Chapter 1

Mathematical Challenges in Measuring
Variability Patterns for Precipitation Analysis

Maria Emelianenko and Viviana Maggioni

Abstract This chapter addresses some of the mathematical challenges associated
with current experimental and computational methods to analyze spatiotemporal
precipitation patterns. After a brief overview of the various methods to measure
precipitation from in sifu observations, satellite platforms, and via model simula-
tions, the chapter focuses on the statistical assumptions underlying the most com-
mon spatiotemporal and pattern-recognition techniques: stationarity, isotropy, and
ergodicity. As the variability of Earth’s climate increases and the volume of obser-
vational data keeps growing, these assumptions may no longer be satisfied, and new
mathematical methodologies may be required. The chapter discusses spatiotempo-
ral decorrelation measures, a nonstationary Intensity-Duration-Function, and two
dimension reduction methodologies to address these challenges.
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1.1 Introduction

Precipitation occurs when a portion of the atmosphere becomes saturated with water
vapor, so that the water condenses and precipitates by gravity. Precipitation is a
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critical component of the water and energy cycles, providing moisture for processes
such as runoff, biogeochemical cycling, evapotranspiration, groundwater recharge,
carbon exchange, and heat fluxes. The main forms of precipitation include rain,
sleet, snow, and hail, but this chapter discusses liquid precipitation only, and the
term “precipitation” is used here as a synonym for “rain.”

Precipitation is highly variable, both in space and time. This variability affects the
dynamics of many hydrological processes at and near ground level. Information on
precipitation characteristics and precipitation patterns is therefore critical for under-
standing these complex hydrological processes, as well as for monitoring and pre-
dicting extreme events such as floods and droughts [63]]. Access to high-resolution
high-quality rainfall data and information about spatiotemporal precipitation pat-
terns can benefit applications at all levels; examples are hazard mitigation, agricul-
tural planning, and water resources management at the regional level [32} 33} 38];
controlling stormwater runoff, managing reservoirs and detention ponds, cleaning
streams and channels, and closing roads or parking lots during extreme precipita-
tion events at the local level.

However, estimating precipitation is challenging because it involves many fac-
tors, including the natural temporal and spatial variability of precipitation, mea-
surement errors, and sampling uncertainties, especially at fine temporal and spatial
scales. The spatiotemporal variability of precipitation patterns is changing hetero-
geneously due to climate change, and those changes have an impact on the tools
used to make decisions and optimize water management. This chapter focuses on
some of the mathematical and statistical issues related to variability of precipitation
patterns.

Outline of the chapter. In Section we briefly discuss various methods to
measure precipitation, whether in sifu, remotely, or by using model simulations.
In Section [I.3] we review the strengths and limitations of current methods to an-
alyze spatiotemporal precipitation patterns. We discuss decorrelation measures in
Section [I.4] and dimension reduction strategies in Section [I.3] In Section [I.6] we
present some concluding remarks.

1.2 Estimating Precipitation

Precipitation can be estimated through three main approaches: i) in situ measure-
ments, ii) remote sensing (including weather radars and satellite sensors), and
iii) model simulations [51]].

1.2.1 In situ Measurements

The only direct method to measure precipitation is through rain gauges (also known
as pluviometers) which collect and measure the amount of rain over a period of
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time. There are several types of rain gauges; the most common one is the tipping
bucket. Precipitation is collected in a funnel and channeled into a small container.
After a set amount of precipitation is collected, the device tips, dumping the water,
and sending a signal that is automatically recorded by a data logger. Rain gauges
may underestimate rainfall because of wind effects and evaporation.

Rain gauge networks can provide measurements with high temporal resolution,
but obtaining a spatially representative measurement requires a sufficiently large
number of samples to account for variability of terrain, microclimate, and vegeta-
tion. Moreover, in situ measurements are localized and limited in spatial and tem-
poral coverage [43]]. One of the main applications of ground-monitoring networks
is for assessing flood risk through early warning systems [3]]. However, their use-
fulness is limited by the spatial representativeness of local measurements and the
network density, especially over important climatic regions like the tropical rain
forests and mountainous areas (Figure [[.2.T).

Fig. 1.2.1: Number of stations used by the Global Precipitation Cli-
matology Centre (GPCC) for May 2012. Figure produced with
"GPCC Visualizer” [61], courtesy of National Center for Atmo-
spheric Research Staff (Eds), last modified 29 Jun 2018. Retrieved
from https://climatedataguide.ucar.edu/climate—data/
gpcc—global-precipitation-climatology—-centre.

A ground-based alternative to monitor precipitation is weather radar which pro-
vides spatially distributed information on rainfall (Figure [I.2.2). Weather radars
send directional pulses of microwave radiation connected to a parabolic antenna.
Wavelengths are of the order of a few centimeters, which is about ten times larger
than the average diameter of water droplets and ice particles. These particles bounce
part of the energy in each pulse back to the radar (reflectivity). As they move farther
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Fig. 1.2.2: Average precipitation maps for Summer 2015 from a satellite precipita-
tion product that combines infrared and microwave observations (left) and ground-
based weather radars (right) across the continental United States.

from the source, the pulses spread out, crossing a larger volume of air, and therefore
their resolution decreases with distance. Doppler radars are common and observe
not only rainfall rates, but also the motion of rain droplets. However, weather radar
estimates are affected by uncertainties associated with rain-path attenuation, the lack
of uniqueness in the reflectivity-to-rain-rate relationship, radar calibration and con-
tamination by ground return problems, sub-resolution precipitation variability, and
complex terrain effects [50, 60]. Moreover, ground-based monitoring systems,
like rain gauges and weather radars, require substantial financial and technological
investments to support their operation and maintainance on a continuous basis over
a long period.

