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SUMMARY

Centroidal Voronoi tessellations have diverse applications in many areas of science and engineering.
The development of efficient algorithms for their construction is a key to their success in practice. In
this paper, we study some new algorithms for the numerical computation of the centroidal Voronoi
tessellations, including the Lloyd-Newton iteration and the optimization based multilevel method.
Both theoretical analysis and computational simulations are conducted. Rigorous convergence results
are presented and significant speedup in computation is demonstrated through the comparison with
traditional methods. Copyright (© 2005 John Wiley & Sons, Ltd.
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1. Introduction

Centroidal Voronoi tessellations have broad applications and are linked to many important
concepts defined in different contexts. Let us take the subject of vector quantization as an
example [1]. A vector quantizer maps N-dimensional vectors in the domain  C R¥ into a
finite set of vectors {z;}¥_,. Each vector z; is called a code vector or a codeword, and the
set of all the codewords is called a codebook. A special quantization scheme is given by the
Voronoi tessellation which associates with each codeword z;, also called a generator, a nearest
neighbor region that is called a Voronoi region {V;}%_,. That is, for each i, V; consists of all
points in the domain €2 that are closer to z; than to all the other generating points, and a
Voronoi tessellation refers to the tessellation of a given domain by the Voronoi regions {V;}£_;
associated with a set of given generating points {z;}*_; C Q. For a given density function p
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defined on Q, we may define the centroids, or mass centers, of regions {V;}*_; by

z; = (/V yp(y) dy)(/v_ p(y) dy)il. (1.1)

An optimal quantization may then be defined through a centroidal Voronoi tessellation (CVT)
which is a special Voronoi tessellation whose generators coincide with the centroids of their
respective Voronoi regions, i. e., z; = z; for all ¢. Such a connection between CVTs and optimal
quantization schemes has been explored extensively in the literature [2].

Given a set of points {z;}¥_; and a tessellation {V;}¥_, of the domain, we may define the
energy functional or the distortion value for the pair ({z;}X_,,{Vi}%_,) by:

H({z o VY, = Z | oly = zfay. (1:2)

The minimizer of H, that is, the optimal quantizer, necessarily forms a CVT which illustrates
the optimization property of the CVT [2]. The terms optimal quantizer and CVT are thus to
be used interchangeably in the sequel. We note that, besides providing an optimal least square
vector quantizer design in electrical engineering applications [1],[3],[4], the CVT concept also
has applications in diverse areas such as astronomy, biology, image and data analysis, resource
optimization, sensor networks, geometric design, and numerical partial differential equations
[2],16],[7],[8],]9],[10],[11],[12],[13],[14],[15]. We refer to [2] for a more comprehensive review of
the mathematical theory and diverse applications of CVTs.

In the seminal work of Lloyd on the least square quantization [16], one of the algorithms
proposed for computing optimal quantizers is an iterative algorithm consisting of the following
simple steps: starting from an initial quantization (a Voronoi tessellation corresponding to an
old set of generators), a new set of generators is defined by the mass centers of the Voronoi
regions. This process is continued until certain stopping criterion is met. It is easy to see that
the Lloyd algorithm is an energy descent iteration of the energy functional (1.2), which gives
strong indications to its practical convergence. We refer to [17] for some discussion on the
recent development of a rigorous convergence theory.

Lloyd’s algorithms and their variants have been proposed and studied in many contexts for
different applications [1],[8],[18],[19]. A particular extension using parallel and probabilistic
sampling was given in [7] which allows efficient and mesh free implementation of the Lloyd’s
algorithm. Still, Lloyd algorithm is at best linearly convergent, besides it slows down as the
number of generators gets large.

