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Abstract
Recrystallizationmodels and simulations have been the subject ofmuch attention inmaterials
community in the past decades due to this process having a significant effect onmany technologically
importantmaterials characteristics. Statistical analysis performed close to the steady state requires
large-scale simulations, which are often prohibitively expensive from computational point of view.
Graphical ProcessingUnit (GPU)-based realizations provide a viable approach to addressing this
challenge, yet they remain relatively under-explored in this context.In the presentmanuscript, we
develop a fully-parallelizablematrix-freeGPU-based algorithm for implementing a two-dimensional
vertexmodel of recrystallization based on the stored energy formalism.Nucleation is assumed to take
place at triple junctions and obeys aMetropolis-type criterion.We include a completemathematical
analysis of the nucleationmodel deriving conditions underwhich nucleation is successful. Stability
analysis of the dynamics of a triple junction under the presence of bulk energy is provided. On the
computational side, we propose a novel polling system for handling topological transitions to ensure
robust GPU implementation. Single grain tests are performed for benchmarking purposes. Finally, a
set of numerical experiments for large scale systems is presented to explore the effect of initial
distributions of stored energy on several statistical characteristics.

1. Introduction

The recrystallization process consists of nucleation and growth of new grains in a deformedmicrostructure [1].
It is generally accepted that the stored energy plays a key role in recrystallization, as it provides amechanism to
record deformation of individual grains. The growth of nucleated grains is possible when the stored energy of
new grains is lower than that of the surrounding grains [2]. Due to its significance inmanymanufacturing
processes, recrystallization has been extensively studied over the last several decades, both experimentally and
analytically [3]. Several competing approaches for simulating recrystallization have been proposed, ranging
frommodified vertexmodels to level sets, phase field andMonte Carlo simulations [4, 5].

A recent overview of recrystallizationmodels is given inOrend et al [6]. All thesemethodologies have their
ownmerit as they shed light onto various features of thematerial evolution.We briefly review some of themain
approaches below, focusing specifically on their ability to handle computational challenges. The aimof this work
is to develop a robust vertex-based recrystallization algorithm to be used in large-scale simulations that could
present a viable alternative to the traditional approaches described below.

One of the favoritemethodswhen it comes to grain growth and recrystallization simulations is theMonte
Carlo Pottsmethod. This approach has been extensively studied in [7–10] and has the advantage that nucleation
can be assumed to happen anywhere in the domain. It is relatively inexpensive fromnumerical point of view, but
demands careful calibration in order to reproduce realisticmesoscale features of the network. Luo et al [11]
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developed a parallel version of the Potts grain growthmodel, butGPU-based realizations remain relatively
under-explored in this context.

In phase field community, there also have been successful attempts tomodel this phenomenon, for instance,
see thework of [12–14]. GPU-based accelerated schemes were implemented in [15, 16]. ‘Ultra-large-scale’ phase
field grain growth simulations in [17]were able to handle 3million grains. This allowed to perform extensive
statistical analysis close to the steady-state, something small-scale simulations are unable to do. The authors are
not aware of any similar scale simulation incorporating nucleation.

Bernacki et al [18]developed afinite-elementmodel for recrystallization using a level-set framework. In this
formualtion, each grain is described by a single level set with neither overlap nor empty spaces between grains
allowed.Nucleations were handled by introducing additional level-sets. A two-dimensional level-set approach
to recrystallizationwas also considered inHallberg [19]. Later, in [20], an extension of themodel introduced in
[18]was developed, where nucleation of new grains was handled via a combined probabilistic/deterministic
approach. In [20], dynamics of triple junctions was studied numerically and the steady state of the systemwas
determined. Themethodology of [20] allowed for simulations of systems of 100 to 1000 grains.Mießen et al [21]
proposed a two- and three-dimensional level-set algorithm adapted for ccNUMAarchitecture that allows highly
efficient numerical simulations usingOpenMP.Diffusion generated level setmethodswere proposed in [22],
where about 4million grains are nucleated and a comparative analysis is provided relative toMonte Carlo
simulations.

Ilin et al [23] performed three-dimensional simulations of recrystallization using afinite-elementmodel.
The evolution of a grain boundary networkwas shown to result in complex shapes of grains that, in authors’
opinion, were resembling those observed in experiments.When the stored energy was incorporated into the
model, higher complexity of the grain boundary network topologywas observed. The numerical simulations in
[23]were performed for systems of 100 grains.

Cellular automation has also been used in recrystallizationmodels in 2D and 3D [24], where domain
decomposition strategies have been used to handle numerical simulationswithMPI. The effect of the domain
decomposition techniques implemented using computer network communicationwas investigated. In
particular, the authors of [24] considered how themicrostructure was influenced by the limits they placed on
interactions in order to reduce communications between the sub-domains.More recent studies with cellular
automaton include [25, 26].

Pieko et al [1, 27, 28] extended the two-dimensional vertexmodel of Kawasaki et al [29] andWeygand et al
[30] by adding a stored energy term [1, 27, 28, 31]. It was demonstrated that these simulationsmatched
experimental predictions in terms of the behavior of severalmaterials properties of polycrystals, such as
electrical resistance, internal stresses,micro-hardness, among others, see [1, 27, 31]. In [1] and [31] a stochastic
vertexmodel with stored energywas considered under the assumption that nucleation is site-saturated. The
computational experiments in this workwere restricted to small-scale systems due to numerical limitations.

Mellbin et al [32] proposed aGPU-based algorithm, where they implement the computation of the stresses
and tangent stiffness inGPU for afinite-elementmethod code. They proceeded to develop a graph-based vertex
model coupledwith finite elements to allow nucleation, which is also implemented inGPU [33]. In a recent
work ofMellbin et al [34], an extended analysis of vertexmodels was performed. In particular, topological
transitions, nucleation at triple junctions and along grain boundaries together withGPU-based parallelization
were considered.