1.2.2 Remote Sensing

A way to overcome these issues is the use of satellite precipitation products, which
are nowadays available on a global scale at increasing spatial and temporal resolu-
tion. Precipitation estimates can be derived from a range of observations from many
different on-board satellite sensors. Specifically, rainfall can be inferred from visi-
ble imagery, since thick clouds, which are more likely to be associated with rainfall,
tend to be brighter than the surface of the Earth. Infrared (IR) images are more suit-
able because they are available night and day, and heavier convective rainfall tends
to be associated with larger taller clouds with colder cloud tops. Another method
uses passive microwave (PMW) sensors, since emissions from rain droplets lead to
an increase in PMW radiation. and scattering caused by precipitating ice particles
leads to a decrease in PMW radiation.

Several techniques have been developed to exploit the synergy between IR radi-
ances and PMW observations (Figure [T.2.2). Examples include the TRMM Multi-
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Satellite Precipitation Analysis (TMPA) [40], the Climate Prediction Center Morph-
ing (CMORPH) technique [42], and, most recently, the Integrated Multi-satellite Re-
trievals for GPM (Global Precipitation Measurement) (IMERG) [41], which merges
precipitation estimates from PMW and IR sensors and monthly surface rain-gauge
data to provide half-hourly precipitation estimates on a 0.1° grid over the 60°N-S
domain. In other cases, Artificial Neural Networks (ANNs) are used to derive pre-
cipitation estimates by combining information from multichannel and multisensor
observations, like the Precipitation Estimation from Remotely Sensed Information
using ANNs (PERSIANN) [39]. The availability of these products has opened new
venues to support water management and hydrologic applications globally. Espe-
cially in poorly gauged regions, satellite precipitation products may be the only in-
put data to allow flow predictions downstream with enough lead time to implement
management and response actions [64].

Satellite observations can be affected by detection errors, as well as systematic
and random errors. Detection errors include missed events (when satellite observes
no rain, but there is rain at the ground) and false alarms (when the satellite sees rain,
but it does not rain). In the case of successful detection, the estimated rain rate may
still be affected by systematic and/or random errors, which depend on the accuracy
of the remote sensor (retrieval error) and the lack of continuity in the coverage by
low earth-orbiting satellites (sampling error, [7]]). Typical sources of retrieval error
are due to sub-pixel inhomogeneity in the rainfall field [47], whereas sampling er-
rors are related to the satellite orbit, swath width, and space-time characteristics of
rainfall [[13]. The performance of satellite precipitation products is also influenced
by factors such as seasonal precipitation patterns, storm type, and background sur-
face [30, 33} 156l 66]. Detection, systematic, and random errors all play a pivotal
role in hydrological applications (e.g., flood forecasting) and water resource man-
agement.

High-mountain regions are among the most challenging environments for precip-
itation measurements (whether from the ground or from satellites) due to extreme
topography and large weather and climate variability. These regions are typically
characterized by a lack of in sifu data, but are also prone to flash floods whose con-
sequences can be devastating.

1.2.3 Model Simulation

Numerical Weather Prediction (NWP) models provide a third option for estimating
precipitation at global and regional scales. NWP models estimate the state of the at-
mosphere (including air density, pressure, temperature, and velocity) at a given time
and location using fluid dynamics and thermodynamics equations. These models
are rather accurate for large-scale organized systems. However, their performance
deteriorates in the case of more localized events that are not governed by large-
scale flows and whose spatial and temporal variability cannot be explicitly captured
by the model resolution. NWP model forecasts can be improved by more accurate
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parameterizations and by constraining model analyses with moisture-, cloud- and
precipitation-related observations through data assimilation systems, such as 4D-
Var and Ensemble Kalman Filter methods [6} 49].

1.3 Assessment of Spatial and Temporal Patterns

Changes in spatiotemporal precipitation patterns have a direct impact on the spa-
tial and temporal distribution of water resources and the occurrence of natural haz-
ards [69]]. The hydrological community has adopted a set of geostatistical tools for
measuring spatiotemporal correlations in rainfall [5}165]. As mentioned in multiple
sources [65], some of the notions come with tacit assumptions that often lead to
their misuse in practice. While the complete list is beyond the scope of this chapter,
we will review some of the key elements of such analyses and point out some of
their strengths and limitations.

1.3.1 Definitions

Assume that rainfall corresponds to a stochastic process 1(u,?), where u = (x,y)
is a vector representing the spatial coordinates in a given area, ¢ stands for time,
and 7 (-) is a measure of the intensity of the rainfall. In a practical setting, one
typically considers an observation map in the form of a snapshot matrix A = A; j €
RNY*" where A; ; = 1(u;,1;) is the rainfall observed at location i at time #; (i =
1,...,N;j=1,...,n). Typically, for hydrological applications, N > n. Different
statistical characterizations of the process are used, depending on the purpose of
the study.

Spatial variability. If the focus is on spatial correlations, time series may be
integrated over time at each location. Following [5]], we define the depth, Z, of the
rainfall over a time interval of length T at the location u, by the integral

t+T
Z(u) :/, n(u, 7)dr, (1.3.1)

X(u) = = /lmn(u,r) dr. (132)

m(u) = E[Z(u)], (1.3.3)
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where E[-] denotes the expected value over all realizations of the process—that is,
over all different measurements at a certain location. After subtracting the mean, we
obtain the detrended or centered process, Y,

Y (u) =Z(u) —m(u). (1.3.4)

The covariance function is defined in terms of the detrended process.
Cov(uj,up) = E[Y ()Y (u2)] = E[Z(u1)Z(uz)] — m(u;)m(uy). (1.3.5)
Similarly, the covariance matrix is £ = E[YTY]| = E[Z" Z] — m" m, where the (i, j)th

entry represents the covariance between the depth of rainfall at the ith and jth spatial
location. The correlation function is a normalized version of he covartance function,

_ Cov(uj,up)
R(ll],llz) = 70'([11)6(112)’ (1.3.6)
where o is the standard deviation,
o () = {E[Z(u;) — m(u)2}"? = E[Y2(u;))'/2. (13.7)

A concept that is commonly used in hydrology is that of a semivariogram function,
1
I(u,m) = EE{[Y(u,)—l/(uz)m. (1.3.8)
The covariance and semivariogram functions are symmetric,

Cov(uj,uy) = Cov(uy,uy), IT'(up,up) =I'(up,u;).

