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A MOTIVATIONAL EXAMPLE FOR THE NUMERICAL SOLUTION 
OF THE ALGEBRAIC EIGENVALUE PROBLEM* 

STEPHEN M. ALESSANDRINI~ 

Abstract. This paper presents an example of an algebraic eigenvalue problem which can be used 
to motivate the study of numerical techniques for solving such problems. The problem consists of 
finding the axis and angle of rotation from a 3 x 3 rotation matrix and is referred to as the axis-angle 
problem. The problem is used to  demonstrate the inverse power method for finding eigenvectors. 
The axis-angle problem is developed and numerical results are given. 
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1. Introduction. In a previous note [I], an example was given to motivate the 
study of the numerical solution of two-point boundary-value problems. This note 
describes another example which can be used to motiviate the numerical solution 
of the algebraic eigenvalue problem and, in particular, is a good application of the 
inverse power method, also called inverse iteration or Wielandt iteration [9]. 

2. The example. Consider the following situation which arises in computer 
graphics. Usually objects in a scene are constructed in some reference coordinate 
system, the local coordinates, and then rotated and translated into world coordinates, 
the coordinates of the scene. This allows a particular object which may occur several 
times in a scene to be created once in the local coordinates and then copied to the 
various locations in the world coordinates of the scene. For example, if the scene is 
a classroom there may be 30 of the same chairs in the room. The chair is modeled 
once in local coordinates and then 30 occurrences are rotated and translated into 
their positions in the room. Sometimes several rotations are performed to achieve the 
correct orientation of the object. These rotations can be combined into one rotation 
about some arbitrary axis of rotation by some angle of rotation. The rotation matrix 
is determined by just multiplying the individual rotations together. However, it is 
sometimes necessary to determine the axis and angle of rotation of the final rotation. 
Let the axis of rotation be denoted by the unit vector a and the angle of rotation be 
8. Then the general 3 x 3 rotation matrix which rotates a point counterclockwise by 
Q looking down the axis of rotation a towards the origin is given in [4] by 

where C = cosQ and S = sinQ. Note that rotating by -0 about -a is equivalent 
to rotating by Q about a. It is not very easy to just equate this expression to the 
matrix representing the combined rotation and solve for a and 0. However, after some 
thought, we realize that any point on the axis of rotation remains fixed when it is 
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multiplied by the rotation. Thus, 

This says that X = 1is an eigenvalue of the rotation matrix R and a is a corresponding 
eigenvector. The other eigenvalues are cos0 f isin0. The direct solution to this 
problem is given in [8]. It involves what are called quaternions, which are 4-vectors 
with certain algebraic properties discovered by W. R. Hamilton in 1844 while he 
was trying to generalize complex numbers [5]. It can be shown that a unit quaternion 
represents a rotation matrix and a direct method can be constructed which determines 
the axis and angle of rotation. We will consider an iterative solution using the inverse 
power method and compare it to the direct method. 

Once the axis of rotation has been determined, we need to determine 0. To do 
this we note that the trace of R,  which is the sum of the diagonal elements, is 

since a is a unit vector. Thus. 

t r R - 1
cos 0 = ---

2 

To determine 0 in the range 0 to 27r, we need to determine sin0. Let llall = 
max{lax 1 ,  lay1 ,  laz I}. Then, we can determine sin 0 using 

sin O = 
7-13 - axaz ( l- cos0) 

if llallm = lay I ,  
ay 

Finally, 0 is determined from 

(2.3) 6 = atan2(sin 6, cos 0). U 

3. The direct solution. In this section, we summarize the direct solution given 
by Shoemake [8]. We first describe how to convert a rotation matrix into a unit 
quaternion. Let R be a rotation matrix, q = (w, x, y, z )  be the corresponding unit 
quaternion, and E > 0 be a zero tolerance. Let w2 = (1+ t r  R)/4. If w2 > E,  we set 

Otherwise, set w = 0 and x2 = -(rz2+ 7-33)/2. If x2 > E ,  we set 
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Otherwise, set x = 0 and y2 = (1- rS3)/2. If Y2 > E ,  we set 

Otherwise, set y = 0 and z = 1. The axis and angle of rotation are then determined 
by the fact that 

Note that this differs from [8] in that we assume the matrix multiplies a vector on the 
left; that is, y = Rx.  

