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Abstract

Recrystallization models and simulations have been the subject of much attention in materials
community in the past decades due to this process having a significant effect on many technologically
important materials characteristics. Statistical analysis performed close to the steady state requires
large-scale simulations, which are often prohibitively expensive from computational point of view.
Graphical Processing Unit (GPU)-based realizations provide a viable approach to addressing this
challenge, yet they remain relatively under-explored in this context.In the present manuscript, we
develop a fully-parallelizable matrix-free GPU-based algorithm for implementing a two-dimensional
vertex model of recrystallization based on the stored energy formalism. Nucleation is assumed to take
place at triple junctions and obeys a Metropolis-type criterion. We include a complete mathematical
analysis of the nucleation model deriving conditions under which nucleation is successful. Stability
analysis of the dynamics of a triple junction under the presence of bulk energy is provided. On the
computational side, we propose a novel polling system for handling topological transitions to ensure
robust GPU implementation. Single grain tests are performed for benchmarking purposes. Finally, a
set of numerical experiments for large scale systems is presented to explore the effect of initial
distributions of stored energy on several statistical characteristics.

1. Introduction

The recrystallization process consists of nucleation and growth of new grains in a deformed microstructure [1].
Itis generally accepted that the stored energy plays a key role in recrystallization, as it provides a mechanism to
record deformation of individual grains. The growth of nucleated grains is possible when the stored energy of
new grains is lower than that of the surrounding grains [2]. Due to its significance in many manufacturing
processes, recrystallization has been extensively studied over the last several decades, both experimentally and
analytically [3]. Several competing approaches for simulating recrystallization have been proposed, ranging
from modified vertex models to level sets, phase field and Monte Carlo simulations [4, 5].

A recent overview of recrystallization models is given in Orend et al [6]. All these methodologies have their
own merit as they shed light onto various features of the material evolution. We briefly review some of the main
approaches below, focusing specifically on their ability to handle computational challenges. The aim of this work
is to develop a robust vertex-based recrystallization algorithm to be used in large-scale simulations that could
present a viable alternative to the traditional approaches described below.

One of the favorite methods when it comes to grain growth and recrystallization simulations is the Monte
Carlo Potts method. This approach has been extensively studied in [7-10] and has the advantage that nucleation
can be assumed to happen anywhere in the domain. It is relatively inexpensive from numerical point of view, but
demands careful calibration in order to reproduce realistic mesoscale features of the network. Luo efal[11]
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developed a parallel version of the Potts grain growth model, but GPU-based realizations remain relatively
under-explored in this context.

In phase field community, there also have been successful attempts to model this phenomenon, for instance,
see the work of [12—14]. GPU-based accelerated schemes were implemented in [ 15, 16]. ‘Ultra-large-scale’ phase
field grain growth simulations in [17] were able to handle 3 million grains. This allowed to perform extensive
statistical analysis close to the steady-state, something small-scale simulations are unable to do. The authors are
not aware of any similar scale simulation incorporating nucleation.

Bernacki et al [18] developed a finite-element model for recrystallization using a level-set framework. In this
formualtion, each grain is described by a single level set with neither overlap nor empty spaces between grains
allowed. Nucleations were handled by introducing additional level-sets. A two-dimensional level-set approach
to recrystallization was also considered in Hallberg [19]. Later, in [20], an extension of the model introduced in
[18] was developed, where nucleation of new grains was handled via a combined probabilistic/deterministic
approach. In [20], dynamics of triple junctions was studied numerically and the steady state of the system was
determined. The methodology of [20] allowed for simulations of systems of 100 to 1000 grains. Miefen et al [21]
proposed a two- and three-dimensional level-set algorithm adapted for ccNUMA architecture that allows highly
efficient numerical simulations using OpenMP. Diffusion generated level set methods were proposed in [22],
where about 4 million grains are nucleated and a comparative analysis is provided relative to Monte Carlo
simulations.

Ilin et al [23] performed three-dimensional simulations of recrystallization using a finite-element model.
The evolution of a grain boundary network was shown to result in complex shapes of grains that, in authors’
opinion, were resembling those observed in experiments. When the stored energy was incorporated into the
model, higher complexity of the grain boundary network topology was observed. The numerical simulations in
[23] were performed for systems of 100 grains.

Cellular automation has also been used in recrystallization models in 2D and 3D [24], where domain
decomposition strategies have been used to handle numerical simulations with MPI. The effect of the domain
decomposition techniques implemented using computer network communication was investigated. In
particular, the authors of [24] considered how the microstructure was influenced by the limits they placed on
interactions in order to reduce communications between the sub-domains. More recent studies with cellular
automaton include [25, 26].

Piekoetal[1,27, 28] extended the two-dimensional vertex model of Kawasaki et al [29] and Weygand et al
[30] by adding a stored energy term [1, 27, 28, 31]. It was demonstrated that these simulations matched
experimental predictions in terms of the behavior of several materials properties of polycrystals, such as
electrical resistance, internal stresses, micro-hardness, among others, see [1,27,31]. In [1] and [31] a stochastic
vertex model with stored energy was considered under the assumption that nucleation is site-saturated. The
computational experiments in this work were restricted to small-scale systems due to numerical limitations.

Mellbin et al [32] proposed a GPU-based algorithm, where they implement the computation of the stresses
and tangent stiffness in GPU for a finite-element method code. They proceeded to develop a graph-based vertex
model coupled with finite elements to allow nucleation, which is also implemented in GPU [33]. In a recent
work of Mellbin et al [34], an extended analysis of vertex models was performed. In particular, topological
transitions, nucleation at triple junctions and along grain boundaries together with GPU-based parallelization
were considered.