Note that the covariance is a measure of the association between the two vari-
ables Z(u;) and Z(uy), while the semivariogram function is a measure of their dis-
sociation.

The above definitions of the various statistical quantities work for any time inter-
val [t,#+ T. For instance one may decide to study daily, monthly, or yearly averages,
as appropriate. The longer the period over which the data are integrated, the more
one may expect temporal variations to be suppressed.

Temporal variability. If temporal variability is of interest, it is important to keep
as much of the original temporal information as possible when computing vari-
ograms and correlations. So, while integrated data are attractive from the processing
point of view, in climate research one always defines statistical characteristics using
the original map 1 (u, 7). Thus, the mean is defined as a time average,

m(u) = (n(w,1)), (1.3.9)

and the centered data (also called anomalies) are given by
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Y =Y(u,t) =n(u,r) —m(u). (1.3.10)

The correlation function, standard deviation, and semivariogram are defined in terms
of anomalies as in (1.3.6), (1.3.7), and (T.3:8).

The statistical quantities defined above all have discrete analogs. For example,
m; = %Z?:lAi, j 1s the time average of a certain realization of the rainfall field at
location i; the anomalies y; ; = a; ; — m; are the entries of the anomaly matrix Y =
¥i,j» and the corresponding covariance matrixis ¥ =Y Ty € R™", The eigenvectors
of this covariance matrix X are the Empirical Orthogonal Functions, which we will
discuss in Section Note that, while the size of the matrix X is normally much
smaller than that of the original detrended matrix Y, the condition of the covariance
matrix is given by cond(X) = cond(Y)?, so it is not surprising that ill-conditioning
in the original data presents an issue for many geospatial applications [1]].

The correlation function, standard deviation, and semivariogram function are col-
lectively referred to as variograms of the process; they represent the structure of the
spatial dependence of the process and variability in the reference area A.

1.3.2 Statistical Assumptions in Hydrological Analyses

The effective use of the statistical quantities defined in Section [I.3.1] depends criti-
cally on a number of regularity assumptions for the underlying stochastic process. In
hydrological analyses, the rainfall process is commonly assumed to be second-order
stationary, isotropic, and ergodic. We briefly recall the relevant definitions.

Stationarity. The field Z(u) is first-order stationary if
E[Z(u)] = m = constant, Yu € A, (1.3.11)

and second-order stationary or weakly stationary if it is first-order stationary and,
in addition,

Var[Z(u)] = 6> = constant, Yu € A, (1.3.12)
Cov(uj,uy) = Cov(u; —up), VYup,up €A. (1.3.13)

For a second-order stationary process, I'(uj,up) = I'(u; —up) = I'(h), where
h =u; —uy, and Cov(uy,uy) = Cov(h) = E[Z(u+h)Z(u)] —m? for all uz,u, € A.
Furthermore,

Isotropy. The field Z(u) is isotropic if spatial variability, measured by the co-
variance or semivariogram function, does not depend on the direction of the vector
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h= u; —up,

Cov(h) = Cov(|h|) = Cov(h), (1.3.14)
r'(h) =I(|h)) =I(h), (13.15)

where h = |h| is the distance between two locations u; and u;.

Ergodicity. A dynamic process is said to be ergodic if time averages coincide
with sample averages,

E(M(u,2)) = (n(u,1)). (1.3.16)

In the case of an ergodic process, the estimates of the moments obtained on the basis
of the available realizations converge in probability to the theoretical moments as the
sample size increases. The process will tend to a limiting distribution regardless of
the initial state [44]]. In practice, this enables one to obtain estimates even from a
single realization of the process.

1.3.3 What If the Assumptions Are Not Satisfied?

Figure [I.3.1] shows a realization of the precipitation process. The data (blue dots)
represent the annual maximum precipitation (in inches) recorded at Beardstown in
the State of Illinois (USA) during the period 1903-2000. Connecting the dots, we
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Fig. 1.3.1: Example of nonstationary changes in both the precipitation mean and
variance [9].
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see that the maximum moves up and down without much regularity, but a linear re-
gression analysis shows an overall upward trend (solid blue line). The mean (solid
purple line) is approximately 2.3 inches over the first 55 years (1903—-1958) and ap-
proximately 2.8 inches over the next 42 years (1958-2000), an increase of more
than 20%. The variance (dotted red lines) also increases over time, albeit more
slowly. The example shows that the rainfall process is clearly not stationary, so at
least one of the hypotheses discussed in Section [I.3.2]is violated. Then the question
is, what to do?

Nonstationarity. The paper by Milly et al. [52] entitled Stationarity Is Dead:
Whither Water Management?, which appeared in Science in 2008, served as a wake-
up call for scientists in the field of hydrology and water resources engineering. Wa-
ter management systems have been designed and operated for decades under the
assumption of stationarity. However, this assumption has long been compromised
by human disturbances in river basins such as dams, diversions, irrigation, land-
use change, channel modifications, drainage work, etc. In addition, the timing and
characteristics of precipitation—the most critical hydrological input—are also being
modified by a changing climate, as demonstrated in Figure The hydrological
literature on the analysis of long-term precipitation and runoff data is very thin [35].
Hodgkins and Dudley [36]] show that most North American streams are experienc-
ing earlier spring runoff, and DeGaetano et al. [23]] show that nearly two-thirds of
the trends in the 2-, 5-, and 10-yr return-period rainfall amounts are positive. At the
same time, the expected recurrence intervals have decreased by about 20 percent;
for example, the 50-year storm based on 1950-1979 data is expected to occur once
every 40 years based on 1950-2007 data.