4. The iterative solution. We now describe the iterative solution to the axis- 
angle problem. The solution uses the inverse power method which Wilkinson [lo] 
claims is the most powerful method for determining eigenvectors once the eigenvalues 
have been determined. For completeness, we will first describe the power method [2], 

PI, [lo]. 
The power method is an iterative method for finding the dominant eigenvalue (if 

one exists) and corresponding eigenvector of a matrix A. The dominant eigenvalue is 
the one with the largest absolute value. Let A be an n x n matrix which is similar to 
a diagonal matrix A = PDP- I  with D diagonal and P nonsingular. Let XI,. . . ,An 
denote the eigenvalues of A and X I , .  . . ,x n  denote the corresponding eigenvectors 
which form a basis for Cn so that Axi = Xixi. Also, assume that 

that is, A has a single dominant eigenvalue X1. Let z(O) E Cn be an arbitrarily 
chosen initial column vector having n components which can be expressed as a linear 
combination of the eigenvectors xi  as 

with a1 # 0. We then form the sequence z(O), ~ ( ~ 1 , .. . , where 

for m = 2,3, .  . . , which will converge to an eigenvector of A1. Also, the sequence 

for m = 1,2,. . . will approach the dominant eigenvalue XI. 
The power method is not very general. It assumes the existence of a dominant 

eigenvalue, which is not always satisfied! Consider an orthogonal matrix; that is, a 
matrix such that OOT = OTO = I so that 0 - I  = OT. NOW let X be an eigenvalue of 
0 and x be a corresponding eigenvector. Then 

Iloxll; = (Ox, Ox) = ( 0 ~ ) ~ .= x T0TOx = xT . x = 11x11;.Ox 

So /10x//z = 11x112. Also, since Ox = Xx with x # 0,we have 
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so that IXI = 1. Since X was arbitrary, this says that all of the eigenvalues of an 
orthogonal matrix have absolute value 1. Thus, orthogonal matrices do not have 
dominant eigenvalues. This is the case of the rotation matrix in our example. It 
is an example of an orthogonal matrix. Therefore, the power method fails for our 
application. 

We now describe the inverse power method. Recall that if A is invertible and 
has eigenvalues XI,. . . , A n ,  then A-' has eigenvalues X;l, . . . ,X;l. Let s be some 
scalar and construct B = A - s I .  Then, if B is invertible, the eigenvalues of B-' 
are (A1 - s)-', . . . , (An - s)-'. Now suppose we apply the power method to B-l.  
Starting with the initial vector z(O), we get 

Thus, if s is close to one of the Xi (which we will assume has multiplicity one even 
though it is possible to handle the case of an eigenvalue of multiplicity greater than 
one) and if IXi - sl < IAj - sl for j # i (s is closer to Xi  than to any other eigenvalue), 
then, as long as ai # 0, the term ai(Ai - S ) - ~ X ~will become very large relative to 
the other terms in the sum for sufficiently large m. The vector z(") is then a very 
good approximation to the eigenvector corresponding to the eigenvalue Xi. To keep 
things bounded, we normalize the vector at each iteration as in the power method. 
Also, we do not compute B-' but rather solve the system BZ(~+')  = i ( i ) .  

The inverse power method can be summarized as follows: If has a 
nonzero component in the direction of an eigenvector for X i ,  then the sequence 
z(O),%(I ) ,  . . , where 

for m = 2,3 , . . . , will converge to an eigenvector of Xi. In addition, the estimate for 
X can be improved using 

1 
+ for m = 1,

Z(0)TZ(l) 

+ i ( m - l ) ~ ~ ( m )for m = 2,3 , . . . . 