In this workwe focus our attention on producing a large-scale version of the vertex-type recrystallization
simulation. In [35], we outlined a strategy formodeling evolution of two-dimensional grain boundary networks
suitable for large-scale GPU implementation.Here we adapt the continuous vertexmodel formulation of Torres
et al [36] to introduce a stored energy term that allows formodeling of recrystallization of large-scale systems.
Our approach is a natural extension of thework presented in [1]. Specifically, we propose amatrix-free
algorithm to derive the velocities of the triple junctions based on a gradient descent approach that enables a
continuous description of the grain growth evolution.We analyze the conditions for successful nucleation. To
the best of our knowledge, such analysis has not yet been carried out in this context.We propose a parallel
algorithm formanaging topological transitions in the grain boundary network to ensure robust GPU-based
implementation. This allows for a fully parallelizable GPU-based implementation of all stages of the algorithm.
The algorithm is designed toworkwith a relative small difference of stored energy between grains, neglecting the
TA-type topological transitions, see [37].

The evolution of triple junctions is considered for both isotropic and anisotropic grain boundary energies.
We thoroughly analyze the effects of the stored energy term on the dynamics of the evolution of the triple
junctions and compare the results to those of a traditional vertexmodel.We demonstrate that the evolution of a
single triple junction reaches a steady state that depends on the stored energy term. Finally, we compute
statistical descriptors of the grain boundary network and explore how they are affected by the nucleation
process. Note that all simulations performed in this work have been initialized using randomVoronoi
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tessellation. The role of initial distributions and possible applications of InverseMonte Carlo techniques [38, 39]
will be explored in future publications.

The paper is organized as follows: in section 2we present the general framework of the gradient descent
algorithm for handling the evolution equations. Section 3 presents thematrix-free algorithm for computing the
gradient for the evolution of the grain network. In section 4we study the dynamics of triple junction and the
effect of the stored energy on it. Section 5 develops themathematical conditions for obtaining a successful
nucleation. Section 6 shows themain algorithmused for the evolution of the grain network. In section 7we
propose a parallel polling for handling topological transitions in aGPU. Section 8 shows an extensive list of
numerical experiments. Finally, in sections 9 and 10we present the conclusions and futurework, respectively.

2. Vertexmodel with a stored energy term

Inwhat follows, a 2-dimensional systemof grains is a collection of non-overlapping polygonal regions (or
grains) that completely cover a domain 2W Ì . The curves separating adjacent grains are called grain
boundaries that form a grain boundary network inΩ.

We emphasize that a 2-dimensional grain boundary network should be interpreted as a slice of its
3-dimensional counterpart. Adopting the terminology in [38], the neighboring 3-dimensional grains are
separated by grain boundary surfaces which, in turn, intersect along triple junction lines. The triple junction
lines terminate at vertex points (also known as quadruple junctions). Along a 2-dimensional slice, the traces of
grain boundary interfaces and triple junction lines are grain boundary curves and triple junction points,
respectively. Note that three grain boundary curves intersect at a given triple junction.

Following the notation from [1], the local energy of a vertex i considering the stored energy term is defined as
follows:

E A ,i
j

i j
i j i j i j

,
, , ,

i

 

å g= +
Î

( )( )

where i is the set of neighboring vertices to the vertex i, γ( i, j) and i j, are the grain boundary energy and the
arc length of the boundary connecting the vertices i and j, i j, andAi, j is the stored energy and area of a grain
adjacent to the boundary i, j using the right-hand rule.We split the local energy between the grain boundary and
the grain area contributions, so:

E A ,i
j

k
k

j
g g

1

3

1

3
i j

i j i j i j
,

, , ,
 å åg= +

= =

( )

where ki, j and gi, j are indices for the three boundaries and grains relative to vertexi. Now,we could define the
total energy of the system as:
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whereK andN are the total number of boundaries and grains, respectively. Notice that if we normalize the total

energy for a characteristic value of the grain boundary energy γ0, we obtain: E A
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and the quotient g

0


g
between stored energy and grain boundary energy will define the dynamics of the system. For

clarity in the discussion, we consider γ0=1 fromnowon.
If we specify the dependency of the boundary arc lengths and grain areas with respect to the vertice positions

x yx ,i i i= á ñ{ }, we can build the evolution equations for thismodel such that it decreases its energy by a gradient

descentmethod, that is to compute t
E

x

E

y
x ,i

i i

= -
¶
¶

-
¶
¶

˙ ( ) .

3.Numerical algorithm

Computing the velocity of each vertex is actually the computation of the gradient of the energy E from
equation (1). Herewe propose amatrix-free approach to approximate the gradient. Themain advantage of this
approach is that it only needs the numerical implementation of the computation of the total energy of the
system, see equation (1).

A convenient way to approximate each partial derivative is with afinite difference approach. Consider the
vector X M2Î of stacked components of x i, this is:
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x x x y y yX , , , , , , , ,M M
T

1 2 1 2= á ñ 

whereM is the total number of triple junctions and T is the transpose operator. Them-th component of the
gradient vector, say E X Xm¶ ¶( ) is approximated by:
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where em is them-th canonical vector in M2 . The numerical evaluation of this approximation implies that the
energy of the systemmust be recomputed twice for each vertex, one to compute E X( ) and the second one is
E X emd+( ), where a small perturbation is added to them-th component. According to(1), thismeans
recomputing each individual vertex of energy each time. Fortunately, this can be handled efficiently by pointing
outwhich terms of energy will be changed after the emd perturbation is added.

