Math 677. Fall 2009. Homework #5 Solutions.

Part I. Exercises are taken from "Differial Equations and Dynamical Systems" by Perko, 3rd edition.

Problem Set 2.9: # 3

For the system

$$\dot{x} = \begin{cases} -x_2 - x_1 x_2^2 + x_3^2 - x_1^3 \\ x_1 + x_3^2 - x_2^3 \\ -x_1 x_3 - x_3 x_1^2 - x_2 x_3^2 - x_1 \end{cases}$$

the Liapunov function $V = x_1^2 + x_2^2 + x_3^2$ yields $\dot{V} = -2(x_1^4 + x_2^4 + x_3^6 + x_1^2(x_2^2 + x_3^2)) \leq 0$. Since V(x) > 0 with V = 0 iff x = 0, the function is a strict Liapunov function and hence the origin is an asymptotically stable equilibrium. Linearized system has eigenvalues $\lambda = \pm i$ and $\lambda = 0$, so the trajectories are circles parallel to the $x_1 - x_2$ plane.

Problem Set 2.9: # 7

Lienard system $\ddot{x} + f(x)\dot{x} + g(x) = 0$ can be written as

$$\dot{x}_1 = x_2 - F(x_1)$$

 $\dot{x}_2 = -g(x_1)$

where $F(x) = \int_0^x f(s)ds$. This can be verified by a direct calculation (taking \ddot{x}_1). Now take the Liapunov function in the form $V(x) = G(x_1) + \frac{x_2^2}{2}$ - it is positive since G(x) > 0. We get $\dot{V} = -g(x_1)F(x_1)$, so if g(x)F(x) > 0 in a deleted nbhd of the origin, the origin is asymptotically stable.

Problem Set 2.10: #1 (c) The system

$$\dot{x} = -y + x^5$$
$$\dot{y} = x + y^5$$

in polar coordinates gives $\dot{r} = r^5(\sin^6\theta + \cos^6\theta)$, $\dot{\theta} = 1 - \frac{1}{4}r^4\sin^4\theta$. This defines an unstable focus.

Part II.

$$\dot{x} = y - x^2$$
$$\dot{y} = x - y^2$$

(a) (0,0) is a saddle and (1,1) is a stable node for the linearized system.

(b) By Liapunov function $V(x) = \frac{1}{2}((x-1)^2 + (y-1)^2)$, we get $\dot{V} < 0$ for |x-1| < 1, |y-1| < 1, so (1,1) is asymp. stable.

To prove that (0,0) is unstable, it is enough to have V(x) s.t. V > 0 for at least some x arbitrary close to the critical point s.t. $\dot{V} > 0$. This can be accomplished via the choice of V = xy.