In this work we focus our attention on producing a large-scale version of the vertex-type recrystallization
simulation. In [35], we outlined a strategy for modeling evolution of two-dimensional grain boundary networks
suitable for large-scale GPU implementation. Here we adapt the continuous vertex model formulation of Torres
etal[36] to introduce a stored energy term that allows for modeling of recrystallization of large-scale systems.
Our approach is a natural extension of the work presented in [ 1]. Specifically, we propose a matrix-free
algorithm to derive the velocities of the triple junctions based on a gradient descent approach that enables a
continuous description of the grain growth evolution. We analyze the conditions for successful nucleation. To
the best of our knowledge, such analysis has not yet been carried out in this context. We propose a parallel
algorithm for managing topological transitions in the grain boundary network to ensure robust GPU-based
implementation. This allows for a fully parallelizable GPU-based implementation of all stages of the algorithm.
The algorithm is designed to work with a relative small difference of stored energy between grains, neglecting the
TA-type topological transitions, see [37].

The evolution of triple junctions is considered for both isotropic and anisotropic grain boundary energies.
We thoroughly analyze the effects of the stored energy term on the dynamics of the evolution of the triple
junctions and compare the results to those of a traditional vertex model. We demonstrate that the evolution of a
single triple junction reaches a steady state that depends on the stored energy term. Finally, we compute
statistical descriptors of the grain boundary network and explore how they are affected by the nucleation
process. Note that all simulations performed in this work have been initialized using random Voronoi
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tessellation. The role of initial distributions and possible applications of Inverse Monte Carlo techniques [38, 39]
will be explored in future publications.

The paper is organized as follows: in section 2 we present the general framework of the gradient descent
algorithm for handling the evolution equations. Section 3 presents the matrix-free algorithm for computing the
gradient for the evolution of the grain network. In section 4 we study the dynamics of triple junction and the
effect of the stored energy on it. Section 5 develops the mathematical conditions for obtaining a successful
nucleation. Section 6 shows the main algorithm used for the evolution of the grain network. In section 7 we
propose a parallel polling for handling topological transitions in a GPU. Section 8 shows an extensive list of
numerical experiments. Finally, in sections 9 and 10 we present the conclusions and future work, respectively.

2. Vertex model with a stored energy term

In what follows, a 2-dimensional system of grains is a collection of non-overlapping polygonal regions (or
grains) that completely cover a domain 2 C R?. The curves separating adjacent grains are called grain
boundaries that form a grain boundary network in €.

We emphasize that a 2-dimensional grain boundary network should be interpreted as a slice of its
3-dimensional counterpart. Adopting the terminology in [38], the neighboring 3-dimensional grains are
separated by grain boundary surfaces which, in turn, intersect along triple junction lines. The triple junction
lines terminate at vertex points (also known as quadruple junctions). Along a 2-dimensional slice, the traces of
grain boundary interfaces and triple junction lines are grain boundary curves and triple junction points,
respectively. Note that three grain boundary curves intersect at a given triple junction.

Following the notation from [1], the local energy of a vertex i considering the stored energy term is defined as
follows:

Ei= Y (Y Lij + EijAi),
JEN;

where M is the set of neighboring vertices to the vertex i, 7> and L; ; are the grain boundary energy and the
arclength of the boundary connecting the vertices iand j, £; ; and A; ;is the stored energy and area of a grain
adjacent to the boundary i, j using the right-hand rule. We split the local energy between the grain boundary and
the grain area contributions, so:
3 3
. — kij
Ei=) ’J)‘Cki,j +2 ggi,jAgi,f ’
j=1 j=1
where k; jand g; ;are indices for the three boundaries and grains relative to vertex i. Now, we could define the
total energy of the system as:

K N
E=>70L+ 3 EA,. ¢))

k=1 g=1

where K and N are the total number of boundaries and grains, respectively. Notice that if we normalize the total

f el . . K A® &
energy for a characteristic value of the grain boundary energy -,, we obtain: E = 70( e WNO Ly + ZN, —gA )

and the quot1ent % between stored energy and grain boundary energy will define the dynamics of the system. For

clarity in the dlscussmn we consider v, = 1 from now on.
If we specify the dependency of the boundary arc lengths and grain areas with respect to the vertice positions
{x; = (x;, 1) }, we can build the evolution equations for this model such that it decreases its energy by a gradient

descent method, that is to compute %;(t) = < - 8—E OF >

Ox; y.

1

3. Numerical algorithm

Computing the velocity of each vertex is actually the computation of the gradient of the energy E from
equation (1). Here we propose a matrix-free approach to approximate the gradient. The main advantage of this
approach is that it only needs the numerical implementation of the computation of the total energy of the
system, see equation (1).

A convenient way to approximate each partial derivative is with a finite difference approach. Consider the
vector X € R?M of stacked components of x;, this is:
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Figure 1. Sketch of modified component related to vertex x;, i.e. neighboring arc lengths and areas get modified.

X = <x1> X505 XM> yla }’2)"', yM>T)
where M is the total number of triple junctions and " is the transpose operator. The m-th component of the
gradient vector, say OE (X) /90X, is approximated by:
OE(X)  EX+den) — EX)
OX 1

, (@)

where e,,, is the m-th canonical vector in R?M, The numerical evaluation of this approximation implies that the
energy of the system must be recomputed twice for each vertex, one to compute E (X) and the second one is
E(X + 6 e,,), where asmall perturbation is added to the m-th component. According to (1), this means
recomputing each individual vertex of energy each time. Fortunately, this can be handled efficiently by pointing
out which terms of energy will be changed after the 6 e,, perturbation is added.