A quadratic cost would be required for a naive implementation. Amore detailed analysis shows that the
perturbation only affects the x or y component of a vertex x i, which implies that only the three related grain areas
and the three grain boundary arc lengths connected to vertex x i will change, as shown infigure 1. So, instead of
recomputing the energy for each one of the M2 components of the gradient, we can compute directly the
difference of energies given by the perturbation. Expanding the difference of energies from(2) and taking into
account that the perturbation effect is local, we obtain:
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where i m Mmod= . Notice that the three boundaries and grain areas aremodified by adding a perturbation to
the vertex i. Now, dividing by δwe obtain the right-hand-side of (2),
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Moreover, each estimation of the gradient can be computed efficiently in parallel since only local information of
areas and arc lengths is needed.

4. The effect of stored energy on the dynamics of a triple junction

This section studies how the stored energy term affects the configuration and stability of the grain network.We
extend the stability study done in [20]where only stable configurations are considered.

Figure 1. Sketch ofmodified component related to vertex x i , i.e. neighboring arc lengths and areas getmodified.
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Considering a bounded domainwhere three grains coexist, where two of themhave the same stored energy,
i.e. 1 2 = , and the third has a different stored energy 3 , as shown infigure 2. To quantify the effect of the
stored energy term,we let the central vertex located at (x, b/2)move freely, and due to symmetry this will only
move along the x-axis. LetA1,A2,A3 be the areas of the grains with stored energy 1 , 2 and 3 , respectively.
Grain areas can be explicitly computed as:

A A
b x

A a b
b x1

4
,

1

2
. 31 2 3= =

+
= -

+( ) ( ) ( )

The total energy becomes:
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b x x
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2
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If we compute the derivative of (4)with respect to xwe obtain,

dE
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where 3 1  D = - . Thus, themotion of the central vertex is influenced by the difference of stored energies
and the height of the domain b. Notice that the domainwidth a does not affect the evolution. The steady state can
be foundmaking (5) equal to 0, which yields the following roots:

x
b b b b b b

b b

24 2 4 6 2 2

2 6 2
. 6
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=
- + D D -  - D - D - D +

D - D +


( ) ( )( ) ( )
( )( )

( )

Notice that under equal values of stored energy, only the domain height b defines the position of the steady state,
which is:

x x
b

1
2 3

.steady = = -+

By analyzing the obtained roots, only x+ has physical sense. The critical point, assuming 0D > , is when
b 6D < , as shown infigure 3.

The concept of stability here refers to the interpretation of the vertex location in the domain. If the vertex
stays inside the domain, we say that it is a stable steady state. If the vertex penetrates a grainwithout stopping, the
configuration is said to be unstable. Figures 4(a) and (b) show two steady states. Figure 4(a) shows the steady state
when there is no stored energy; therefore, the steady state is reached at dihedral angle 2 3p . In the presence of a
large stored energy, the steady state is situated away from the isotropic steady state as shown infigure 4(b). Again,
when b 6 D the solution becomes unbounded. Figure 5 shows the trajectories for different values of stored
energies. The black dashed line shows the critical point when the triple junctionmoves from a bounded solution
to an unbounded solution, which are denoted as unstable solutions.

Figure 2.Configuration of three grains with different values of stored energy and a vertex (x7)with one degree of freedom (red dot).
Initially the dot is placed at 1, b

2
( ).
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5.Nucleation and growth of three-sided grains

The nucleation process can be classified as a new type of topological change in the system, considering the
alreadywell-known topological changes: flipping and grain removal. As usual, this new type of topological
change should be energy decreasing; otherwise, itmay induce the removal of the nucleated grain right away. To
analyze this topological change, we propose the following sketch (see figure 6). In this sketchwe observewhatwe
call the current configuration of energy E0

, in red, and a candidate configuration of energy E1
. Themain idea is

that for a candidate vertex x1, wherewe could perform a nucleation, we can explicitly compute the difference of
energy before and after the nucleation, i.e. E E E1 0

  D = - . Therefore, as long as the difference is negative, we
can conclude that nucleationwill be successful. Thus, the ED is as follows,

E A A A

E

E E E

,

,

, 7

0
1,2

1,2
1,3

1,3
1,4

1,4 1 1 2 2 3 3

1
2,4

2,4
2,3

2,3
3,4

3,4

1 0

     
  





  

g g g
g g g

= + + + + +

= + +

D = - ( )

( ) ( ) ( )

( ) ( ) ( )

where x i are the coordinates of the vertex i for iä{1, 2, 3, 4}, i j, is the arc length from vertex x i to vertex xj,
γ( i, j) is the grain boundary energy from vertex x i to vertex xj,A1 is the area of grainwith vertices x x x, ,1 4 2{ },

Figure 3. Stability regions for the relation of b and D in the three grains experiment.

Figure 4. Steady state for different configurations of stored energies. Notice themagnitude of the perturbed steady state in
configuration (b).
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A2 is the area of grainwith vertices x x x, ,1 2 3{ },A3 is the area of grainwith vertices x x x, ,1 3 4{ }, and g is the
stored energy of the grain associated toAg for g 1, 2, 3Î { }.

5.1. First attempt to nucleate a grain
Thefirst attempt one could try to nucleate a three-sided grain is under no presence of the stored energy term.
Here, wewill show this is not possible under the conditions analyzed in the following. First, consider wewill use
the notation used in equation (7). Specifically, we assume 01 2 3  = = = , r1,2 1,3 1,4  = = = , and
isotropic grain boundary energy γ=1. This leads to the following variation of total energy:

E

r3 .
2,4 2,3 3,4 1,2 1,3 1,4

2,4 2,3 3,4

     
  

D = + + - - -
= + + -

So, we defined the angle between the segment defined from x1 to x4 and from x1 to x2 asω1, the angle between
the segment defined from x1 to x2 and from x1 to x3 asω2, and the angle between the segment defined from x1 to
x3 and from x1 to x4 asω3. These angles allow us to obtain the unknown arc lengths using the law of cosines as
follows:

Figure 5.Convergence of steady states for a fixed value of b and different values of b D . Values of 2 6 D become unbounded.

