Wave equation.

\[u_{tt} - u_{xx} = 0 \]
\[u_{tt} - \Delta u = 0 \quad \text{in } \mathbb{R}^n \quad \text{for } n \geq 0 \]
\[u_{tt} - \Delta u = f \quad \text{non-hom. case} \]
\[u(x, t) \quad \text{displacement} \]

\(n = 1 \)

Initial Value Problem (IVP) in 1-D:

\[\begin{cases} u_{tt} - u_{xx} = 0, & R \times (0, \infty) \\ u = g, & \text{on } R \times t = 0 \\ u_t = h, & \text{on } R \times t = 0 \end{cases} \]

\[u_{tt} - u_{xx} = 0 \quad \Rightarrow \quad \left(\frac{\partial}{\partial t} + \frac{\partial}{\partial x} \right) \left(\frac{\partial}{\partial t} - \frac{\partial}{\partial x} \right) u = 0 \]

\[v(x, t) = \left(\frac{\partial}{\partial t} - \frac{\partial}{\partial x} \right) u(x, t) \]

\[\frac{\partial v}{\partial t} + \frac{\partial v}{\partial x} = 0 \]

\[\Rightarrow \quad a(x) = v(x, 0), \quad b = 1 \]

\[v(x, t) = a(x-t) \]

\[u_t - u_x = a(x-t) \]

\[b = -1 \]

\[\Rightarrow \quad u(x, t) = d(x+t) + \int a(x+(t-s)) \, ds \]

where \(u(x, 0) = d(x) \)

From initial data:

\[u(x, 0) = d(x) = g(x) \]

\[a(x) = v(x, 0) = u_t(x, 0) - u_x(x, 0) = h(x) - g'(x) \]

\[\Rightarrow \quad u(x, t) = g(x+t) + \int h(x+t-2s) \, ds - \int g'(x+t-2s) \, ds \]

Change variables:

\[\frac{dy}{ds} = -2 \quad \Rightarrow \quad y = x + t - 2s \]

\[s = t \Rightarrow y = x + t \]
\[u(x,t) = g(x+t) + \frac{1}{2} \int_{x-t}^{x+t} h(y) \, dy - \frac{1}{2} g(x+t) + \frac{1}{2} g(x-t) \]

\[u(x,t) = \frac{1}{2} [g(x+t) + g(x-t)] + \frac{1}{2} \int_{x-t}^{x+t} h(y) \, dy \]

d'Alembert's formula

If \(h = 0 \)
\[u(x,t) = \frac{1}{2} [g(x+t) + g(x-t)] \]

Traveling waves with speeds 1 and -1 resp.

Nonhomogeneous case:
\[\begin{cases}
\partial_{tt} u - \partial_{xx} u = f & \text{in } \mathbb{R} \times (0,\infty) \\
\partial_x u(t,0) = g & \text{on } \mathbb{R} \\
\partial_x u(t,0) = h & \text{on } x = x = x + h
\end{cases} \]

To show: \[u(x,t) = \frac{1}{2} [g(x+t) + g(x-t)] + \frac{1}{2} \int_{x-t}^{x+t} h(y) \, dy \]

New part

Solution:
\[C_1(x,t) = \{(y,s) \mid y-x<s<t, s>0\} \]

\[L_+ = \{(y,s) \mid s = -y + x + t, 0 < s < t\} \]
\[L_- = \{(y,s) \mid s = y - x + t, 0 < s < t\} \]
\[L_0 = \{(y,0) \mid x-t < y < x+t\} \]

\[\int_{C_1(x,t)} f \, dy \, ds = \int_{C_1(x,t)} (\partial_{tt} u - \partial_{xx} u) \, dy \, ds = 0 \]

Boundary:
\[\partial_{C_1} = \{(0,1,0), (1,0,1), (0,1,1)\} - \text{normal of } \partial C_1(x,t) \]

\[\nu = \{ (0,-1) \text{ on } L_0, (1,1) \text{ on } L_+, (-1,1)\sqrt{2} \text{ on } L_- \} \]
\[
\begin{aligned}
\sum \int_{L^+} \frac{1}{\sqrt{2}} (u_t - u_x) \, dl + \int_{L^-} \frac{1}{\sqrt{2}} (u_t + u_x) \, dl = \int_{x-t}^{x+t} u_t(s,0) \, ds
\end{aligned}
\]

- directional derivative with direction = integral direction on \(L^+ \)
- directional derivative on \(L^- \) - opposite to integral

\[
\begin{aligned}
\Rightarrow \int_{L^+} \frac{1}{\sqrt{2}} (u_t - u_x) \, dl &= u(x,t) - \frac{u(x,t,0)}{g(x+t)} \\
\int_{L^-} \frac{1}{\sqrt{2}} (u_t + u_x) \, dl &= -(u(x-t,0) - u(x,t)) / g(x-t)
\end{aligned}
\]

\[
\begin{aligned}
\int_{C_1(x,t)} f(y,s) \, dy \, ds &= 2u(x,t) - g(x+t) - g(x-t) \\
&\quad - \int_{x-t}^{x+t} h(s) \, ds
\end{aligned}
\]

\[
\begin{aligned}
\Rightarrow u(x,t) &= \frac{g(x+t) + g(x-t)}{2} + \frac{1}{2} \int_{x-t}^{x+t} h(s) \, ds + \frac{1}{2} \int_{x-t}^{x+t} f(y,s) \, dy \, ds
\end{aligned}
\]