A quadratic cost would be required for a naive implementation. A more detailed analysis shows that the
perturbation only affects the x or y component of a vertex x;, which implies that only the three related grain areas
and the three grain boundary arc lengths connected to vertex x; will change, as shown in figure 1. So, instead of
recomputing the energy for each one of the 2M components of the gradient, we can compute directly the
difference of energies given by the perturbation. Expanding the difference of energies from (2) and taking into
account that the perturbation effect is local, we obtain:

EX + 6e,) — EX) = Z YOAL, + Z ENA,
g=1

WAL, + Zlgg"’AAg”"’
j= =

|
Mw

where i = m mod M. Notice that the three boundaries and grain areas are modified by adding a perturbation to
the vertex i. Now, dividing by § we obtain the right—hand—side of (2),

E(X + 8 &) — E(X) AA

3
ki, 8ij
= = Doty S

Moreover, each estimation of the gradient can be computed efficiently in parallel since only local information of
areas and arc lengths is needed.

4. The effect of stored energy on the dynamics of a triple junction

This section studies how the stored energy term affects the configuration and stability of the grain network. We
extend the stability study done in [20] where only stable configurations are considered.
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Figure 2. Configuration of three grains with different values of stored energy and a vertex (x;) with one degree of freedom (red dot).
Initially the dot is placed at (1, g).

Considering abounded domain where three grains coexist, where two of them have the same stored energy,
i.e. & = &,,and the third has a different stored energy &;, as shown in figure 2. To quantify the effect of the
stored energy term, we let the central vertex located at (x, b/2) move freely, and due to symmetry this will only
move along the x-axis. Let A, A, A; be the areas of the grains with stored energy &, &, and &;, respectively.
Grain areas can be explicitly computed as:

Mmp, = 20ED gy AN 3)
4 2
The total energy becomes:
P4+ 4a(—-1+x? +x+a@+b&)+ b@® + &lx + 12) —&A+ %) 4)
If we compute the derivative of (4) with respect to x we obtain,
dE _ - 4(x — 1) _ bAE ®)

dx Vb2 + 4(x — 1)? 2

where AE = & — &. Thus, the motion of the central vertex is influenced by the difference of stored energies
and the height of the domain b. Notice that the domain width a does not affect the evolution. The steady state can
be found making (5) equal to 0, which yields the following roots:

—24 4+ 2b AE(b AE — 4) £ |—B2(BAE — 6)(b AE — 2)* (b AE +2)
2(b AE — 6)(b AE + 2) '

X+ =

(6)

Notice that under equal values of stored energy, only the domain height b defines the position of the steady state,
which is:

X =x;y =1 b
dy = =1 —
steady + 2\/§

By analyzing the obtained roots, only x, has physical sense. The critical point, assuming AE > 0, is when
bAE < 6,asshownin figure 3.

The concept of stability here refers to the interpretation of the vertex location in the domain. If the vertex
stays inside the domain, we say that it is a stable steady state. If the vertex penetrates a grain without stopping, the
configuration is said to be unstable. Figures 4(a) and (b) show two steady states. Figure 4(a) shows the steady state
when there is no stored energy; therefore, the steady state is reached at dihedral angle 27 /3. In the presence of a
large stored energy, the steady state is situated away from the isotropic steady state as shown in figure 4(b). Again,
when bAE > 6 the solution becomes unbounded. Figure 5 shows the trajectories for different values of stored
energies. The black dashed line shows the critical point when the triple junction moves from a bounded solution
to an unbounded solution, which are denoted as unstable solutions.
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Stability region of steady states

=== BAE =6
I With steady state
No steady state

|AE]

Figure 3. Stability regions for the relation of band AE in the three grains experiment.

b X3 JXG X2 b X3 JXG X2
51 51
é X4 7 53 || é X4 D 83 ==
2 2
&
0 X0 X5 X 0 X 5 X1
0 1 a 0 1 a
(a‘) &1 =& (b) &< &

Figure 4. Steady state for different configurations of stored energies. Notice the magnitude of the perturbed steady state in
configuration (b).

5. Nucleation and growth of three-sided grains

The nucleation process can be classified as a new type of topological change in the system, considering the
already well-known topological changes: flipping and grain removal. As usual, this new type of topological
change should be energy decreasing; otherwise, it may induce the removal of the nucleated grain right away. To
analyze this topological change, we propose the following sketch (see figure 6). In this sketch we observe what we
call the current configuration of energy E¢, in red, and a candidate configuration of energy E{*. The main idea is
that for a candidate vertex x;, where we could perform a nucleation, we can explicitly compute the difference of
energy before and after the nucleation, i.e. AE* = E;* — E{. Therefore, as long as the difference is negative, we
can conclude that nucleation will be successful. Thus, the AE2 is as follows,

Eg =70 Loy + 40D Lis + 40D L1y + S A+ E A + & As,
Ef =Y Loy + @) Lo+ 45 Ly,
AE: = EP — Ep, @)

where x; are the coordinates of the vertex ifori € {1,2,3,4}, £; jis the arc length from vertex x; to vertex X

'y( 7 is the grain boundary energy from vertex x; to vertex x;, A, is the area of grain with vertices {x;, x4, X%},
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Steady states for different AE with b =2

8

7 // :go

6 =
“ — 2
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0 5000 10000 15000 20000 25000 30000
t

Figure 5. Convergence of steady states for a fixed value of b and different values of bPAE. Values of 2 AE > 6 become unbounded.

X9

X3 53’ 4 X4

Figure 6. Sketch of energies associated to a 3-sided grain before and after it is nucleated. Red shows what it is going to be removed and
green what it is going to be added.

A is the area of grain with vertices {x;, X,, X3}, A3 is the area of grain with vertices {x;, X3, X4}, and &, is the
stored energy of the grain associated to A for g € {1, 2, 3}.

