Math 677. Fall 2009. Exam I Review. Material: Perko, Chapters 1.1-2.7; lectures 1-12.

1. Linear systems $\dot{x} = Ax$:

- Diagonalization and Jordan representation
 - (a) Case of distinct roots
 - (b) Case of complex roots
 - (c) Case of repeated roots
 - (d) Jordan canonical form (general case)
- Properties of operator exponentials
- Solution to IVP $\dot{x} = Ax, x(0) = x_0$
 - (a) Fundamental theorem for linear systems
 - (b) Formula for solution given Jordan matrix representation
- Stability theory
 - (a) Stable and unstable subspaces E^s and E^u , center subspace E^c .
 - (b) Characterization of sinks and sources
- Fundamental matrices and nonhomogeneous systems
- **2.** Nonlinear systems $\dot{x} = f(x, t)$:
- Fundamental Existence-Uniqueness theorem
 - (a) Continuity, Lipschitz condition, contraction mapping property
 - (b) Picard iteration

(c) Necessary and sufficient conditions on f to guarantee \exists solution, uniqueness of solution

- Dependence on initial data and parameters (a) Gronwall Lemma
 - (b) Theorem on continuous dependence
- Maximal interval of existence
- Stability theory
 - (a) Flow, linearization, linear stability
 - (b) Stable Manifold Theorem