Nonstationarity introduces multiple challenges for hydrological analysis, as rec-
ognized by several authors [35} 136} 48, 52]]. Bonnin et al. [9] show trends in the
Intensity-Duration-Frequency (IDF) rainfall curves for the Ohio river basin. A par-
ticularly active area of research is the development of nonstationary rainfall IDFs,
where theoretical advances in Extreme Value Theory (EVT) turn out to be especially
useful (see [15] and references therein). In particular, [15] describes a new frame-
work for estimating stationary and nonstationary return levels, return periods, and
extreme points, which relies on Bayesian inference; the framework is implemented
in NEVA software [14]]. Ref. [15] offers a case study based on a global tempera-
ture dataset, comparing predictions based on stationary and nonstationary extreme
value analysis. The study combines local processes (urbanization, local tempera-
ture change) and global processes (ENSO cycle, IOD, global temperature change)
as time covariates for rainfall IDF, based on Hyderabad data [2]]. The comparison
shows that the IDF curves derived from the stationary models are underestimating
the extreme events of all duration and for all return periods.

Nonisotropy. Hydrological processes (soil moisture, streamflow, evapotranspira-
tion) are extremely sensitive to small-scale temporal and spatial rainfall variability.
Although ground-based weather radars have been particularly popular for forcing
hydrological models that simulate a basin hydrological response, several authors
have indicated that the interaction between the variability of precipitation (includ-
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ing spatial and temporal variations) and the resolution of a hydrological model is
still poorly understood, especially when radar data are used in an urban environ-
ment [11} 16 [53]]. If we assume a perfect hydrological model, and we force it with
perfect rainfall input, we should expect that the accuracy of a streamflow simulation
increases as the resolution of the model and the input increase. However, the finest
available radar rainfall temporal resolution does not necessarily provide the best es-
timation of peak streamflow in a distributed hydrological model. This is the result
of uncertainty and errors related to both the precipitation measurement techniques,
as discussed in Section[I.2] and the model physics [4}57].

The spatial resolution of precipitation data must be functionally coupled with
the temporal resolution to fully reproduce the hydrological response of an urban
catchment. For instance, Berne et al. [§]] proposed the relation As = %\/Xt to couple
the spatial scale (As, inkm) with the temporal scale (A¢, in minutes) for rainfall
processes in urban catchments.

More recently, Ochoa-Rodriguez et al. [54] fitted the variogram of the spatial
structure of rainfall over a peak storm period with an exponential model. They con-
cluded that the minimum required spatial resolution was one-half the characteristic
length scale r, of the storm, which they defined in terms of the variogram range r[L],
re = (2m/3)"/2 r[L]. A unique relationship linking the temporal and spatial resolu-
tions of precipitation adequate for the reproduction of the hydrological response of
a catchment basin is yet to be found.

Nonergodicity. Most of the literature simply assumes without evidence that pre-
cipitation and hydrological processes in general are ergodic; for example, see [29,
45! 155]). However, a recent study [67] indicates that the assumption may not be fully
justified. The author proposed an approach to assess the mean ergodicity of hydro-
logical processes based on the autocorrelation function of a dataset. The approach
was tested on monthly rainfall time series at three locations, two in China and one
in the State of Michigan (USA). The results showed that, at all three locations, the
ergodicity assumption was met only during a few months of the year. Therefore, sta-
tistical metrics computed on the basis of data collected during those months do not
meet the ergodicity assumption (sample statistics) and cannot be used as proper ap-
proximations for the population statistics. Moreover, the ergodicity assumption was
met in different months at different locations, so ergodicity cannot be transferred to
a different region and/or period. More work is clearly needed to establish the limits
of validity of the ergodicity assumption.

Scenarios where the ergodicity assumption is not met have been studied even less
frequently than scenarios where the stationarity and isotropy assumptions are not
met, partially because of the difficulty of testing it in the absence of large quantities
of high-quality data spanning a reasonable period of time.

In statistical mechanics, one often uses nonergodic Monte Carlo simulations to
create multiple realizations for estimating statistical information on the dynamic
processes over the region in question [46]. In the geospatial sciences, this approach
is often infeasible.

An attempt has been made to formulate nonergodic versions of covariograms for
the case of preferentially sampled data. However, as argued in [22]], these measures
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do not offer a clear advantage over standard ergodic statistics for studying spatial
dependence or making spatial predictions. Developing appropriate data transforma-
tions is considered a more promising direction.

In the mathematical literature, much attention is currently being paid to frac-
tional diffusion processes, which typically generate nonergodic behavior. Some re-
cent work aims to develop a metric quantifying nonergodicity [62]. This direction
may also be useful for hydrological applications.

1.4 Decorrelation Measures

Correlation functions are standard tools for measuring spatial and temporal depen-
dencies in the rainfall fields [0, [I7]]. Figure [[.4.]] shows both the temporal and
spatial correlation functions for a precipitation data set for the State of Oklahoma
(USA) during the period March—October, 2011.
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Fig. 1.4.1: (a) Temporal and (b) spatial correlations of CMORPH precipitation data
for the State of Oklahoma (USA) at 8km/1hr resolution during the period Mar—Oct,
2011.

In the case of spatial correlations, one computes the correlation of the two time
series associated with any two measurement points (for example, two rain gauges,
or two pixels) as a function of their distance. A common approximation is the expo-
nential model with the so-called nugget effect 19, 201,

pe(d) = coexp|— (d/dy)™]. (1.4.1)

Here, cq is the nugget parameter, which corresponds to the correlation value for
near-zero distances [21]]; d is the separation distance, the distance between the two
measurement points; dy is the scale parameter, which corresponds to the spatial
decorrelation distance; and s is the correlogram shape parameter, which controls
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the behavior of the model near the origin for small separation distances. The quan-
tity (1 — co) is the instant decorrelation due to random errors in the rainfall ob-
servations [18]]. The separating distance at which the correlation is 1/e defines the
correlation length for the (assumed) exponential variogram model.

In the case of temporal dependencies, autocorrelations are plotted as a function
of the time lag. The lag-1 correlation is commonly adopted as a viable index of
rainfall decorrelation in time [37,59].

The exponential model (T.4.T) with the corresponding “1/e rule” is only one of
several models for fitting semivariograms; linear, spherical and Gaussian models are
possible alternatives [S]]. The choice of model has to be made based on the analysis
of statistical data, and one should not adopt the decorrelation definition provided
above as the default option. In fact, one may suspect that for regions with slowly
decaying correlations (for example. flat regions with low spatial variability), the
“1/e rule” might only work after a sufficient increase of the domain size. In other
cases, the data might not support the exponential modeling assumption at all, and
corresponding adjustments of the methodology would have to be performed. These
modeling subtleties and tacit assumptions are sometimes a source of ambiguity in
the literature, which may lead to erroneous conclusions.