5.1. First attempt to nucleate a grain

The first attempt one could try to nucleate a three-sided grain is under no presence of the stored energy term.
Here, we will show this is not possible under the conditions analyzed in the following. First, consider we will use
the notation used in equation (7). Specifically, weassume & = & = & =0, L1, = L3 = L4 = r,and
isotropic grain boundary energy v = 1. Thisleads to the following variation of total energy:

AE=Log+ Loz + L3g — L1y — L13 — Lig
= £2)4 —|— £2,3 + £3,4 — 3.

So, we defined the angle between the segment defined from x; to x4 and from x; to x; as wy, the angle between
the segment defined from x; to x, and from x; to X3 as w,, and the angle between the segment defined from x; to
x3 and from x; to x4 as ws. These angles allow us to obtain the unknown arc lengths using the law of cosines as
follows:
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Log=71 2 — 2cos(w),
Lo3=1+2 — 2cos(wy),
Lig=1 2 — 2 cos(ws).

Thus, the variation of total energy becomes,

AE® = r(\/z — 2 cos(wy) + \/2 — 2 cos(wy) + \/2 — 2 cos(ws) — 3)

So, considering that w, + w, + ws = 2wandthat 7w > w; > O0fori € 1,2,3 we obtain AE® > 0. Therefore,
since AE® is always greater or equal than 0 no matter the value of r, it is not possible to nucleate a three-sided
grains under no presence of stored energy. Moreover, if we compute the variation with respect to r we obtain
again the positive term \/2 — 2 cos(wy) + \/2 — 2 cos(wy) + \/2 — 2 cos(ws) — 3,under the same con-
sideration. Thus, the grain will be eventually removed.

5.2. Nucleating a grain with stored energy: first variation analysis

To gain insight into the general conditions for allowing nucleation. Considering figure 6 and similarly to

section 5.1, we assume that £, , = £, ; = £; 4 = r and also the same dihedral angles w;, w, and w; introduced
before. Moreover, we include here the grain boundary and stored energy dependence explicitly, this means areas
Ay, Az and Az have stored energy &, &5, and &, respectively. The grain boundary energy related to £; ; is ; ; for
i€{1,2,3,4}andi € {1,2,3,4}. Thisleads us to following:

AE* =2 r(14 {1 = cos(wn) + 723 {1 — cos(wa) + 734 1 — cos(ws))
1 . . .
- (T(’Yl,z + N3+ N+ ET2(51 sin(wy) + & sin(wy) + 535111(&/3)))- ©))
So, considering isotropic grain boundary energy 7 (i.e. 7 = 1), dihedral angle of 27r/3and & + &, + & = €.
This leads us to the following simplification,

AEA:3x/§r—3r—z§r2

:3T(\/§—1—£2T}
12

From this expression, we determined that there are two critical points for € = 0. Thesearer, = 0 and

r. = w ~ 5.071 796(& + &, + &3)~L. The first critical point r, = 0 indicates that nucleating the area

0 will add 0 energy, which is correct but we are not interested in that case. On the other hand, the second critical
point is the one we are interested in, 7, ~ 5.071 796 £ 71, since from that point on we ensure we are not
increasing the energy of the system and will let the nucleated grain grow. In figure 7 we observe a qualitative
behavior of (7) for the symmetric case, with this plot showing that we require r from figure 6 to be at least

r. =43 — 3)& " This implies nucleating a large grain; otherwise, we will be adding energy to the system. An
important consideration needs to be made; namely, if the nucleated grain has a radius r in the range [0, /2], the
nucleated grain will not grow. On the other hand, if the radius of the nucleated grain is in the range ]r./2, r.], the
nucleated grain will grow but it will initially add energy to the system, and when the nucleated grain satisfies

r > r, the nucleated grain will grow and will remove energy from the system. Figure 7 shows these ranges in red,
yellow and green, respectively. Thus, the yellow zone is a candidate configuration to use a Monte Carlo
approach.

5.3. A symmetric nucleation analysis: second variation analysis

For a successful energy decreasing nucleation, as discussed in the previous section, we have a constraint on the
size of the grain to be nucleated; otherwise, the nucleated grain will not grow. Therefore, in the yellow zone there
is a potential for a grain to grow but at a cost of a temporal increase of total energy. The main interest in this type
of configuration is that it imposes a lower bound requirement for the size of the nucleated grain to make the
nucleation successful.

A preliminary analysis indicates that the slope of the AE” is negative in that range, and an energy decreasing
model will favor the growth of the grain since it will decrease the energy. More rigorously, we need to compute
A(AE”) =: A’E”.Figure 8 shows a diagram of two possible nucleations at vertex x;. In this case the nucleation
on the left is the one explained previously in figure 6, which will be denoted here as AE*. And the one on the
right is a nucleation for a smaller grain for the same vertex x;, which will be denoted as AE(". These two virtual
nucleations allow us to obtain A’E® = AE[* — AE. Thus, if A°’E® < 0, we ensure that the nucleated grain
may grow since it will decrease the energy of the system. This value will be denoted as the nucleation threshold.

8
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Analysis of Growth in Nucleation

AEL

Not growing
Grows but total energy increases

Grows and total energy decreases

Figure 7. Plot of AE® symmetricwith £ = & + &, + & = 18. The ability to allow growth depends on the size of the nucleated
grain.
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B X
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X X, X X
3 R 4 (a) 3 R 4 (b)
AE? AE

Figure 8. Sketch of energies for computing A’E”, see figure 6.

Notice that under an anisotropic grain boundary energy the computation of A?E* will include each grain
boundary energy term, which have to be computed with respect to the orientation of the nucleated grain. We set
the orientation of the nucleated grain randomly in [0, 27].

