Math 677. Fall 2009.
Homework #4 Solutions.

Part I. Exercises are taken from ” Diffential Equations and Dynamical Sys-
tems” by Perko, 3rd edition.

Problem Set 2.5: # 5
Determine the flow of the nonlinear system i = f(z), f(z) = (—x1, 2zo+2%)T

and show that the set S = {zy = —Z—lx%} is invariant with respect to the flow.

Solution to the IVP:

r1(t) = cre™?
Loov o 1o o
xo(t) = (c2 + ch)e - gace
where x(0) = (c1,c2)T. The flow is defined by

—t

xIi€e
t) = 1 1
Qb(x? ) (:L,2 + Zx%)e% o Z_1$%e—2t
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To check invariance, start with y € S, ie. 1y, = —ny Then ¢(y,t) =

1
(yre7", —nye_zt), so that ¢(y,t) € S as well.

Problem Set 2.6: # 2
For the Lorenz equation & = f(x), f(x) = (wo—x1, g1 —To—2123, T109—23)7,
> 0, the equilibrium point satisfies

%y = (a,a,a®), wherepa —a —a® =0
Obviously, g = 0 is one of the equilibria. Jacobian at the origin has eigen-
values A\ = —1,A\y3 = —1 & /i, which is a sink when p < 1 and a saddle
when p > 1.

Other equilibria satisfy u — 1 = a®. It means that when p > 1, there
are two more points bifurcating from the origin at zy = (a, a,a?) with a =

+vp— 1.



Jacobian here can be computed as

-1 1 0 -1 1 0
Df=|pu—2x3 =1 —x1 |,ieDf(xg)=| 1 -1 —a
Lo z; -1 a a —1

1
It follows that A\ = =2, Ao 3 = 5(—1 + /b — 4p) are the eigenvalues. Here

if 1 < p <5/4, we have Aoz < 0 i.e. g is a sink. Likewise for p > 5/4, we
have a focus with negative real part of Ao 3, which also can be classified as a
sink.

Hence p =1 is the bifurcation point. When p < 1, there is a sink at the
origin. When p = 1, the sink becomes degenerate and further for 4 > 1 it
splits into sinks (a, a,a?) with a = ++/u — 1, forming a saddle point at the
location of the original equilibrium ((0,0)).

Problem Set 2.6: # 3

For H(z) = (1, 79+ 25, x5+ %x%)T, we compute H *(z) = (21,10 — 25, 73 —
%x%)T Both maps are clearly continuous. Take the nonlinear system & =
f(x) with f(x) = (—x1, —22 + 23,23 + 22)T and let y = Hz. Then

j;l —X1
. . . 2
y _ H(ZE) — To + 2$1I1 — —To — I7 — Df(O)y
. . 2
T3+ g&?lxl T3 + g&?l

Hence H is a homeomorphism between the nonlinear system and its lineariza-
tion at the origin.

Problem set 2.7: #4.
Find the first 4 successive approximations for the system

i1:—$1
jl'Q = —X9 +l’%
.i’g = .’L’3+£L’%

The system has a hyperbolic saddle at the origin, since D f(0) = diag{—1,—1,1}.
To find successive approximations, we do not need to translate anything, or
diagonalize the matrix A = Df(0),so A=B,F =G,C = 1.
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To find the stable manifold, we fix @ = (a1, az,0) and we are going to look
for x3 = ¢(z1,22). We have U = diag{e *, e % 0} and V = diag{0,0,e"},
F=G=(0,233)".

Applying iterative formula

uIt) = U(t)a + /Ot U(t = 5)G(u(s,a))ds — /too V(t = s)G(u (s, a))ds

with «(®)(¢,a) = 0, we obtain:

W(t,a) = (are™, age™,0)"
@(t,a) = (are7?, (ag + a?)e™ — ale ™, —36126
@, (

a) =

Since the first two components of the solution stabilize, u®® = u® = .. .
Hence we obtain

1
2 —2t>T
3

1 1 1
S = s(x1,22) = {3 + gasg + 6:6235% — %ﬁ}
To calculate the unstable manifold U, we put a = (0,0,a3), replace t by
—t and express x1 = ;(13), o = a(x3). This yields u(t,a) = uV(t,a) =

(aze™t,0,0)T. Tt follows that az = 0, so that U = {x; = 9 = 0}.

Part II. (c)

The system @ = —23, 2y = —x5 has equilibrium at the origin, with £* = {y-
axis} and E° = {r—axis}. Center manifold should be tangent to the x-axis
then. Dividing one equation by the other, we get

diCQ . )
dvy 3
which results in the solution z, = Ce /@) Clearly, patching together

different branches of this solution leads to different center manifolds, all of
which are tangent to each other and to F° at the origin.

ae‘l/(2x2), x>0
Ma,b = 0, z=0
be /) g <0

defines a two-parameter continuum family of center manifolds.

are™t, (ag + af)e ! —afe ™, —3(as + ai)’e ™ + Zai(as + af)e ® — 1



