Answers to Spring 2003 Final exam.

 $\mathbf{Q}\#:\mathbf{1}$ Answer D.

Q#:2 Answer C.

Q#:3 Answer C.

Q#:4 Answer B.

Q#:5 Answer B.

 \mathbf{Q} #:6 Answer A.

Q#:7 Answer A.

Q#:8 Answer C.

Q#:9

A Solution exists on $(0, \infty)$.

B The solution is $y(t) = c_1 t + c_2 \frac{1}{t}$.

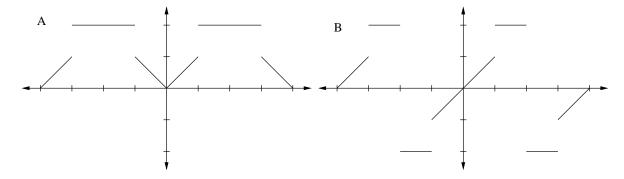
Q#:10

A The linearized matrix is $\begin{bmatrix} y-3 & x \\ 2y & 2x+2 \end{bmatrix}$.

B The critical points are P = (0,0) and Q = (-1,3).

 ${\bf C}$ Point P is a saddle point, which is unstable. Point Q is a centre, which is stable.

Q#:11



C Part (a) has a cosine series and part (b) has a sine series.

D $\tilde{f}(-2) = 0$, $\tilde{f}(\frac{1}{2}) = \frac{1}{2}$ and $\tilde{f}(3) = -\frac{3}{2}$.

Q#:12 Denoting u(x, y) = F(x)G(y),

A $G''(y) + 2G'(y) - \lambda y^2 G(y) = 0$ and $F''(x) - \lambda F(x) = 0$ are the two ordinary differential equations.

B The boundary conditions become F(0) = F(L) = 0.

Q#:13

$$\lambda_n = \frac{(2n-1)^2}{4}$$
 $f_n(t) = \sin\left(\frac{(2n-1)t}{2}\right)$ $n \in \mathbb{N}$

Q#:14

A
$$u_t = 2u_{xx}$$
 $u_x(0,t) = u_x(10,t) = 0$ $u(x,t) = 3 + \exp(\frac{-2\pi^2 t}{25})\cos(\frac{\pi x}{5}).$

$$u(x,0) = 3t\cos(\frac{\pi x}{5}) - 5\cos(\frac{\pi}{2}).$$

C The steady state emperature is 3.

Q#:15

A The general solution is $X(t) = c_1 \begin{bmatrix} 1 \\ -1 \end{bmatrix} e^{-t} + c_2 \left(\begin{bmatrix} 1 \\ -1 \end{bmatrix} t e^{-t} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} e^{-t} \right)$. **B** The specific solution is $X(t) = -\begin{bmatrix} 1 \\ -1 \end{bmatrix} e^{-t} + 3 \left(\begin{bmatrix} 1 \\ -1 \end{bmatrix} t e^{-t} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} e^{-t} \right)$.