From section 5.2, equation (8), we can estimate the limiting case for A’E”. This mean to compute:

A — A . .
w = %AEA(T),WhICh gives us:

0
EAEA = V2 (724 1 — cos(w)) + Y23 1 — cos(wy) + Va4 1 — cos(ws))

— (M2 + M3+ N+ r(&sin(wy) + Esin(w,) + Essin(ws))).

limg_,o

And consideringy = 1, dihedral angle of 27r/3and & + &, + & = &, we obtain:

iAEA:.%\/?—.%—gﬁr.
or 2

6. Stored energy vertex model with nucleation algorithm
The main algorithm of this model considers first the computation of boundary properties such as arc lengths

and energies, and then the computation of grain areas. We choose to perform continuous nucleation, that is,
nucleating at regular intervals of time in the simulation, denoted as A, see [40]. To select a nucleation vertex,

9
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we follow a Monte Carlo approach with a probability threshold exp(—kAE?) with k = 1. Thisis explained in
algorithm 1.

Algorithm 1. Monte Carlo selection for nucleation location.

1: procedure MONTECARLONUCLEATION
X; « Selectarandom vertex
1« Selectarandom length between 0 and miny £ for k being the grain boundaries connected to X
« « Pick arandom orientation between [0, 27]
AE® « Compute first variation with the randomly chosen arc length rand orientation «
A’E® « Compute second variation with the randomly chosen arc length rand orientation «, this is the nucleation threshold
if AE* < 0 then
return Accept nucleation of triple junction A’; with arclength r and orientation «

o PN DR PN

else

10:  if AE* < 0 then

p <« Pickarandom numberin [0, 1]
12: if p < exp(—k AE") then

—_
—_

13: return Accept nucleation of triple junction A’; with arc length r and orientation «
14: else

15: return Reject nucleation

16: end if

17:  else

18: return Reject nucleation

19:  endif

20:  endif

21: end procedure

If there is a site for a successful nucleation, the grain is added and neighboring topology is updated.

The next stage considers the computation of the vertex velocities using the matrix-free approach described in
section 3. Then, extinction times for each boundary are computed and we label boundaries that will flip, that is,
when t.,; € [0, At]. Here we must decide which flippings are safe to perform and therefore, we avoid neighbor
transitions. Algorithm 5 is presented in section 7 and solves this issue. If a three-sided grain has a grain boundary as a
candidate for flipping, a grain removal is performed. After this, we apply the remaining flippings, we update the
vertice positions and the system evolves to the time t + At. Algorithm 2 summarizes the described procedure.

Algorithm 2. Stored Energy Vertex Model

1: procedure SEVM (#;¢ers, boundaries T, vertices X, grains G)
2 (t, Njters) < (0, 0)

3: foriter =0, ..., Njersdo

4 T' — ComputeArclengthsAndEnergies(I")
5: G «— ComputeAreas(G)

6 if iter mod T==0 then

7 X +— MonteCarloNucleation

8

9

if X = @ then
(T, X, G) «— Nucleate(X})

10: T' — ComputeArclengthsAndEnergies(I")
11: G «— ComputeAreas(G)
12: X «— ComputeNucleationThreshold(X)
13: end if
14: end if
15: V «— ComputeMatrixFreeVelocities(X)
16: I' — PollingSystem(I") [> Seealgorithm 5

17: (', X, G) — RemoveThreeSidedGrains(I", X, G)
18: T — ApplyFlips(T")

19: X «— UpdateVerticesPositions(X, V)

20: iter «— iter + 1

21: t—t+ At

22:  endfor

23: end procedure

As discussed in section 4, vertices exposed to grain with stored energy equal to 0 and other grains with stored
energy different that 0, may become unstable. This could bring overlapping grains during the numerical
experiments. To handle this, we only considered small differences of stored energy.
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7. The parallel polling system for management of topological transitions

Topological transitions modify the grain structure and the data structure must reflect these relations at every
time step. The update of this data structure is critical due to the consistency during numerical simulation and
implementation performance. We discuss in this section the sequential management algorithm for topological
transitions in a grain growth numerical simulation, and then we propose a parallel management algorithm that
aims to handle topological transitions in a fully GPU-based-code.

7.1.Sequential management

In a sequential implementation of a vertex code, [36], the topological transitions, flippings and grain removal
can be detected by estimating the time that a boundary will collapse, called extinction time (f.y,). If the extinction
time lies between the current time t and one time step after t + At,i.e. within [, ¢ + At], the boundaryis
considered a candidate to flip. A simple algorithm to solve the transitions within the time step is to sort the
candidate boundaries with positive extinction €[t, t + At] into ascending order. We can then iteratively solve
the conflicts by labeling those candidates involved in transitions of other candidates, and the labeled boundaries
are inhibited to flip this time step. Once all the conflicts have been solved, the transitions are performed.
Algorithm 3 summarizes the described management.

Algorithm 3. Sequential Management of Topological Transitions

1: procedure SEQUENTIAL
: T’ « Compute t. for each boundary
Thip « Select candidates boundaries to flip with t., € [0, At]
Thip < Sortboundaries by f. increasingly

Ximp < &, Emptylist of vertices visited
foreachI' € If;, do
{xj, xj} « Verticesof I'

2
3
4
5: Limp < @, Emptylist of boundaries visited
6
7
8
9 ifX‘mp N{x;, Xj} = & then

10: Dimp «— Bimp U T

11: KXimp — Xemp U {X5, x5}
12: else

13: return I,

14: end if

15:  end for

16: end procedure

Due to the need for more significant statistics [20, 31, 34], hundreds of thousands of grains must be
simulated. The sequential implementation of these models in CPU treats grain structure evolution and
topological transitions sequentially. It is possible to parallelize the structure evolution in CPU and still solve the
topological transitions in the traditional way from algorithm 3 but this process might become a bottleneck when
we require large numerical simulations.

We chose to implement this model in a GPU and therefore, we expect to handle topological transitions by
taking advantage of such architecture, that is, avoiding whenever is possible the sequential treatment of the grain
network, i.e. data structure.

