currently
defined (a shorter output can be obtained by using the command who). This
command can be used to list certain variables only, for instance whos re* lists
only the variables whose names start with re.

Example 1.19 The following code�

�

�

�

clear all

a = linspace(0,1,20);

b = 0:0.3:5;

c = 1.;

whos

gives the output

Name Size Bytes Class

a 1x20 160 double array

b 1x17 136 double array

c 1x1 8 double array

Grand total is 38 elements using 304 bytes

Here we have used the clear all command to remove all previously defined
variables. To look at the size of one variable we can use the command length,
for instance with the previous example length(a) will give the answer 20. We
note that the command size(a) will give two dimensions of the array, that is

1.7 Accessing Elements of Arrays 23

in this case [1 20]; this will be particularly useful when we consider matrices
in due course.

1.7 Accessing Elements of Arrays

This is one of the most important ideas in MATLAB and other programming
languages which is often misunderstood. Let us start by considering a simple
array x = 0:0.1:1.;. The elements of this array can be recalled by using the
format x(1) through to x(11). The number in the bracket is the index and
refers to which value of x we require. A convenient mathematical notation for
this would be xj where j = 1, · · · , 11. This programming notation should not
be confused with x(j); that is x is a function of j. Let us consider the following
illustrative example:

Example 1.20 Construct the function f(x) = x2+2 on the set of points x = 0
to 2 in steps of 0.1 and give the value of f(x) at x = 0, x = 1 and x = 2. The
code to construct the function is:�

�

�

�

x = 0:0.1:2;

f = x.ˆ2+2;

% Function at x=0

f(1)

% Function at x=1

f(11)

% Function at x=2

f(21)

Note that the three points are not f(0), f(1) and f(2)!

In this example we have noted that xj = (j − 1)/10 and hence x1 = 0, x11 = 1
and x21 = 2. These three indices are the ones we have used to find the value of
the function.

In MATLAB f(j) the value of j refers to the index within the array
rather than the function f(.) evaluated at the value j!

Important Point

24 1. Simple Calculations with MATLAB

The expression end is very useful at this point, since it can be used to refer
to the final element within an array. In the previous example f(end) gives the
value of f(21) since the length of f is 21.

Example 1.21 We now show how to extract various parts of the array x.�

�

�

�

x = linspace(0,1,10);

y = x(1:end); % Whole of x

y = x(1:end/2); % First half

y = x(2:2:end); % Even indices only

y = x(2:end-1); % All but the last one

1.8 Tasks

In this introductory chapter we shall give quite a few details (at least initially)
concerning these suggested tasks. However, as the reader’s grasp of the MAT-
LAB syntax develops the tasks will be presented more like standard questions
(the solutions are given at the back of the book in Appendix C).

Task 1.1 Calculate the values of the following expressions (to find the MAT-
LAB commands for each function you can use the Glossary, see for instance
the entry for tan on page 386 or the help command, help tan).

p(x) = x2 + 3x + 1 at x = 1.3,

y(x) = sin(x) at x = 30◦,

f(x) = tan−1(x) at x = 1,

g(x) = sin
(
cos−1(x)

)
at x =

√
3

2
.

Task 1.2 Calculate the value of the function y(x) = |x| sin x2 for values of
x = π/3 and π/6 (use the MATLAB command abs(x) to calculate |x|).

Task 1.3 Calculate the quantities sin(π/2), cos(π/3), tan 60◦ and ln(x +√
x2 + 1) where x = 1/2 and x = 1. Calculate the expression x/((x2 + 1) sinx)

where x = π/4 and x = π/2. (If you are getting strange answers in the form

1.8 Tasks 25

of rationals you may well have left the format as rat, so go back to the default
by typing format).

Task 1.4 Explore the use of the functions round, ceil, floor and fix for the
values x = 0.3, x = 1/3, x = 0.5, x = 1/2, x = 1.65 and x = −1.34.

Task 1.5 Compare the MATLAB functions rem(x,y) and mod(x,y) for a va-
riety of values of x and y (try x = 3, 4, 5 and y = 3, 4,−4, 6). (Details of the
commands can be found using the help feature).

Task 1.6 Evaluate the functions

1. y = x3 + 3x2 + 1

2. y = sinx2

3. y = (sinx)2

4. y = sin 2x + x cos 4x

5. y = x/(x2 + 1)

6. y = cos x
1+sin x

7. y = 1/x + x3/(x4 + 5x sin x)

for x from 1 to 2 in steps of 0.1

Task 1.7 Evaluate the function

y =
x

x + 1
x2

,

for x = 3 to x = 5 in steps of 0.01.

Task 1.8 Evaluate the function

y =
1
x3 +

1
x2 +

3
x

,

for x = −2 to x = −1 in steps of 0.1.

Task 1.9 (D) The following code is supposed to evaluate the function

f(x) =
x2 cos πx

(x3 + 1)(x + 2)
,

26 1. Simple Calculations with MATLAB

for x ∈ [0, 1] (using 200 steps). Correct the code and check this by evaluating
the function at x = 1 using f(200) which should be −1/6.�

�

�

�

x = linspace(0,1);

clear all

g = xˆ3+1;

H = x+2;

z = x.ˆ2;

y = cos xpi;

f = y*z/g*h

Task 1.10 (D) Debug the code which is supposed to plot the polynomial x4 −1
between x = −2 and x = 2 using 20 points.	

�

�
x = -2:0.1:2;

c = [1 0 0 -1];

y = polyval(c,x);

plot(y,x)

Task 1.11 (D) Debug the code which is supposed to set up the function f(x) =
x3 cos(x + 1) on the grid x = 0 to 3 in steps of 0.1 and give the value of the
function at x = 2 and x = 3.�

�

�

�

x = linspace(0,3);

f = xˆ3.*cos x+1;

% x = 2

f(2)

% x = 3

f(End)