Figure 6. Sketch of energies associated to a 3-sided grain before and after it is nucleated. Red showswhat it is going to be removed and
greenwhat it is going to be added.
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2 2 cos ,

2 2 cos ,
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2,3 2

3,4 3
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

w

w

w
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= -
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Thus, the variation of total energy becomes,

E r 2 2 cos 2 2 cos 2 2 cos 31 2 3
 w w wD = - + - + - -( ( ) ( ) ( ) )

So, considering thatω1+ω2+ω3=2π and that 0i p w for iä1, 2, 3we obtain E 0D . Therefore,
since ED is always greater or equal than 0 nomatter the value of r, it is not possible to nucleate a three-sided
grains under no presence of stored energy.Moreover, if we compute the variationwith respect to rwe obtain
again the positive term 2 2 cos 2 2 cos 2 2 cos 31 2 3w w w- + - + - -( ) ( ) ( ) , under the same con-
sideration. Thus, the grainwill be eventually removed.

5.2. Nucleating a grainwith stored energy:first variation analysis
To gain insight into the general conditions for allowing nucleation. Considering figure 6 and similarly to
section 5.1, we assume that r1,2 1,3 1,4  = = = and also the same dihedral anglesω1,ω2 andω3 introduced
before.Moreover, we include here the grain boundary and stored energy dependence explicitly, thismeans areas
A1,A2 andA3 have stored energy 1 , 2 , and 3 , respectively. The grain boundary energy related to i j, is γi, j for
iä{1, 2, 3, 4} and iä{1, 2, 3, 4}. This leads us to following:

E r

r r

2 1 cos 1 cos 1 cos

1

2
sin sin sin . 8

2,4 1 2,3 2 3,4 3

1,2 1,3 1,4
2

1 1 2 2 3 3  

 g w g w g w

g g g w w w

D = - + - + -

- + + + + +⎜ ⎟⎛
⎝

⎞
⎠

( ( ) ( ) ( ) )

( ) ( ( ) ( ) ( )) ( )

So, considering isotropic grain boundary energy γ (i.e. γ=1), dihedral angle of 2π/3 and 1 2 3   + + = .
This leads us to the following simplification,

E r r r

r r

3 3 3
3

4

3 3 1
3

12
.

2



D = - -

= - -




⎛
⎝⎜

⎞
⎠⎟

From this expression, we determined that there are two critical points for 0 ¹ . These are r0=0 and

r
4 3 3

5.071 796c 1 2 3
1


  =

-
» + + -


( ) ( ) . Thefirst critical point r0=0 indicates that nucleating the area

0will add 0 energy, which is correct but we are not interested in that case. On the other hand, the second critical
point is the onewe are interested in, r 5.071 796c

1» - , since from that point onwe ensure we are not
increasing the energy of the system andwill let the nucleated grain grow. Infigure 7we observe a qualitative
behavior of (7) for the symmetric case, with this plot showing that we require r from figure 6 to be at least
r 4 3 3c

1= - -( ) . This implies nucleating a large grain; otherwise, wewill be adding energy to the system. An
important consideration needs to bemade; namely, if the nucleated grain has a radius r in the range [0, rc/2], the
nucleated grainwill not grow.On the other hand, if the radius of the nucleated grain is in the range ]rc/2, rc], the
nucleated grainwill grow but it will initially add energy to the system, andwhen the nucleated grain satisfies
r>rc, the nucleated grainwill grow andwill remove energy from the system. Figure 7 shows these ranges in red,
yellow and green, respectively. Thus, the yellow zone is a candidate configuration to use aMonte Carlo
approach.

5.3. A symmetric nucleation analysis: second variation analysis
For a successful energy decreasing nucleation, as discussed in the previous section, we have a constraint on the
size of the grain to be nucleated; otherwise, the nucleated grainwill not grow. Therefore, in the yellow zone there
is a potential for a grain to growbut at a cost of a temporal increase of total energy. Themain interest in this type
of configuration is that it imposes a lower bound requirement for the size of the nucleated grain tomake the
nucleation successful.

A preliminary analysis indicates that the slope of the ED is negative in that range, and an energy decreasing
model will favor the growth of the grain since it will decrease the energy.More rigorously, we need to compute

E E2 D D D( ) ≕ . Figure 8 shows a diagramof two possible nucleations at vertex x1. In this case the nucleation
on the left is the one explained previously infigure 6, whichwill be denoted here as E1

D . And the one on the
right is a nucleation for a smaller grain for the same vertex x1, whichwill be denoted as E0

D . These two virtual
nucleations allowus to obtain E E E2

1 0
  D = D - D . Thus, if E 02 D < , we ensure that the nucleated grain

may grow since it will decrease the energy of the system. This value will be denoted as the nucleation threshold.
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Notice that under an anisotropic grain boundary energy the computation of E2 D will include each grain
boundary energy term,which have to be computedwith respect to the orientation of the nucleated grain.We set
the orientation of the nucleated grain randomly in [0, 2π].

From section 5.2, equation (8), we can estimate the limiting case for E2 D . Thismean to compute:

E rlim E r E r

r0
 

= Dd
d
d

D + -D ¶
¶

( )( ) ( ) , which gives us:

r
E

r

2 1 cos 1 cos 1 cos

sin sin sin .

