
Math 678. Homework 3 Solutions.

#1
We need to derive the formula for the solution of the IVP

ut −∆u+ cu = f. in Rn × (0,∞)
u = g, on Rn × {t = 0}

Some observations: (1) the solution to the non-homogeneous problem can be
obtained from the solution to the homogeneous problem via Duhamel’s principle;
(2) if the term cu is not present, we know the exact solution to this IVP, (3)
ut + cu = 0 is equivalent to ectut + cectu = 0 which converts to (ectu)t = 0 and
leads to u = Ce−ct as a solution (should remind you of an integrating factor
technique).

From the above observations, we see that a good way to proceed is to mul-
tiply both sides by the function ect. This gives us:

ectut + cectu− ect∆u = ectf

Since ∆(ectu) = ect∆u, the above can be written as

(ectu)t −∆(ectu) = ectf

and hence this converts into a regular heat equation formulation in terms of ectu,
with non-homogeneous right hand side. The initial condition is unchanged, since
(ectu)(x, 0) = u(x, 0) = g(x). So now we can use Duhamel’s principle and write
the exact solution for this modified IVP as:

ectu(x, t) =
∫

Rn

Φ(x− y, t)g(y)dy +
∫ t

0

∫
Rn

Φ(x− y, t− s)ecsf(y, s)dyds

The solution to the original IVP then follows:

u(x, t) = e−ct
[ ∫

Rn

Φ(x− y, t)g(y)dy +
∫ t

0

∫
Rn

Φ(x− y, t− s)ecsf(y, s)dyds
]

#2
Now let us consider the usual heat equation ut = uxx in 1d with u(x, t) being a
solution.

(a) Take v(x, t) = u(x−y, t). How does one show this is also a solution? The
easiest way is to plug it into the equation. First we need to use chain rule and
compute partial derivatives: vt = (u(x− y, t))t = ut(x− y, t), vx = ux(x− y, t),
relying on the fact that (x − y)x = 1. Since ut(x, t) = uxx(x, t) for any x ∈ R,
we have vt = vxx. Notice that if we had an IVP originally with u(x, 0) = g(x),
the initial condition for v would be hy(x) = g(x − y), and the formula for the
solution using fundamental function Φ(x, t) would give us:

u(x− y, t) =
∫

R
Φ(x− y − s, t)hy(s)ds
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where s′ = y + s
(b) For any derivative Dα, where α is a multiindex, and the derivative is

taken either in t or in x, we have (Dαu)t = Dαut = Dαuxx = (Dαu)xx since
derivatives commute. it follows that any derivative of the solution of the heat
equation is again a solution.

(c) (au + bv)t = aut + bvt = auxx + bvxx = (au + bv)xx, hence au + bv is
again a solution, if u, v are solutions.

(d) This follows from the fact that the operations of integration and differ-
entiation are commutative:

∂

∂t

(∫ x

0

u(y, t)dy
)

=
∫ x

0

ut(y, t)dy =
∫ x

0

uxx(y, t)dy =
∂2

∂x2

(∫ x

0

u(y, t)dy
)

(e) Let v(x, t) = u(
√
ax, at). Then vt(x, t) = av(x, t), vx(x, t) =

√
av(x, t), vxx =

av(x, t). It follows that vt = vxx.

#3
The easiest example of a Dirichlet problem with no solution can be constructed
as follows. Let UT = U × (0, T ) and Σ = ŪT − UT be the boundary of this
cylinder including the top, bottom and the sides, while denoting ΓT to be the
parabolic boundary comprised of the bottom and vertical sides only. Consider

ut −∆u = 0, in UT
u = f, on Σ

Suppose u ∈ C2
1 (UT ) ∩ C(ŪT ) solves this IVP. Then it should satisfy the

weak maximum principle, namely

max
ŪT

u(x, t) = max
ΓT

u(x, t)

Since u(x, t) = f(x) on ΓT , we need the solution to satisfy max
ŪT

u = max
ΓT

f .

In particular, f(x, t = T ) < max
ΓT

f , which does not hold for all continuous

functions.
If we allow t = T to be part of the cylinder UT = U × (0, T ], we need to

construct a more elaborate example of a Dirichlet problem with no solution.
One such example is a ball in R3 with deformable surface. We can push in a
sharp spike at some point on this surface and assume that near the tip of the
spike the surface takes the form of a conical surface obtained by rotating the
curve

y =
{
e−1/x. for x > 0

0. for x = 0

about the x-axis. Then we can consider heat conduction on the interior of the
deformed ball defined this way, called Ω. If the temperature distribution on ∂Ω
is given by a continuous function f which is equal to zero at points of the spike
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and is equal to a large positive constant temperature T at points away from the
spike, the seady state temperature u(x) should be close to T for all x in Ω. But
this is impossible, since u(x) won’t be able to approach the zero temperature
as x approaches the spike from within of Ω. Basically, the spike doe not have
enough surface area to keep the temperature at surrounding points close to zero,
hence the solution fails to be continuous in the closure Ω̄. More details about
the subject are available in Helms ”Introduction to potential theory” (1975).

#4
Consider v(x, t) = k(x, t)u(x/t,−1/t), t > 0. To see that this solved the heat
equation, let us compute its partial derivatives, using chain rule and product
rule:

vt(x, t) = kt(x, t)u(
x

t
,−1

t
) + k(x, t)(

1
t2

)ut(
x

t
,−1

t
)− k(x, t)(

x

t2
)ux(

x

t
,−1

t
)

vx(x, t) = kx(x, t)u(
x

t
,−1

t
) + k(x, t)(

1
t
)ux(

x

t
,−1

t
)

vxx(x, t) = kxx(x, t)u(
x

t
,−1

t
) + 2kx(x, t)(

1
t
)ux(

x

t
,−1

t
) + k(x, t)(

1
t2

)uxx(
x

t
,−1

t
)

Now using the fact that kt = kxx, ut = uxx, we can simplify this to

vt − vxx = −1
t

(xk(x, t)
t

+ 2kx(x, t))
)
ux(

x

t
,−1

t
)

Using the definition of k(x, t), we can easily see that kx(x, t) = −(x/2t)k(x, t),
so that xk(x, t) + 2tkx(x, t) = 0. This confirms the claim that v(x, t) solves
the heat equation. Since u(x, t) was defined for all t < 0, s = −1/t covers the
domain (0,∞). In other words, v(x, t) is a solution for all t > 0.
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