Looking at this procedure carefully, we see that we are repeatedly solving a system 
of linear equations with the same coefficient matrix but a different right-hand side. 
Therefore, we should use the triangular factorization of B to perform this algorithm; 
that is, we factorize B once and repeatedly use forward and back substitution to 
produce each approximation. This is an example of the advantage of having the 
triangular factorization. Thus, if B = LU where L is a unit lower-triangular matrix 
and U is an upper-triangular matrix, then we have 

=~ ~ ( m + l )%(m) (solve by forward substitution), 
uw(m+l) = y(m+l) (solve by back substitution), 

The norm used to normalize the approximations can be any norm which may be 
appropriate for the application. 
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In addition, if s is very close to the eigenvalue X i ,  the matrix B will be close to 
noninvertible. However, as long as we use some form of partial pivoting in computing 
the factorization, the algorithm should not lose accuracy [7]. See Peters and Wilkinson 
[6] for a more detailed discussion of this situation. 

In the above algorithm, we need to chose an initial vector for the iteration 
process. One approach taken by Wilkinson [9] which has been very successful is to set 
z(O) = Le where e = (1,1,. . . , I ) .  Therefore, z(O) is never directly computed unless 
we need it to update X in the case m = 1. If is not needed, the first iteration just 
solves UW(')  = e by back substitution. 

We have the following theorem about the convergence of the inverse power method 

PI. 
THEOREM 1. Let A be diagonalizable and X be an eigenvalue which may or may 

not be simple. Suppose that X satisfies 

# A and IX - XI < IX - pi for all p E a(A) - X 

and that is not i n  the subspace spanned by the eigenvectors corresponding to the 
eigenvalues which are distinct from A. Then, if llxll is any vector norm, 

where x is an eigenvector corresponding to the eigenvalue X 
Note that if X and j\ are real, then either 

lim --- = x  if X <  Xor lim (-1)"-
.(m) 

= x  i f X > X .  
IIz(") 1 1  m-im (I%(") l l  

Thus, by just looking at the convergence of the method, we can tell if X is an 
overapproximation to X or an underapproximation to A. 

5. Numerical results. In this section we present numerical results based on a 
C implementation of the inverse power method as described above. All floating point 
computations where performed using the f l o a t  type. The triangular factorization 
section of the code is based on the scaled partial pivoting algorithm described in 
Conte and de Boor [3]. All results are shown to nine decimal places so that the full 
single precision accuracy is displayed. 

Example. Recall the problem of finding the axis and angle of rotation of a general 
three-dimensional rotation matrix. Let x = (1.0,2.0,3.0) and a = x / / / x / I2 .  Let 
0 = 7r/4. Then, the rotation matrix is given by 

Using (2.1), we have cos 0 = 0.707106829. Since X = 1is the eigenvalue corresponding 
to the axis of rotation, we apply inverse iteration with 1 = 0.9999. This gives 
the results in Table 5.1. Finally, (2.2) gives sin0 = 0.707106769, and (2.3) gives 
0 = 0.785398126. Notice that since X < A ,  there is no sign change in the 
approximations to a. 

Now applying inverse iteration with X = 1.0001, we have the results given 
in Table 5.2. Finally, (2.2) gives sin0 = -0.707106709, and (2.3) gives 0 = 
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TABLE 5.1 

Azis-angle problem numerical results: j; = 0.9999. 


Iteration ax a~ ax  X 

0 0.553420901 1.000000000 0.148788154 
1 0.267348856 0.534426033 0.801818788 1.000055552 

TABLE 5.2 

Axis-angle problem numerical results: X = 1.0001. 


Iteration ax a~ a x  X 

0 0.553092360 1.000000000 0.149040759 
1 -0.267173707 -0.534618914 -0.801748633 0.999944448 
2 0.267261237 0.534522474 0.801783741 1.000000000 
3 -0.267261267 -0.534522474 -0.801783741 1.000000000 

-0.785398066. Notice that since X > A ,  there are sign changes in the approximations 
to  a.  The direct solution gives 

and 

which agree with the above iterative results to single precision accuracy. O 

6. Conclusion. The above example has been used successful ly  in the classroom 
to motivate the study on numerical techniques for solving the algebraic eigenvalue 
problem. 
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