2,4 1 2,3 2 3,4 3

1,2 1,3 1,4 1 1 2 2 3 3  

 g w g w g w

g g g w w w

¶
¶

D = - + - + -

- + + + + +

( ( ) ( ) ( ) )

( ( ( ) ( ) ( )))

And considering γ=1, dihedral angle of 2π/3 and 1 2 3   + + = , we obtain:

r
E r3 3 3

3

2
.¶

¶
D = - - 

6. Stored energy vertexmodel with nucleation algorithm

Themain algorithmof thismodel considers first the computation of boundary properties such as arc lengths
and energies, and then the computation of grain areas.We choose to perform continuous nucleation, that is,
nucleating at regular intervals of time in the simulation, denoted asΔτ, see [40]. To select a nucleation vertex,

Figure 7.Plot of ED symmetric with 181 2 3   = + + = . The ability to allow growth depends on the size of the nucleated
grain.

Figure 8. Sketch of energies for computing E2 D , see figure 6.

9

Mater. Res. Express 6 (2019) 055506 AH J Sazo et al



we follow aMonte Carlo approachwith a probability threshold Eexp k- D( )withκ=1. This is explained in
algorithm1.

Algorithm1.MonteCarlo selection for nucleation location.

1:procedureMONTECARLONUCLEATION

2:  i ¬ Select a randomvertex

3: r ¬ Select a random length between 0 and mink k for k being the grain boundaries connected to i

4: a ¬ Pick a randomorientation between [0, 2π]
5:  ED ¬Compute first variationwith the randomly chosen arc length r and orientationα

6:  E2 D ¬Compute second variationwith the randomly chosen arc length r and orientationα, this is the nucleation threshold

7: if E 0D < then

8: returnAccept nucleation of triple junction i with arc length r and orientationα

9: else
10: if E 02 D < then

11:  p ¬ Pick a randomnumber in [0, 1]
12: if p Eexp k< - D( ) then
13: returnAccept nucleation of triple junction i with arc length r and orientationα

14: else
15: returnReject nucleation
16: end if
17: else
18: returnReject nucleation
19: end if
20: end if
21: endprocedure

If there is a site for a successful nucleation, the grain is added and neighboring topology is updated.
Thenext stage considers the computationof the vertex velocities using thematrix-free approachdescribed in

section 3. Then, extinction times for eachboundary are computed andwe label boundaries thatwillflip, that is,
when textä[0,Δt].Herewemust decidewhichflippings are safe to performand therefore,weavoidneighbor
transitions. Algorithm5 is presented in section 7 and solves this issue. If a three-sided grain has a grain boundary as a
candidate forflipping, a grain removal is performed.After this, we apply the remainingflippings,weupdate the
vertice positions and the systemevolves to the time t+Δt. Algorithm2 summarizes the describedprocedure.

Algorithm2. Stored Energy VertexModel

1:procedure SEVM (niters, boundaries G, vertices , grains )
2:  t n, 0, 0iters ¬( ) ( )
3: for iter=0,K, niters do

4:  ComputeArclengthsAndEnergiesG G¬ ( )
5:  ComputeAreas ¬ ( )
6: if iter Tmod 0== then

7:  MonteCarloNucleationk ¬
8: if k ¹ Æ then

9:  , , Nucleate k  G ¬( ) ( )
10:  ComputeArclengthsAndEnergiesG G¬ ( )
11:  ComputeAreas ¬ ( )
12:  ComputeNucleationThreshold ¬ ( )
13: end if
14: end if
15: V ComputeMatrixFreeVelocities ¬ ( )
16:  PollingSystemG G¬ ( ) ▷See algorithm5

17:  , , RemoveThreeSidedGrains , ,   G G¬( ) ( )
18:  ApplyFlipsG G¬ ( )
19:  VUpdateVerticesPositions , ¬ ( )
20: iter iter 1¬ +
21: t t t¬ + D
22: end for
23: endprocedure

As discussed in section 4, vertices exposed to grainwith stored energy equal to 0 and other grains with stored
energy different that 0,may become unstable. This could bring overlapping grains during the numerical
experiments. To handle this, we only considered small differences of stored energy.
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7. The parallel polling system formanagement of topological transitions

Topological transitionsmodify the grain structure and the data structuremust reflect these relations at every
time step. The update of this data structure is critical due to the consistency during numerical simulation and
implementation performance.We discuss in this section the sequentialmanagement algorithm for topological
transitions in a grain growth numerical simulation, and thenwe propose a parallelmanagement algorithm that
aims to handle topological transitions in a fullyGPU-based-code.

7.1. Sequentialmanagement
In a sequential implementation of a vertex code, [36], the topological transitions,flippings and grain removal
can be detected by estimating the time that a boundary will collapse, called extinction time (text). If the extinction
time lies between the current time t and one time step after t+Δt, i.e. within [t, t+Δt], the boundary is
considered a candidate toflip. A simple algorithm to solve the transitions within the time step is to sort the
candidate boundaries with positive extinctionä[t, t+Δt] into ascending order.We can then iteratively solve
the conflicts by labeling those candidates involved in transitions of other candidates, and the labeled boundaries
are inhibited toflip this time step.Once all the conflicts have been solved, the transitions are performed.
Algorithm3 summarizes the describedmanagement.