The parallel implementation in GPU is straightforward when we speak of evolving the data structure: in the
CUDA programming language [41, 42] we can launch one thread per vertex or boundary to compute their
velocities, and then update the positions. The problem of solving the topological transitions arises, since the
mechanism to solve inconsistencies is sequential and parallelism over the data structure will generate race
conditions. For example, naive implementation of the sequential algorithm in GPU with CUDA would cause
that each thread working with a boundary to attempt a modification of the lists of boundaries visited, and this
may produce a corrupt data structure. Thus, a new algorithm for parallel management of topological transitions
must be built.

7.2.Parallel polling system

Since the concurrent access to a data structure in a parallel implementation makes the sequential approach of
managing topological transitions a bottleneck, a management system is proposed based on local information
given by vertices and boundaries. First, we need to compute the extinction time for each boundary and label the
candidates for flipping. Instead of sorting the boundaries as the sequential algorithm, each vertex will store local
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(a) (b)

() (d)

Figure 9. Polling system diagram.

information of the boundary that among the three boundaries connected to it has the lowest possible extinction
time within [£, t + At].

We then have for each vertex a voted boundary, i.e. the boundary with the lowest positive time in [¢, t + Af]
and if the boundary has not been already been inhibited for flipping. This is stored for each vertex to avoid race
conditions. Next, each boundary counts the obtained votes by referring to its vertices. The vote counting is the
key, with two votes meaning that a boundary can flip since all its neighbor boundaries have chosen it, and it earns
the right to label neighbor boundaries as inhibited for flipping in this time step. Notice that we only allow at most
one boundary flipping for each vertex to avoid corrupting the data structure; however, several flippings could
happen in parallel if they are not connected to the same vertices. Other boundaries will obtain one or zero votes,
and thus they are not candidates for flipping. This polling is repeated until no further labeling is possible, that is,
when the previous set of candidates is the same as the current iteration.

Figure 9 shows a diagram of the polling system. Consider a neighborhood of boundaries with their
extinction times already computed. Figure 9(a) shows the vertex poll. Each vertex in this neighborhood will vote
for their boundary with the lowest positive .y, and the check marks (votes) with the same color of a vertex
means that that vertex voted for that boundary. We can see that some boundaries obtained zero, one or two
votes. The case of a boundary with two votes is special because it implies that two vertices (pink and green)
decided that their shared boundary is a good candidate for flipping and therefore no other boundary in the
immediate neighborhood is allowed to be a flipping candidate. Figure 9(b) shows the final counting for each
boundary. Boundaries with zero votes remain in black, boundaries with one votes are cyan and boundaries with
two votes are red. Notice that although cyan boundaries might be able to flip, the priority is assigned to
boundaries with two votes. The chosen boundary labels its neighbor boundaries as inhibited as shown in
figure 9(c) in gray. Inhibited boundaries cannot be voted at the next iteration. Related vertices must vote between
the remaining non-inhibited boundaries, as shown in figure 9(d).

Itis considered that a grain boundary could have three states: candidate, inhibited, and uninhibited. This
procedure can be seen as a fixed point iteration over a polling function Poll(I"), where the input is the current
boundary set and it returns the inhibited states. When the polling function returns the same inhibited states, we
will have found a fixed point of the function and thus we will have converged to a feasible solution. Algorithm 5
summarizes this procedure.
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Algorithm 4. Polling Routine for Inhibit Boundaries

1: procedure POLL(boundaries I")
: I' « Vertices votes for its uninhibited boundary with lowest f,
I' <+ Boundaries counts the votes received
I' < Select uninhibited boundaries with two votes

S« Inhibited state of boundaries

2
3
4:
5: T « Inhibit neighbor boundaries of selected boundaries
6
7:  return S

8:

end procedure

Algorithm 5. Parallel Polling System for Managing Topological Transitions

1: procedure POLLINGSYSTEM(boundaries T")

2 I’ Compute t.y for each boundary
3 I'— Label boundaries to flip with ., € [0, Af]
4 Sy« Set initial inhibited state for all boundaries
5. do

6: Sl — S()
7 Sp « Poll(T")
8: while S, = S
9: end procedure

The advantage of this polling system is that the vertices voting and boundaries counting can be performed in
parallel since data is accessed as read-only. No race condition exists here since we avoided possible nearby
flippings. One disadvantage may be the computational cost of performing the polling iteratively until
convergence, but we have observed that it converges in a few iterations. Thus, this algorithm is in practice fast
enough.

8. Numerical experiments

In this section we will show two main numerical experiments. The first one shows the growth of a single grain
where nucleation is allowed either. The second correspond to a set of four different initial distributions of stored
energy where we also modify the quotient 7 = A7/At¢. The Monte-Carlo nucleation is allowed every 7 time
steps.

8.1. Letting a single grain grow
This numerical experiment is perform with 2000 grains. Only one grain located at the center of the domain has
stored energy equal to 0 and all the other grains have stored energy equal to 0.6.

As shown in figure 10, the single grain starts growing and almost cover the whole domain. An interesting
observation is that the number of sides of the grain growth quickly, reaching 34 sides. A similar microstructure
canbeseenin [8].

Figure 11 shows that the total energy of the system decreases as the single grain grows, accelerating the decay
as time increases.

8.2. Set up for large scale nucleation with different initial stored energies

Numerical experiments were performed using 120000 initial grains following a Voronoi tessellation, but we
allowed the nucleation to start at 100000 grains. This is because we need to have space in data structure to allow
nucleation; otherwise, the nucleation will not be successful due to data structure constraints. The statistics will
be computed from 100000 grains. Grain boundary energy anisotropy is added by using the following definition
proposed by [43]:

y(Aa) =1+ %(1 — cos’(4Aq)) ©9)

withe = 0.2. The nucleated grain is built considering that the three new triple junctions are created along the
grain boundaries associated to the selected triple junction. The locations of the new triple junctions correspond
to a convex combination between the location (x;) of the candidate triple junction for nucleation and the
location of each of its neighbor vertices (x;) along grain boundary I';. The distance from the vertex where the

13



10P Publishing

Mater. Res. Express 6 (2019) 055506

AH]JSazoetal

0 5 10 15 20 25 30 35 40

(a) Initial condition

40

0 5 10 15 20 25 30 35 40

of the total area.

equal to 0.6. No nucleation is allowed.