For modern applications of the CVT concept in large scale scientific and engineering
problems such as data communication and mesh generation, efficient algorithms for computing
the CVTs play crucial roles. The objective of this paper is to present a number of different
approaches for speeding up the convergence of Lloyd iteration. In section 2 we consider a direct
application of the Newton method and propose a coupled Lloyd-Newton scheme that can be
used to accelerate the convergence of the original method. Both analytical and numerical
results for scalar and vector quantization problems are discussed. Then in sections 3 and 4 we
introduce the ideas of multilevel algorithms and outline the two main strategies for applying
them in the nonlinear optimization context. In particular, we focus on the new multilevel
approach to the optimal quantization problem developed recently in [20],[21]. In this paper we
discuss the main characteristics of this scheme, such as the dynamic nonlinear preconditioning
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and uniform convergence with respect to the problem size, and show some numerical results
demonstrating its superiority over traditional methods .

2. Lloyd-Newton method

2.1. Some technical lemmas

For a general nonlinear system f(z) = 0 with vector argument z, the Newton iteration is given
by:
Zy, = 21 — df|; " £(2z,_1)

where df is the Jacobian matrix of the map f. Applying Lloyd’s algorithm to the computation
of CVTs, we obtain the problem of solving T(z,,-1) = z,, where T denotes the Lloyd map
from generators to centroids, as discussed earlier. Newton’s method in this setting takes on
the form

Zp = Zp—1 + (dT

Zn_1 I)_l(znfl - T(anl)) -

Here T : R*N — RN and the corresponding Jacobi matrix dT = (2X%) has dimensions

0z
kN X kN:
aT{V aT{V aT{V oT{"
T T gl g
oT{™ aT{™ aT{™ aT{™
DT oD g 5w
dT = . ... . ... . .o .
o o o otV
slT T Tl e g
aT™) aT{™) aT{™) oM
ST T gl e gt

We arrive at a necessity to calculate the partial derivatives of T;(z). The following result (see
[2]) is of use:

Lemma 2.1. Let Q = Q(U) be a region that depends smoothly on U and that has a well-
defined boundary. If F = fQ(U) f(y)dy, then
dF
= f(y)y -ndy
dU  Jaqu

where n is the unit outward normal and y denotes the derivative of the boundary points with
respect to changes in U.

Since
Sy YP(¥) dy
Ti(s) = S
fv,i (z) p(y) dy
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we have that

o™ / dy
i _ (m)
= p(y)y ‘ndy / p(y) dy—
oz\™ ( av; &) 8z§n) )/ Vi(z) ¥)

(/8; p(Y)aig;) : ndy) /V}(Z) ply)yt™ dy/(/v_(z) p(y) dy)2 :

Oy
(n)
Ozj

Here 1 <m < N and 1 < n < N. An analytic representation of can be obtained from

the following identity:

Lemma 2.2. If {u;} are the vertices of the common face Az between adjacent Voronoi regions
generated by z; and zj, then for any set of {Ni}, N\ > 0 with Y oo\ = 1, such that

leox\lul EAg
(Z)\llll — Zi_ng) '(Zj—Zi> =0.

1>0

Differentiating the above expression with respect to ZE"), for any point y € Af we get

Sy (25 —z) = §en(zj—z) e, (y - 25
oy (2 —z) = gen-(z—zi)—en (y - T5H)
J
where e, = (0,...,1,...,0)7 is a unit vector in RY. Since n = H;]::%H’ the necessary
J i

expression for % -n can be easily obtained and used for integration purposes.
Z;

2.2. Theoretical analysis

Classical convergence analysis of the Newton’s method adopted in the current context relies
on the following lemma (see for example [22]):

Lemma 2.3. Suppose F(z) = z—T(z) : R*N — R*N s continuously differentiable in an open
conver set D C R*N. Assume that there exists a z* € R*N | such that F(z*) = 0 and there are
constants B,v,r > 0, such that

1) B(z*,r) C D is an open ball of radius r around z*;

2) (I—dT(z*))"! ewists and ||(I —dT(z*)) Y| < B;

3) (1 - dT) € Lip(y, B(z*,1)).

Then there is a radius € = min{r,1/20v}, such that for any zo € B(z* €), the sequence
generated by the Newton’s iteration z, = z,_1 — (I —dT) 'F(z,_1) converges to z* and obeys
20 — 2°[] < Bl _1 — 2|

It is hard in general to produce criteria for the global convergence of the Newton’s method.
Here we discuss some of the results that help to further characterize the convergence radius of
the Newton scheme in quantization context.