Algorithm3. SequentialManagement of Topological Transitions

1:procedure SEQUENTIAL

2: G ¬Compute text for each boundary

3:  flipG ¬ Select candidates boundaries toflipwith textä [0,Δt]
4:  flipG ¬ Sort boundaries by text increasingly

5:  ,tmpG ¬ Æ Empty list of boundaries visited

6:  ,tmp ¬ Æ Empty list of vertices visited

7: for each flipGG Î do

8:  x x,i j ¬{ } Vertices ofΓ

9: if x x,i jtmp Ç = Æ{ } then

10:  tmp tmp ÈG G¬ G
11:  x x,i jtmp tmp  È¬ { }
12: else
13: return tmpG
14: end if
15: end for
16: endprocedure

Due to the need formore significant statistics [20, 31, 34], hundreds of thousands of grainsmust be
simulated. The sequential implementation of thesemodels inCPU treats grain structure evolution and
topological transitions sequentially. It is possible to parallelize the structure evolution inCPU and still solve the
topological transitions in the traditional way from algorithm3but this processmight become a bottleneckwhen
we require large numerical simulations.

We chose to implement thismodel in aGPU and therefore, we expect to handle topological transitions by
taking advantage of such architecture, that is, avoidingwhenever is possible the sequential treatment of the grain
network, i.e. data structure.

The parallel implementation inGPU is straightforwardwhenwe speak of evolving the data structure: in the
CUDAprogramming language [41, 42]we can launch one thread per vertex or boundary to compute their
velocities, and then update the positions. The problemof solving the topological transitions arises, since the
mechanism to solve inconsistencies is sequential and parallelism over the data structure will generate race
conditions. For example, naive implementation of the sequential algorithm inGPUwithCUDAwould cause
that each threadworkingwith a boundary to attempt amodification of the lists of boundaries visited, and this
may produce a corrupt data structure. Thus, a new algorithm for parallelmanagement of topological transitions
must be built.

7.2. Parallel polling system
Since the concurrent access to a data structure in a parallel implementationmakes the sequential approach of
managing topological transitions a bottleneck, amanagement system is proposed based on local information
given by vertices and boundaries. First, we need to compute the extinction time for each boundary and label the
candidates forflipping. Instead of sorting the boundaries as the sequential algorithm, each vertexwill store local

11

Mater. Res. Express 6 (2019) 055506 AH J Sazo et al



information of the boundary that among the three boundaries connected to it has the lowest possible extinction
timewithin [t, t+Δt].

We then have for each vertex a voted boundary, i.e. the boundarywith the lowest positive time in [t, t+Δt]
and if the boundary has not been already been inhibited forflipping. This is stored for each vertex to avoid race
conditions. Next, each boundary counts the obtained votes by referring to its vertices. The vote counting is the
key, with two votesmeaning that a boundary canflip since all its neighbor boundaries have chosen it, and it earns
the right to label neighbor boundaries as inhibited forflipping in this time step. Notice thatwe only allow atmost
one boundary flipping for each vertex to avoid corrupting the data structure; however, severalflippings could
happen in parallel if they are not connected to the same vertices. Other boundaries will obtain one or zero votes,
and thus they are not candidates forflipping. This polling is repeated until no further labeling is possible, that is,
when the previous set of candidates is the same as the current iteration.

Figure 9 shows a diagramof the polling system.Consider a neighborhood of boundaries with their
extinction times already computed. Figure 9(a) shows the vertex poll. Each vertex in this neighborhoodwill vote
for their boundary with the lowest positive text, and the checkmarks (votes)with the same color of a vertex
means that that vertex voted for that boundary.We can see that some boundaries obtained zero, one or two
votes. The case of a boundarywith two votes is special because it implies that two vertices (pink and green)
decided that their shared boundary is a good candidate forflipping and therefore no other boundary in the
immediate neighborhood is allowed to be aflipping candidate. Figure 9(b) shows thefinal counting for each
boundary. Boundaries with zero votes remain in black, boundaries with one votes are cyan and boundaries with
two votes are red.Notice that although cyan boundariesmight be able toflip, the priority is assigned to
boundaries with two votes. The chosen boundary labels its neighbor boundaries as inhibited as shown in
figure 9(c) in gray. Inhibited boundaries cannot be voted at the next iteration. Related verticesmust vote between
the remaining non-inhibited boundaries, as shown infigure 9(d).

It is considered that a grain boundary could have three states: candidate, inhibited, and uninhibited. This
procedure can be seen as afixed point iteration over a polling function Poll G( ), where the input is the current
boundary set and it returns the inhibited states.When the polling function returns the same inhibited states, we
will have found afixed point of the function and thuswewill have converged to a feasible solution. Algorithm5
summarizes this procedure.

Figure 9.Polling systemdiagram.
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Algorithm4.Polling Routine for Inhibit Boundaries

1:procedure POLL(boundaries G )
2: G ¬Vertices votes for its uninhibited boundarywith lowest text
3: G ¬ Boundaries counts the votes received

4: G ¬ Select uninhibited boundaries with two votes

5: G ¬ Inhibit neighbor boundaries of selected boundaries

6:  ¬ Inhibited state of boundaries

7: return 
8: end procedure

Algorithm5.Parallel Polling System forManaging Topological Transitions

1:procedure POLLINGSYSTEM(boundaries G)
2: G¬Compute text for each boundary

3: G¬ Label boundaries toflip with textä [0,Δt]
4:  0 ¬ Set initial inhibited state for all boundaries

5: do
6:  1 0 ¬
7:  Poll0 G¬ ( )
8: while 1 0 ¹
9: end procedure

The advantage of this polling system is that the vertices voting and boundaries counting can be performed in
parallel since data is accessed as read-only. No race condition exists here sincewe avoided possible nearby
flippings. One disadvantagemay be the computational cost of performing the polling iteratively until
convergence, butwe have observed that it converges in a few iterations. Thus, this algorithm is in practice fast
enough.

8.Numerical experiments

In this sectionwewill show twomain numerical experiments. Thefirst one shows the growth of a single grain
where nucleation is allowed either. The second correspond to a set of four different initial distributions of stored
energywherewe alsomodify the quotient th t= D D . TheMonte-Carlo nucleation is allowed every η time
steps.