06

0.5

04

03

0.2

01

0.0

0.6

05

0.4

03

0.2

01

0.0

(c) Single grain covering 1.36 percent (d) Single grain covering 7.5 percent of

Figure 10. Evolution of a grain network with only grain grain with stored energy equal to 0 and all the other grains with stored energy

40 06

0.5

104

0.3

0.2

01

—o0.0
5 10 15 20 25 30 35 40

(b) Single grain covering 0.2 percent of

the total area.

0.6

04

03

0.2

01

—-0.0

the total area.

1.0
0.9 \
0.8
N\
S \
= \
\S/ 0.6 \\
0.5 N\

0.3

t

the number of grains over time.

Figure 11. Left plot shows the evolution of the total energy over time for the single grain experiment. Right plot shows the evolution of
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nucleated grain will be added to the new vertices is equal for the three cases, similarly to the analysis performed in

section 5.2.

The initial distributions of stored energy are chosen to allow more grains with higher values of stored energy;
thus, to make the nucleation more likely. We use the following initial distributions of stored energy:

SE-1 Constant stored energy equal to v.
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Figure 13. Grain network at different times for 7 = 10 and SE-1.
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Figure 14. Grain relative area distributions at different times for ) = 10. The different colors show the different type of distribution of
stored energy used at the beginning. They are indicated in the legend for each time. Missing lines indicate that the numerical
experiment already finished, so no data is available for those times. The experiments finish when they reach 20000 grains.
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Figure 15. Dihedral distributions at different times for = 100. The color indicates different type of initial distribution of stored
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SE-2 Triangular distribution Triangular(v/2, v, v).
SE-3 Uniformly randomly distributed in [v//2, v].

SE-4 Uniformly randomly distributed in [0, v].

where v = 2.4. Similar values of £ were used in [27].
The maximum value of stored energy is v, the grain boundary energy is in the range [1, 1.2], and the
computational domain used is Q = [0, 160]*. We needed to increase the computational domain to be able to

obtain A’E* < 0; otherwise, it would have not been possible to nucleate when many grains were present. We
also consider periodic boundary conditions.

8.3. Energy minimization

Figure 12 shows the evolution of the total energy over time for all the initial distributions of stored energy. We
also included the isotropic case, i.e. € = 0, for reference. The continuous lines correspond to the isotropic cases
and the dashed lines for the anisotropic one. The red curves correspond to the constant initial distribution of
stored energy (SE-1), the blue curves correspond to the Triangular distribution Triangular(v/2, v, v) (SE-2), the

orange curves correspond to the uniform distribution U(v/2, v) (SE-3), and the green curves correspond to the
uniform distribution U(0, v/) (SE-4).
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Figure 16. Grain Boundary Character distributions at different times for = 10.

We note that there are three different evolution regimes for the total energies. The first correspond to SE-1,
the second to SE-2 and SE-3, while the third corresponds to SE-4. This suggests that the value where the stored
energy varies is more significant than its distribution. The numerical simulation were stopped when the dihedral
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Figure 17. Average number of sides distribution at different times for 7 = 10. The color indicates different type of initial distribution
of stored energy used. Missing lines indicates no data is available at those times because the numerical simulation already finished.

angles started to be significantly greater than 7. This is because the algorithm is designed to work with small
differences of stored energy. From now on, we only show the output for , = 10 since it was able to advance more
in time than = 1without having dihedral angles much more greater that 7. Also, the statistics look very

similar.

8.4. Statistics for nucleation with MC
Figure 13 shows the grain structure for 4 different times for SE-1.
Figure 14 show the evolution of the distribution of the relative areas over time. Notice that at time t = 2.4,

the data for SE-4 is not shown because the numerical simulation reached the minimum number of grain, which
is 20000 grains. The three regimes described before are still present in this plot. One may observe that the shape
of the relative area distribution evolves further for the triangular and uniform initial stored energy distribution
than it does in the constant case.

Figure 15 shows the distribution of the dihedral angle over time. We did not include the legend for
visualization purpose, the legend from figure 14 is still valid. In this case, by time t = 3, several experiments have
already reached the minimal number of grains and are not shown in the plots.

Figure 16 shows the development of the Grain Boundary Character Distribution (GBCD).

Figure 17 shows the average number of sides distribution. In this figure, we observe again that the initial
distribution of stored energy SC-1 behaves different with respect to the other numerical experiments. For time

t = 3.0, we observe that we get grains with more than 20 sides for SC-1. The other feature observed is the
proportion of 3-sided grains at times t = 1.5 and ¢ = 2.4 for the numerical experiments SC-2, SC-3 and SC-4,

which is greater than the proportion for SC-1.
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Figure 18. Stored energy distributions at at different times for 7 = 10. The distributions of stored energy when we allowed nucleation
can be seen in the sub-figure (a).

Figure 18 shows the normalized histogram for the stored energy and figure 19 shows the area-weighted
histogram for the stored energy. In both cases, we observe the distributions for stored energy right when we
started allowing nucleation for each numerical experiment SE-1, SE-2, SE-3, and SE-4. Notice that the y-axis has
been limited to 3 but the red-bin is much larger than 3. This was added for visualization purposes. As observed in
both cases, the lower values of stored energy are preferred; thus, they become more important as time evolves.