1.5 Dimension Reduction Techniques

One of the many challenges of modeling and understanding spatiotemporal precip-
itation patterns is the large amount of data that needs to be processed. For example,
in the relatively small-scale NASA Merra dataset, precipitation is given by monthly
averages on a 50 x 91 grid representing a map of the contiguous Unites States at
50 km resolution over a period of 35 years, amounting to a total of 1,911,000 en-
tries. However, much more detailed information at higher spatial (on the order of
100 m regionally and 1 km globally) and temporal (hourly) resolutions is required to
assess the storage, movement, and quality of water at and near the land surface [68].
Higher-resolution data bring higher data volumes: for the previous example. there
would be more than 3 - 10'? entries for a map of the contiguous US at 1km resolu-
tion and hourly intervals. Some form of data and dimention reduction is called for.

In a general sense, one may attempt to find a decomposition of the data (signal)
of the form

N
n(u,7) = Z o (1)pr(u) + noise, (1.5.1)
k=1

where the p; are characteristic patterns used to approximate the data (also called
guess patterns or predictors), and the oy are the amplitudes or principal components
of the corresponding patterns. The patterns py are spatial structures that account for
temporal variations of the rainfall data 1(u,7). When plotted as functions of time,
the amplitudes oy convey information on how the patterns evolve in time.
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Mathematically, finding the “best” patterns and principal components for a given
data set is a projection problem, “Find a subspace approximating a given set of
data in an optimal (for example, least-squares) sense.” To solve this problem, var-
ious treatments have been proposed within the geophysical community by differ-
ent groups and authors [65]]. Here, we attempt to place these methods in perspec-
tive against methodologies developed independently in the mathematics community.
While some techniques exist in both literatures (sometimes under different names),
other methods have not yet penetrated the language barrier between the two disci-
plines.

EOF method. The method of Empirical Orthogonal Functions (EOF) is one
of the staple tools in geostatistics, which has received much attention in the hy-
drological literature. As mentioned in Section [I.3.1] EOFs are the eigenvectors of
the covariance matrix Y7Y. In the mathematical and statistical literature, the EOF
method is referred to as Singular Value Decomposition (SVD) or Principal Compo-
nent Analysis (PCA) and belongs to the class of Proper Orthogonal Decomposition
(POD) methods. In geospatial theory, It goes by the name Karhunen-Loéve analysis.

Let Y denote the N x n matrix of detrended observations (also called “snapshot
matrix” if n < N), whose columns are modified snapshots of rainfall data at a given
time. If C = %YTY is the normalized correlation matrix, then a POD basis is com-
prised of the vectors

1
i=—=Yx, i=1,...,n,
0= el
where y; is the normalized eigenvector (|x;| = 1) corresponding to the ith largest

eigenvalue A; of C. The POD basis vectors are the first n left singular vectors of the
snapshot matrix Y obtained by using the SVD decomposition of Y, Y = UXVT, so
¢i=u;fori=1,...,n.

Let {y;}", is an arbitrary orthonormal basis for the span on the modified snap-
shot set {x j};?zl. Then the projection onto the d-dimensional subspace spanned by
{yi) is d

Pyaxj =Y (Vi,x))0i. (1.5.2)
i=1

The POD basis is optimal in the sense that the approximation error

n

e=Y |x—Pyax;| (1.5.3)
=1

Jj=

is minimized for y; = ¢;,i =1,....d.

While EOFs present an attractive tool for studying spatiotemporal variability pat-
terns in precipitation data, care should be taken when interpreting the results of
such analysis, as pointed out in [25]. In short, while it is tempting to find physical
relevance for each of the EOF “modes,” the orthogonality condition built into this
methodology often renders such interpretation useless. Rotated EOF technique is
often used as a better alternative; however, a deeper analysis is normally needed to
decipher the meaning of the EOF-based patterns.
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CVT-based techniques. In the mathematical community, an alternative dimen-
sion reduction technique based on Centroidal Voronoi Tessellations (CVTs) has
recently gained popularity. While the list of applications is growing quickly, the
method remains relatively under-explored in hydrological applications. The presen-
tation below is based on [12]].

The idea of the CVT technique is to find a fixed number of representative points
(“generators”) to decompose the original high-dimensional space into a finite num-
ber of subspaces with relatively small loss of accuracy. The main ingredient of this
method is the “density function,” usually denoted p(x), which can be constant or a
function of x, depending on the application. For instance, p can be used to represent
a variety of physical characteristics such as the local characteristic length scale [58]],
signal intensity [31]], or the desired grid resolution [28]. In [24]], p is used to repre-
sent spatial rainfall variability.

More precisely, given a snapshot matrix X = {x j}" | EW CRY, the goal is
to find a set of p01nts {zi }k , € RY, such that W can be decomposed in Voronoi
regions, W = UX_, V;, with a minimum tessellation error, &[{z;,V;}*_,]. A Voronoi
region V; is defined as

Vi={xeW:|x—z| <|x—z;|, j=1,...,k, j#i}, (1.5.4)

and the tessellation error is given by

~

E{z VY1 = Y, Y, p(x)x—z[*. (1.5.5)

i=1x€eV;

It can be shown that the tessellation error is minimal if and only if z; = z} for

i=1,...,k, where z; is the mass centroid of the Voronoi region V; [26]. At the
minimum,
Z p(x)|x—z")? = 1nf Z p (x)[x —z)>. (1.5.6)
xeV(z%) XEV

Figure[1.5.1] gives two examples of CVTs for different types of densities.