8.1. Letting a single grain grow
This numerical experiment is performwith 2000 grains. Only one grain located at the center of the domain has
stored energy equal to 0 and all the other grains have stored energy equal to 0.6.

As shown infigure 10, the single grain starts growing and almost cover thewhole domain. An interesting
observation is that the number of sides of the grain growth quickly, reaching 34 sides. A similarmicrostructure
can be seen in [8].

Figure 11 shows that the total energy of the systemdecreases as the single grain grows, accelerating the decay
as time increases.

8.2. Set up for large scale nucleationwith different initial stored energies
Numerical experiments were performed using 120000 initial grains following aVoronoi tessellation, butwe
allowed the nucleation to start at 100000 grains. This is becausewe need to have space in data structure to allow
nucleation; otherwise, the nucleationwill not be successful due to data structure constraints. The statistics will
be computed from100000 grains. Grain boundary energy anisotropy is added by using the following definition
proposed by [43]:

1
2

1 cos 4 93g a
e

aD = + - D( ) ( ( )) ( )

with ε=0.2. The nucleated grain is built considering that the three new triple junctions are created along the
grain boundaries associated to the selected triple junction. The locations of the new triple junctions correspond
to a convex combination between the location (x i) of the candidate triple junction for nucleation and the
location of each of its neighbor vertices (xj) along grain boundaryΓj. The distance from the vertexwhere the

13

Mater. Res. Express 6 (2019) 055506 AH J Sazo et al



nucleated grainwill be added to the new vertices is equal for the three cases, similarly to the analysis performed in
section 5.2.

The initial distributions of stored energy are chosen to allowmore grains with higher values of stored energy;
thus, tomake the nucleationmore likely.We use the following initial distributions of stored energy:

SE-1 Constant stored energy equal to ν.

Figure 10.Evolution of a grain networkwith only grain grainwith stored energy equal to 0 and all the other grains with stored energy
equal to 0.6.No nucleation is allowed.

Figure 11. Left plot shows the evolution of the total energy over time for the single grain experiment. Right plot shows the evolution of
the number of grains over time.
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Figure 12.Normalized total energy over time for the four different initial distributions of stored energy, for the two εʼs and for the two
different ηʼs.

Figure 13.Grain network at different times for η=10 and SE-1.

15

Mater. Res. Express 6 (2019) 055506 AH J Sazo et al



Figure 14.Grain relative area distributions at different times for η=10. The different colors show the different type of distribution of
stored energy used at the beginning. They are indicated in the legend for each time.Missing lines indicate that the numerical
experiment alreadyfinished, so no data is available for those times. The experiments finishwhen they reach 20000 grains.
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SE-2 Triangular distribution Triangular(ν/2, ν, ν).

SE-3 Uniformly randomly distributed in [ν/2, ν].

SE-4 Uniformly randomly distributed in [0, ν].

where ν=2.4. Similar values of  were used in [27].
Themaximumvalue of stored energy is ν, the grain boundary energy is in the range [1, 1.2], and the

computational domain used isΩ=[0, 160]2.We needed to increase the computational domain to be able to
obtain E 0;2 D < otherwise, it would have not been possible to nucleate whenmany grains were present.We
also consider periodic boundary conditions.

8.3. Energyminimization
Figure 12 shows the evolution of the total energy over time for all the initial distributions of stored energy.We
also included the isotropic case, i.e. 0e = , for reference. The continuous lines correspond to the isotropic cases
and the dashed lines for the anisotropic one. The red curves correspond to the constant initial distribution of
stored energy (SE-1), the blue curves correspond to the Triangular distribution Triangular(ν/2, ν, ν) (SE-2), the
orange curves correspond to the uniformdistributionU(ν/2, ν) (SE-3), and the green curves correspond to the
uniformdistributionU(0, ν) (SE-4).

Figure 15.Dihedral distributions at different times for η=100. The color indicates different type of initial distribution of stored
energy used.Missing lines indicates no data is available at those times because the numerical simulation already finished.
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Wenote that there are three different evolution regimes for the total energies. The first correspond to SE-1,
the second to SE-2 and SE-3, while the third corresponds to SE-4. This suggests that the valuewhere the stored
energy varies ismore significant than its distribution. The numerical simulationwere stoppedwhen the dihedral

Figure 16.Grain BoundaryCharacter distributions at different times for η=10.
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angles started to be significantly greater thanπ. This is because the algorithm is designed toworkwith small
differences of stored energy. Fromnowon, we only show the output for η=10 since it was able to advancemore
in time than 1h = without having dihedral anglesmuchmore greater thatπ. Also, the statistics look very
similar.

8.4. Statistics for nucleationwithMC
Figure 13 shows the grain structure for 4 different times for SE-1.

Figure 14 show the evolution of the distribution of the relative areas over time.Notice that at time t=2.4,
the data for SE-4 is not shown because the numerical simulation reached theminimumnumber of grain, which
is 20000 grains. The three regimes described before are still present in this plot. Onemay observe that the shape
of the relative area distribution evolves further for the triangular and uniform initial stored energy distribution
than it does in the constant case.

Figure 15 shows the distribution of the dihedral angle over time.We did not include the legend for
visualization purpose, the legend from figure 14 is still valid. In this case, by time t=3, several experiments have
already reached theminimal number of grains and are not shown in the plots.

Figure 16 shows the development of theGrain BoundaryCharacter Distribution (GBCD).
Figure 17 shows the average number of sides distribution. In this figure, we observe again that the initial

distribution of stored energy SC-1 behaves different with respect to the other numerical experiments. For time
t=3.0, we observe that we get grains withmore than 20 sides for SC-1. The other feature observed is the
proportion of 3-sided grains at times t=1.5 and t=2.4 for the numerical experiments SC-2, SC-3 and SC-4,
which is greater than the proportion for SC-1.