Misorientation distribution function (MDF) is shown in figure 20. It shows the preference to
misorientations close to zero from the beginning.

Tables 1 and 2 show the number of successful and unsuccessful attempts to nucleate a grain. This is done for
the isotropic and anisotropic settings for the initial conditions SE-1, SE-2, SE-3 and SE-4 with ; = 10. The
nucleations attempts labelled as ‘R’ show the number of rejected attempt, they are rejected because AE® > 0
and A’E® > 0; thus, an unfeasible site for successful nucleation. The nucleation attempts labeled as ‘MC-R’ are
feasible since AE® > 0and A2E* < 0, but they were rejected by the Monte-Carlo algorithm 1. Similarly, ‘MC-
A’ shows the number of nucleation site with AE® > 0 and A2E* < 0 and that were accepted by the Monte-
Carlo algorithm 1. Attempts labeled as ‘A’ indicate the sites where the nucleation was accepted immediately
since AE® < 0.

We observe that nucleation attempts decreases from SE-1 to SE-4. Anisotropic settings seem to reduce the
number of successful attempts. Note that most of the rejected nucleation comes from unfeasible sites, whilst all
the accepted nucleations come from the Monte-Carlo algorithm.

Figure 21 shows the average area over time and the percentage of nucleated area over time for each initial
distribution of stored energy. The same color configuration described before is used for clarity. The first
columns is for 7 = 1 and the second column for 7 = 10. Similarly as before, the curves are plotted until the
number of grains is 20000. Thin curves (continuous and dashed) correspond to the average area over time, this is
shown on the left y-axis. Thick curves (continuous and dashed) correspond to the percentage of area of
nucleated grains, this is shown on the right y-axis. Notice that for sub-figures (d), (f)—(h), the thicker curves are
very close to 0. As it can be observed in figure 21(a), the constant distribution of stored energy was the numerical
experiment that was able to reach the largest percentage of area nucleated. All the other cases were less significant
and reached the minimal number of grains before they would have achieved a higher percentage of
nucleated area.
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Figure 19. Area-weighted stored energy distributions at different times for 7 = 10. The color indicates different type of initial
distribution of stored energy used. Missing lines indicates no data is available at those times because the numerical simulation already
finished.

9. Conclusions

In this work we extended continuous formulation of the two-dimensional vertex model to incorporate stored
energy of the grains. The basic mechanism has been previously used by several authors, but not in the context of
the vertex model formulation adopted herein. We provide complete description of the Monte Carlo method
used in the process of choosing the nucleation site and analyze conditions under which the nucleus can grow. We
observed that while nucleated grains may add energy to the system, they eventually decrease the total energy in
the course of the system evolution.

An extensive set of statistics is harvested and compared for four different initial distributions of stored
energy. Our numerical experiments confirm the expected behavior for the GBCD and the emergence of the long
tail for relative area distribution. While the statistics in this slow nucleation regime do not change shape when
compared to the pure grain growth phase, we noticed dependence of the distributions on the range of the initial
stored energy. For instance, for higher average value of stored energy (SE-1) there are fewer grains with small
areas than one expects to find in the relative area statistics.

One of the distinguishing features of our vertex model is that it allows for parallel implementation. In
building the GPU framework we overcame several computational challenges, such as the parallel management
of the topological transitions and the efficient computation of the dynamics of the network of grains.
Parallelization of the random selection of candidate vertices in multiple threaded architecture has also been
successfully implemented. To support reproducibility, we make the CUDA code available in GitHub, see [44].

10. Future work

The numerical analysis presented here shows that we can let grains grow with a stored energy term in a stable
way, that is, avoiding vertices and boundaries crossing each other. For large differences of the stored energy
between neighboring grains, we may have triple junctions with dihedral angles that exceed 7. These triple
junctions are precisely those that could cross one of the opposite boundaries in a given grain. The resulting
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Figure 20. MDF at different times for = 10.

topological transition can be handled with an extension of the present continuous vertex model by including a
different type of topological transition, called TA, see [1, 34]. As future work, we would like to incorporate this
topological transition into our computational model. Larger difference of stored energy will be implemented in
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Figure 21. Average area and percentage of nucleated area over time. The color indicates different type of initial distribution of stored
energy used. Thin curves (continuous and dashed) correspond to the average area over time, this is shown on the left y-axis. Thick
curves (continuous and dashed) correspond to the percentage of area of nucleated grains, this is shown on the right y-axis. Notice that
for sub-figures (d), (f), (g), and (h), the thicker curves are very close to 0.
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Table 1. Nucleation results per experiment withn = 1.

Experiment R MC-R MC-A A Nucleation attempts
Constant,e = 0 2816 30 72 0 2918
Constant,e = 0.2 2613 13 33 0 2659
Triangular,e = 0 2401 4 4 0 2409
Triangular,e = 0.2 2126 0 2 0 2128
U(v/2,v),e =0 2240 1 0 0 2241
Uw/2,v),e = 0.2 2152 1 0 0 2153

U@, v),e =0 1673 0 0 0 1673
U(0,v),e = 0.2 1541 0 0 0 1541

Table 2. Nucleation results per experiment with = 10.

Experiment R MC-R MC-A A Nucleation attempts
Constant,e = 0 530 4 21 0 555
Constant,e = 0.2 485 11 12 0 508
Triangular,e = 0 385 0 6 0 391
Triangular,e = 0.2 372 1 1 0 374
Uw/2,v),e =0 392 1 0 0 393
Uv/2,v),e = 0.2 371 0 0 0 371

U, v),e = 0 311 0 0 0 311

U0, v),e = 0.2 295 0 0 0 295

parallel, for instance, by extending the polling system proposed here. Another future research direction is to
study the effect of initial grain distribution on steady state characteristics.
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