First let us denote h;(z) = diam(V;) for each Voronoi cell V; corresponding to the generators
z, and let D be a compact and convex set in the neighborhood of a solution z*, such that dT
is continuous in D and there are uniform bounds

H= rzneaghi(z), h= ;Iéljrjlhi(z)
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for all 1 <1¢ < k. Moreover, let

M = = mi M = .
maxp(z), m=minp(z) and max [Vp(z)|

With these notations, we can claim the following Lipschitz continuity result for the Jacobian:

18M2M'H*

Lemma 2.4. In the I-dimensional case, I —dT € Lip(y, D), with v = BT
m

Proof
The following relation was given in [2]:

)= Z 8yj /V(y) /V(y) (s) = p(s)p () (t — 5)dt ds, (2.3)

where R;(y) = / p(s)ds and V;(y) denotes the i-th Voronoi cell in the Voronoi tessellation
Vi(y)

generated by the éenerators v = (y1,---,Yk). So for any two sets of generators x = (x1,...,x)
andy = (y1,.-..,Yk), we have
5 (9 9By |5 (9 9Ly [R2(x)Qi(y) — B2 (3)Qi(x)
(o, ) |~ 12 (- 5 - 0= ) =)

where Q;(y // (s)p(t)(t — s)dt ds. Hence
)X Vi(

3 (5 - ayj)\—

(B30 + RN () — Quly) — (R2) — FE))(Qi) + i)
IR R2(Y)
(B2 (x) + F2(¥))| Qs() = Qiy)] + (Qi(x) + Qu(y)) | RE (x) — R2(y)|
IR RE(y) |
Let Vi(x—y) = (Vi(x) \ Vi(y)) U (Vi(y) \ Vi(x)). Notice that there exists a constant such that

|Vi(x —y)| < ¢||x —y]||. For the one dimensional case, we can simply take ¢ = 2. We then have
the following upper bounds:

<

Qi(x) < MM'H®, R;(x) < MH and
Qi(x) = Qily)| < 2V MM HYVi(x — y)| < 2V MM HY lx -y

B2 (x) = R(y)| = |Ri(0) = Ri(y)|(Rilo) + Ru(y) ) < 2eMH][x — y |

where N is the space dimension of the domain. Hence we end up with the following Lipschitz
condition for dT:

1AT (%) — dT(y)[| < ~lkx —yl|

. 18M2M'H*
where, for the 1-d case, by keeping track of the constants, we have v = — i
m
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Proposition 2.1. For the computation of one dimensional CVTs in the case of constant or
log-concave densities, the Newton’s method is quadratically convergent in a subset of D where
||z — z*|] < %, with (I —dT) € Lip(v,D) and =1 — mngdTH > 0.

Proof

It was shown in [17] that Lloyd’s map is continuous in the neighborhood D for any smooth
density in 1d. Notice also, that in the regions where the Lloyd’s map is continuous, it is, in
fact, continuously differentiable, so it remains to estimate the constants 3 and + in this region.
As shown in [17], for constant and log-concave densities we have § = 1 — max [|dT]|| > 0.

Notice that ||dT|| < 1 implies that I — dT is invertible with [[(I — dT)™!|| < B with
8 =1/(1—||dT||) < 1/6 (see [23]). The conclusion then follows from Lemmas 2.3, 2.4.

With these ideas in mind, let us now design a new algorithm to accelerate the convergence
of the Lloyd iteration. Knowing the issues associated with both Lloyd and Newton approaches,
we will try to incorporate their best features into a coupled Lloyd-Newton scheme, as described
next. Note that round off and integration errors can affect theoretically established quadratic
convergence of the Newton method. However, as we show later in numerical examples, with
the acceleration scheme we are about to describe it is possible to preserve superlinear rate of
convergence even in the case of nonlinear densities.

2.8. The Lloyd-Newton acceleration scheme

The results mentioned above do not provide means of identifying the actual region of
convergence for an arbitrary density function. In order to use the Newton’s approach to
speed up the fixed point Lloyd’s iteration, we can deal with this problem by coupling the two
algorithms into one hybrid scheme. For example, let us look at the following implementation
of this idea.