In the discussion of the EOF method, we saw that the optimal basis was com-
prised of the set of vectors {d), . In the CVT method, the situation seems sim-
ilar: the optimal basis is the set of generators {z; }X i—1- However, there are many
differences between the two approaches. POD minimizes the functional € as in
(T:53), while CVT minimizes the error & given by (1.5.3). POD requires one to
solve an n X n eigenvalue problem, where 7 is the number of snapshots, which is not
very amenable to adaptive computations. While the CVT methodology is in general
cheaper than POD, there are often numerical caveats associated with CVT compu-
tations. For an overview of CVT-related numerical techniques, we refer the reader
to [27, 134]. Several case studies based on rainfall data highlighting the features of
the CVT and POD approaches are presented in [24]].
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Fig. 1.5.1: Two CVT tessellations of the unit square, W = [0, 1]*; (left) p(x,y) = 1,
(right) p(x,y) = exp—(x* +?).

1.6 Concluding Remarks

In this chapter, we have presented an overview of experimental and computational
methodologies and reviewed some of the mathematical challenges associated with
the field of precipitation analysis. In particular, we focused our attention on the
statistical assumptions underlying some of the commonly used pattern-recognition
techniques. Because of the instability of the current climate, the validity of these
assumptions should naturally fall under scrutiny. As abundant satellite and in situ
observation data continue to pour in, one must reconsider the long-standing notions
of stationarity, homogeneity, and ergodicity and be prepared to adopt new mathe-
matical methodologies. In this chapter, we reviewed decorrelation measures, non-
stationary extensions of Intensity-Duration-Functions and two types of dimension
reduction methodologies with associated challenges. While some of these efforts are
well under way, others are still in their infancy, and rigorous mathematical analysis
is needed to address these challenges.

Acknowledgements This work was instigated at the Mason Modeling Days workshop held at
George Mason University, generously supported by the National Science Foundation grant DMS-
1056821. The authors are grateful to Paul Houser for stimulating discussions at the initial stages of
this collaboration. ME also wishes to thank Hans Engler and Hans Kaper for their encouragement
over the years, and for introducing this research group to the MPE community.

References

1. Ababou, R., Bagtzoglou, A.C., Wood, E.F.: On the condition number of covariance matrices
in kriging, estimation, and simulation of random fields. Mathematical Geology 26(1), 99-133
(1994). doi:10.1007/BF02065878. URL https://doi.org/10.1007/BF02065878


http://dx.doi.org/10.1007/BF02065878
https://doi.org/10.1007/BF02065878

1 Variability Patterns for Precipitation Analysis 17

10.
11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.
22.

23.

24.

25.

26.

. Agilan, V., Umamahesh, N.: What are the best covariates for developing non-stationary

rainfall intensity-duration-frequency relationship? Adv. Water Resources 101, 11-22 (2017)

. Artan, G., Gadain, H., Smith, J.L., Asante, K., Bandaragoda, C.J., Verdin, J.P.: Adequacy of

satellite derived rainfall data for streamflow modeling. Nat. Hazards 43, 167-185 (2007)

. Atencia, A., Mediero, L., Llasat, M.C., Garrote, L.: Effect of radar rainfall time resolution on

predictive capability of a distributed hydrological model. Hydrology and Earth System
Science 15, 3809-3827 (2011)

. Bacchi, B., Kottegoda, N.: Identification and calibration of spatial correlation patterns of

rainfall. J. Hydrology 165, 311-348 (1995)

. Bauer, P, Lopez, P., Benedetti, A., Salmond, D., Moreau, E.: Implementation of 1D+ 4D-Var

assimilation of precipitation-affected microwave radiances at ECMWE. I: 1D-Var. Quarterly
Journal of the Royal Meteorological Society: A Journal of the Atmospheric Sciences,
Applied Meteorology and Physical Oceanography 132(620), 2277-2306 (2006)

. Bell, T., Kundu, P.: Dependence of satellite sampling error on monthly averaged rain rates:

Comparison of simple models and recent studies. J. Climate 13(2), 449-462 (2000)

. Berne, A., Delrieu, G., Creutin, J., Obled, C.: Temporal and spatial resolution of rainfall

measurements required for urban hydrology. J. Hydrology 299, 166-179 (2004)

. Bonnin, G.M., Maitaria, K., Yekta, M.: Trends in rainfall exceedances in the observed record

in selected areas of the United States 1. JAWRA Journal of the American Water Resources
Association 47(6), 1173-1182 (2011)

Bras, R., Rodriguez-Iturbe, I.: Random functions and hydrology. Courier Corporation (1985)
Brown, P, Diggle, P., Lord, M., Young, P.: Space-time calibration of radar rainfall data. J.
Royal Statistical Society: Series C (Applied Statistics) 50(2), 221-241 (2001)

Burkardt, J., Gunzburger, M., Lee, H.C.: Centroidal Voronoi tessellation-based reduced order
modeling of complex systems. SIAM J. Sci. Comput. 28(2), 459-484 (2006)

Chang, A.T., Chiu, L.S.: Nonsystematic errors of monthly oceanic rainfall derived from
ssm/i. Monthly weather review 127(7), 1630-1638 (1999)

Cheng, L.: Nonstationary Extreme Value Analysis (NEVA) software package, version 2.0.
http://amir.eng.uci.edu/neva.php (2014)

Cheng, L., AghaKouchak, A., Gilleland, E., Katz, R.W.: Non-stationary extreme value
analysis in a changing climate. Climatic Change 127(2), 353-369 (2014).
doi:10.1007/s10584-014-1254-5 URL
https://doi.org/10.1007/s10584-014-1254-5

Christiano, E., Ten Veldhius, M.C., van de Diesen, N.: Spatial and temporal variability of
rainfall and their effects on hydrological response in urban areas — a review. Hydrol. Earth
Syst. Sci. Discuss. (2016)

Chumchean, S., Sharma, A., Seed, A.: Radar rainfall error variance and its impact on radar
rainfall calibration. Physics and Chemistry of the Earth, Parts A/B/C 28(1-3), 27-39 (2003)
Ciach, G.: Local random errors in tipping-bucket rain gauge measurements. Journal of
Atmospheric and Oceanic Technology 20(S), 752-759 (2003)

Ciach, G., Krajewski, W.: On the estimation of radar rainfall error variance. Adv. Water
Resources 22(6), 585-595 (1999)