Figure 17.Average number of sides distribution at different times for η=10. The color indicates different type of initial distribution
of stored energy used.Missing lines indicates no data is available at those times because the numerical simulation already finished.

19

Mater. Res. Express 6 (2019) 055506 AH J Sazo et al



Figure 18 shows the normalized histogram for the stored energy and figure 19 shows the area-weighted
histogram for the stored energy. In both cases, we observe the distributions for stored energy right whenwe
started allowing nucleation for each numerical experiment SE-1, SE-2, SE-3, and SE-4. Notice that the y-axis has
been limited to 3 but the red-bin ismuch larger than 3. This was added for visualization purposes. As observed in
both cases, the lower values of stored energy are preferred; thus, they becomemore important as time evolves.

Misorientation distribution function (MDF) is shown infigure 20. It shows the preference to
misorientations close to zero from the beginning.

Tables 1 and 2 show the number of successful and unsuccessful attempts to nucleate a grain. This is done for
the isotropic and anisotropic settings for the initial conditions SE-1, SE-2, SE-3 and SE-4with η=10. The
nucleations attempts labelled as ‘R’ show the number of rejected attempt, they are rejected because E 0D >
and E 0;2 D > thus, an unfeasible site for successful nucleation. The nucleation attempts labeled as ‘MC-R’ are
feasible since E 0D > and E 02 D < , but theywere rejected by theMonte-Carlo algorithm1. Similarly, ‘MC-
A’ shows the number of nucleation site with E 0D > and E 02 D < and thatwere accepted by theMonte-
Carlo algorithm1. Attempts labeled as ‘A’ indicate the sites where the nucleationwas accepted immediately
since E 0D < .

We observe that nucleation attempts decreases from SE-1 to SE-4. Anisotropic settings seem to reduce the
number of successful attempts. Note thatmost of the rejected nucleation comes fromunfeasible sites, whilst all
the accepted nucleations come from theMonte-Carlo algorithm.

Figure 21 shows the average area over time and the percentage of nucleated area over time for each initial
distribution of stored energy. The same color configuration described before is used for clarity. Thefirst
columns is for η=1 and the second column for η=10. Similarly as before, the curves are plotted until the
number of grains is 20000. Thin curves (continuous and dashed) correspond to the average area over time, this is
shownon the left y-axis. Thick curves (continuous and dashed) correspond to the percentage of area of
nucleated grains, this is shownon the right y-axis. Notice that for sub-figures (d), (f)–(h), the thicker curves are
very close to 0. As it can be observed infigure 21(a), the constant distribution of stored energy was the numerical
experiment that was able to reach the largest percentage of area nucleated. All the other cases were less significant
and reached theminimal number of grains before theywould have achieved a higher percentage of
nucleated area.

Figure 18. Stored energy distributions at at different times for η=10. The distributions of stored energywhenwe allowed nucleation
can be seen in the sub-figure (a).
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9. Conclusions

In this workwe extended continuous formulation of the two-dimensional vertexmodel to incorporate stored
energy of the grains. The basicmechanismhas been previously used by several authors, but not in the context of
the vertexmodel formulation adopted herein.We provide complete description of theMonteCarlomethod
used in the process of choosing the nucleation site and analyze conditions underwhich the nucleus can grow.We
observed that while nucleated grainsmay add energy to the system, they eventually decrease the total energy in
the course of the system evolution.

An extensive set of statistics is harvested and compared for four different initial distributions of stored
energy. Our numerical experiments confirm the expected behavior for theGBCDand the emergence of the long
tail for relative area distribution.While the statistics in this slownucleation regime do not change shapewhen
compared to the pure grain growth phase, we noticed dependence of the distributions on the range of the initial
stored energy. For instance, for higher average value of stored energy (SE-1) there are fewer grains with small
areas than one expects tofind in the relative area statistics.

One of the distinguishing features of our vertexmodel is that it allows for parallel implementation. In
building theGPU frameworkwe overcame several computational challenges, such as the parallelmanagement
of the topological transitions and the efficient computation of the dynamics of the network of grains.
Parallelization of the random selection of candidate vertices inmultiple threaded architecture has also been
successfully implemented. To support reproducibility, wemake theCUDAcode available inGitHub, see [44].

10. Futurework

The numerical analysis presented here shows thatwe can let grains growwith a stored energy term in a stable
way, that is, avoiding vertices and boundaries crossing each other. For large differences of the stored energy
between neighboring grains, wemay have triple junctions with dihedral angles that exceedπ. These triple
junctions are precisely those that could cross one of the opposite boundaries in a given grain. The resulting

Figure 19.Area-weighted stored energy distributions at different times for η=10. The color indicates different type of initial
distribution of stored energy used.Missing lines indicates no data is available at those times because the numerical simulation already
finished.
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topological transition can be handledwith an extension of the present continuous vertexmodel by including a
different type of topological transition, called TA, see [1, 34]. As future work, wewould like to incorporate this
topological transition into our computationalmodel. Larger difference of stored energywill be implemented in

Figure 20.MDF at different times for η=10.
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Figure 21.Average area and percentage of nucleated area over time. The color indicates different type of initial distribution of stored
energy used. Thin curves (continuous and dashed) correspond to the average area over time, this is shown on the left y-axis. Thick
curves (continuous and dashed) correspond to the percentage of area of nucleated grains, this is shown on the right y-axis. Notice that
for sub-figures (d), (f), (g), and (h), the thicker curves are very close to 0.
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parallel, for instance, by extending the polling systemproposed here. Another future research direction is to
study the effect of initial grain distribution on steady state characteristics.
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