Algorithm 2.1. Lloyd-Newton iteration

Input:

Q, the domain of interest; p, a probability distribution on €2;

k, number of generators; z = {z;}¥, the initial set of generators; € - tolerance.
Output:

{Vi}¥, a CVT with k generators {z;}% in Q

Method:

1. Construct the Voronoi tessellation {V;}¥ of Q with generators z = {2;}¥.
2. Compute the mass centroids x = {z;}% of {V;}}.

3. If |H(x,V;) — H(z, Vi)|| > €, take z = x and goto step 1.

Otherwise fix « = 1, let T(x) = z and goto step 4.

4. Perform a step of Newton’s method: z = z + a(dT|, — I)71(z — T(z)).
5. Let T =1{ill <i<k?¢Q}

If |[I| = 0 take z = Z and goto step 4.

If |I| = 1 reduce Newton’s step size: a = a/2, goto step 4.

Otherwise take z as generators and goto step 1.

6. Repeat until some stopping criterion is met.
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This hybrid method can be used to accelerate the Lloyd’s scheme. As shown in section 2.2,
Newton iteration gives superlinear convergence, whenever the convergence region is reached.
However, there are possible difficulties associated with this approach. Namely, the starting
initial iteration may be too far from the solution, and out of the reach of the superlinear
convergence region; the accurate and efficient solution of the linear system may be affected
by the increase of the condition number with a large number of generators. In the examples
presented in 2.5 we address these issues and present the numerical results that justify the use
of the Newton approach as a local accelerator of the Lloyd iteration.

Let us note that in general, there is no guarantee for the Lloyd’s method to converge to
the global minimizer of the energy (see [17] for a more recent study). The methods discussed
above do not provide the means of reaching the global minimizer, but instead, they provide
the acceleration of convergence in the local vicinity of any solution. It is possible, nevertheless,
to couple these fast converging schemes with some global minimization methods to achieve the
optimal performance. We will return to this discussion in later sections.

2.4. Computational complexity

Let us now briefly look at the complexity of the proposed algorithm. Each step of the adaptive
Lloyd-Newton algorithm includes:

1. Construction of Voronoi diagram.
For two dimensions, we use an embedded Matlab routine, which is of order O(k) [25, 26].
In N-dimensions, the average complexity estimate of O(k) with the running time of
O(klog(k)) is expected when the average number of Voronoi neighbors is bounded [27].

2. Calculation of centroids for each region.
This involves calculation of two integrals per region, hence a total of 2k integrals, again
O(k).

3. Calculation of the Jacobi matrix.
Each element of the matrix involves four new integrations, assuming we store the results
of the previous centroidal calculations. There are k elements. Assume each one has on
average m neighbors, m < k. Then we need a total of 4mk integrations. If we are
sufficiently close to the optimal configuration, m does not exceed 8 (see [28]), which
makes this step worth O(k).

4. Solving the resulting linear system.
The complexity of the linear solver highly depends on the structure of the matrix. With
a sparse banded matrix structure due to limited number of neighbors for each generator
we can adopt fast inversion algorithms that minimize the fill in of the LU decomposition,
for instance, the nested dissection methods for problems with bandwidth v/, that has
complexity on the order of O(k3/2) (see [5]). Iterative methods with lower complexity
can also be considered, we comment on this in the later discussions.

5. Updating procedure for generators.
This is a simple element-by-element addition, requiring 2k operations.

Overall, it is clear that the total complexity depends critically on the linear solver and the
algorithm for the construction of the Voronoi tessellations. For well-distributed points, however,
it is reasonable to expect an optimistic linear time complexity.
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2.5. Numerical results

We present the results of numerical computations on the square Q = [0, 1] for different types
of density functions. All computations were made in Matlab 6.5. We used embedded Matlab
functions voronoi and voronoin for diagram construction.