Ciach, G., Krajewski, W.: Analysis and modeling of spatial correlation structure in
small-scale rainfall in Central Oklahoma. Adv. water resources 29(10), 1450-1463 (2006)
Cressie, N.: Statistics for spatial data. John Wiley and Sons (1993)

Curriero, F., Hohn, M., Liebhold, A.: A statistical evaluation of non-ergodic variogram
estimators. Environmental and Ecological Statistics 9, 89—110 (2002)

DeGaetano, A.T.: Time-dependent changes in extreme-precipitation return-period amounts in
the continental united states. J. Appl. Meteor. Climatol. 48, 20862099 (2009)

Di, Z., Vazquez, M., Houser, P., Maggioni, V., Emelianenko, M.: CVT-based method for
optimal placement of water gauges. in preparation (2018)

Dommenget, D., Latif, M.: A cautionary note on the interpretation of EOFs. J. Climate 15,
216-225 (2001)

Du, Q., Emelianenko, M., Ju, L.: Convergence of the Lloyd algorithm for computing
centroidal Voronoi tessellations. SIAM J. Num. Anal. 44, 102-119 (2006)


http://dx.doi.org/10.1007/s10584-014-1254-5
https://doi.org/10.1007/s10584-014-1254-5

18

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

Emelianenko, Maggioni

Du, Q., Faber, V., Gunzburger, M.: Centroidal Voronoi tessellations: Applications and
algorithms. SIAM Review 41, 637-676 (1999)

Du, Q., Gunzburger, M.: Grid generation and optimization based on centroidal Voronoi
tessellations. Appl. Math. Comput. 133, 591-607 (2002)

Duan, J., Goldys, B.: Ergodicity of stochastically forced large scale geophysical flows. J.
Math. Math. Sci. 28, 313-320 (2001)

Ebert, E.E., Janowiak, J.E., Kidd, C.: Comparison of near-real-time precipitation estimates
from satellite observations and numerical models. Bull. Amer. Meteor. Soc. 88, 47-64 (2007)
Emelianenko, M.: Fast multilevel CVT-based adaptive data visualization algorithm. Numer.
Math. Theor. Meth. Appl. 3(2), 195-211 (2010)

F.,, K.W., Anderson, M.C., Eichinger, W.E., Entekhabi, D., B. K. Hornbuckle, PR.H., Katul,
G.G., Kustas, W.P., Norman, J.M., Peters-Lidard, C., Wood, E.F.: A remote sensing
observatory for hydrologic sciences: A genesis for scaling to continental hydrology. Water
Resour. Res. 42(7), W07,301 (2006)

Gottschalck, J., Meng, J., Rodell, M., Houser, P.: Analysis of multiple precipitation products
and preliminary assessment of their impact on global land data assimilation system land
surface states. J. Hydrometeor 6, 573598 (2005)

Hateley, J.C., Wei, H., Chen, L.: Fast methods for computing centroidal Voronoi
tessellations. Journal of Scientific Computing 63(1), 185-212 (2015)

Hirsch, R.M.: A perspective on nonstationarity and water management. J. Amer. Water
Resources Assoc. JAWRA) 47(3), 436446 (2011)

Hodgkins, G.A., Dudley, R.W.: Changes in the timing of winterspring streamflows in eastern
north america. Geophys. Res. Lett. 33, 1913-2002 (2006)

Hossain, F., Anagnostou, E.: A two-dimensional satellite rainfall error model. IEEE
transactions on geoscience and remote sensing 44(6), 1511-1522 (2006)

Hossain, F., Anagnostou, E.N.: Assessment of current passive-microwave- and infrared-based
satellite rainfall remote sensing for flood prediction. J. Geophys. Res. 109 (2004)

Hsu, K., Gao, X., Sorooshian, S., Gupta, H.V.: Precipitation estimation from remotely sensed
information using artificial neural networks. J. Appl. Meteor. 36, 11761190 (1997)
Huffman, G., Bolvin, D., Braithwaite, D., Hsu, K., Joyce, R., Xie, P.: Integrated
Multi-satellite Retrievals for GPM (IMERG), version 4.4. NASA’s Precipitation Processing
Center (accessed 31 March, 2015). URL
ftp://arthurhou.pps.eosdis.nasa.gov/gpmdata/

Huffman, G.J., Bolvin, D.T., Nelkin, E.J., Wolft, D.B., Adler, R.F., Gu, G., Hong, Y.,
Bowman, K.P., Stocker, E.F.: The trmm multisatellite precipitation analysis (tmpa):
Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. Journal of
hydrometeorology 8(1), 38-55 (2007)

Joyce, R.J., Janowiak, J.E., Arkin, P.A., Xie, P.: Cmorph: A method that produces global
precipitation estimates from passive microwave and infrared data at high spatial and temporal
resolution. J. Hydrometeor. 5, 487503 (2004)

Kidd, C., Bauer, P,, Turk, J., Huffman, G.J., Joyce, R., Hsu, K.L., Braithwaite, D.:
Intercomparison of high-resolution precipitation products over northwest Europe. J.
Hydrometeor. 13, 6783 (2012)

Kottegoda, N.: Stochastic Water Resources Technology. Palgrave Macmillan UK (1980).
URL https://books.google.com/books?1d=3SiuCwAAQBAJ

Koutsoyiannis, D.: Stochastic simulation of hydrosystems. Water Encyclopedia 3, 421430
(2005)

Krauth, W.: Statistical Mechanics: Algorithms and Computations. Oxford Master Series in
Physics. Oxford University Press, UK (2006). URL
https://books.google.com/books?id=B3koVucDyKUC

Kummerow, C.: Beamfilling errors in passive microwave rainfall retrievals. J. Appl.
Meteorol. 37(4), 356-370 (1998)

Lins, H.: A note on stationarity and non-stationarity. 14th Session of the Commission for
Hydrology (2012)


ftp://arthurhou.pps.eosdis.nasa.gov/gpmdata/
https://books.google.com/books?id=3SiuCwAAQBAJ
https://books.google.com/books?id=B3koVucDyKUC

1 Variability Patterns for Precipitation Analysis 19

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

Lorenc, A.C.: The potential of the ensemble Kalman filter for NWP—a comparison with
4D-Var. Quarterly Journal of the Royal Meteorological Society 129(595), 3183-3203 (2003)
M., B., Anagnostou, E.N., Frank, E.: On the use of real-time radar rainfall estimates for flood
prediction in mountainous basins. J. Geophys. Res. 105(D2), 2269-2280 (2000)
Michaelides, S., Levizzani, V., Anagnostou, E.N., Bauer, P., Kasparis, T., Lane, J.E.:
Precipitation science: Measurement, remote sensing, climatology and modeling. Atmos. Res.
94, 512-533 (2009)

Milly, P., Betancourt, J., Fallkenmark, M., Hirsch, R., Kundzewicz, Z., Lettenmaier, D.,
Stouffer, R.: Stationarity is dead: Whither water management? Science 319, 573-574 (2008)
Nikolopoulos, E., Borga, M., Zoccatelli, D., Anagnostou, E.N.: Catchment scale storm
velocity: quantification, scale dependence and effect on flood response. Hydrological Sci. J.
59, 1363-1376 (2014)

Ochoa-Rodriguez, S., Wang, L., Gires, A., Pina, R., Reinoso-Rondinel, R., Bruni, G., Ichiba,
A., Gaitan, S., Cristiano, E., Assel, J., Kroll, S., Murl-Tuyls, D., Tisserand, B., Schertzer, D.,
Tchiguirinskaia, I., Onof, C., Willems, P, ten Veldhuis, A.E.J.: Impact of spatial and
temporal resolution of rainfall inputs on urban hydrodynamic modelling outputs: A
multi-catchment investigation. J. Hydrology 531, 389-407 (2015)

Oliveira, T.F., Cunha, F.R., Bobenrieth, R.F.M.: A stochastic analysis of a nonlinear flow
response. Probab. Eng. Mech. 21, 377-383 (2006)

R., O., Maggioni, V., Vila, D., Morales, C.: Characteristics and diurnal cycle of GPM rainfall
estimates over the Central Amazon Region. Remote Sensing; Special Issue on Uncertainties
in Remote Sensing 8(7), 544 (2016)

Rafieeinasab, A., Norouzi, A., Kim, S., Habibi, H., Nazari, B., Seo, D., Lee, H., Cosgrove,
B., Cui, Z.: Toward high-resolution flash flood prediction in large urban areas: Analysis of
sensitivity to spatiotemporal resolution of rainfall input and hydrologic modeling. J.
Hydrology 531, 370-388 (2015)

Ringler, T., Ju, L., Gunzburger, M.: A multiresolution method for climate system modeling:
application of spherical centroidal Voronoi tessellations. Ocean Dynamics (2008)
Rodriguez-Iturbe, 1., Isham, V.: Some models for rainfall based on stochastic point processes.
InProc. R. Soc. Lond. A 410(1839), 269-288 (1987)

S., M.E,, Picciotti, E., Vulpiani, G.: Rain field and reflectivity vertical profile reconstruction
from c-band radar volumetric data. IEEE Trans. Geosci. Remote Sens. 42(4), 1033-1046
(2004)

Schneider, U., Fuchs, T., Meyer-Christoffer, A., Rudolf, B.: Global precipitation analysis
products of the GPCC. Global Precipitation Climatology Centre (GPCC), DWD, Internet
Publikation 112 (2008)

Schwarzl, M., Godec, A., R., M.: Quantifying non-ergodicity of anomalous diffusion with
higher order moments. Scientific Reports 7, 3878 (2017)

Scofield, R.A., Kuligowski, R.J.: Status and outlook of operational satellite precipitation
algorithms for extreme-precipitation events. Wea. Forecasting 18, 1037-1051 (2003)
Serrat-Capdevila, A., Valdes, J.B., Stakhiv, E.: Water management applications for satellite
precipitation products: Synthesis and recommendations. J. Amer. Water Resour. Assoc. 50,
509-525 (2014)

von Storch, H., Navarra, A.: Analysis of Climate Variability Applications of Statistical
Techniques. Springer-Verlag Berlin Heidelberg (1999)

Tian, Y., Peters-Lidard, C.D., Choudhury, B.J., Garcia, M.: Multitemporal analysis of
TRMM-based satellite precipitation products for land data assimilation applications. J.
Hydrometeor. 8, 11651183 (2007)

Wang, H., Wang, C., Zhao, Y., Lin, X., Yu, C.: Toward a practical approach for ergodicity
analysis. Nonlin. Processes Geophys. Discuss. 2, 1425-1446 (2015)

Wood, E., Roundy, J.K., Troy, T.J., van Beek, R., Bierkens, M., Blyth, E., de Roo, A., P. Ddll,
M.E., Famiglietti, J., Gochis, D., van de Giesen, N., Houser, P, Jaffe, P., Kolletl, S., Lehner,
B., Lettenmaier, D.P., Peters-Lidard, C., Sivapalan, M., Sheffield, J., Wade, A., Whitehead,
P.: Hyper-resolution global land surface modeling: Meeting a grand challenge for monitoring
Earth’s terrestrial water. Water Resour. Res. 47, W05,301 (2011)



20 Emelianenko, Maggioni

69. Zhang, Q., Sun, P, Singh, V., Chen, X.: Spatial-temporal precipitation changes (1956-2000)
and their implications for agriculture in China. Global and Planetary Change 82, 86-95
(2012)



	Mathematical Challenges in Measuring Variability Patterns for Precipitation Analysis
	Maria Emelianenko and Viviana Maggioni
	Introduction
	Estimating Precipitation
	In situ Measurements
	Remote Sensing
	Model Simulation

	Assessment of Spatial and Temporal Patterns
	Definitions
	Statistical Assumptions in Hydrological Analyses
	What If the Assumptions Are Not Satisfied?

	Decorrelation Measures
	Dimension Reduction Techniques
	Concluding Remarks
	References