For the Lloyd’s method, once the Voronoi construction is available, the only computational
task left is to find the mass centroids of the Voronoi regions. For Newton’s method, we also
need to compute the entries of the Jacobian matrix, which adds up to the complexity of the
problem. Computational properties of the problem heavily depend on the form of the density
function used. One always needs to find a compromise between the accuracy and resource
consumption for a particular algorithm. Since complexity of the quadrature is tightly bound
with the computational cost of the algorithm, quadrature rules have to be tuned up depending
on the form of the density function.

In the 1-d case, integrals can be computed more easily. In two dimensional case, the Voronoi
regions are of polygonal shape, so one may use triangle based integration rules or tensor-
product based one dimensional rules. This can be done using a triangulation of any kind.

We tested different integration rules for various types of density functions. For boundary
integrals, we used Simpson’s rule for polynomial densities of degree less than 3 and Gaussian
quadrature rules otherwise. For area integrals, midpoint A rule is used for all densities which
refers to the triangular based quadrature rule: [ f = %|A[- (f(212) + f(z13) + f(223)), where
T12, Ta3, and x13 are the midpoints of the sides of the triangle A. This rule is exact for
polynomials of degree no greater than 2.

There are several criteria one can adopt for this algorithm: ||z, — z,_1|| < €, i.e. when the
distance between two consecutive configurations becomes small enough; | E,, — E,,_1]| <€, i.e.
when changes in energy become sufficiently small or Nstep > MaxNumSteps, i.e. maximum
number of steps is reached. It is also possible to base the stopping criterion on the relative
decrease of the norm for the Jacobian that is conveniently available in our formulation. For
each practical application, the user has a freedom to choose the most suitable approach.
Quite often it is a combination of the above conditions that makes a good stopping criterion.
In our examples, the algorithm was stopped whenever a failure of either conditions was
discovered with € = 1078. In the examples given below, we used the asymptotic formula
r = log e,11/1og e, to compute the convergence rate, where e,, = ||z, —2*|| is the error at the
n-th iteration. Since for nonlinear densities the exact solution is often hard to determine, we
used the ratio log |z,+1 — 2|/ l0g |2, — Zz,,—1]| to approximate the asymptotic convergence rate
in this case.

One-dimensional examples. For one-dimensional intervals, since finding the Voronoi regions
is trivial, most of the computation is associated with finding centroids. Numerical errors for
such tasks are negligible, so the algorithm converges in several steps.

In Figure 1 we plot the asymptotic convergence rate for both Newton (top) and Lloyd
(bottom) iterations. It can be readily seen that the limit is 2 in the Newton case, which
justifies the quadratic convergence. Lloyd’s method converges at a linear rate.
Two-dimensional examples. In the two dimensional case, the effect of the roundoff and
numerical integration errors becomes more pronounced. In case of a constant density, we are
still able to get almost flawless performance. Figure 2 shows convergence of both methods for a
random 5 generator configuration. Here dots denote positions of the generators at each step of
the iteration and lines are used to separate the corresponding Voronoi regions. Lloyd-Newton
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Figure 1. 1d convergence rates comparison for k¥ = 4 (left) and k = 64 (right) with p(z) =
1+ 2 cos(m(z — 0.5)). Top curves are for Newton iteration and the bottom ones are for Lloyd.

Newton iteration Lloyd iteration

0.8}" 0.8}"

0.6 0.6
0.4 0.4

0.2 0.2

0

L L L ° ) O L L °, )
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

Figure 2. Iteration history of (a) Lloyd-Newton vs. (b) Lloyd method for p(x) =1,k = 5.

iteration converged after 7 Newton steps, and convergence became quadratic as soon as the
convergence region was reached, as shown in Figure 3.

221

"

038,

Figure 3. Convergence rate of Lloyd-Newton (top graph) vs. Lloyd iteration (bottom graph) in [0, 1]?
for p(x) =1,k=5

The next two pictures (Figures 4 and 5) demonstrate the performance of both methods in
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10

non-constant density cases. The Lloyd-Newton method converged after 6 Newton steps for
p(z) =1+ x + 0.12% and after 9 Newton steps for p(x) =1 + 2.

1 1
0.8 0.8
0.6 0.6
0.4 0.4
0.2 0.2
00 0.2 0.4 0.6 0.8 1 00 0.2 0.4 0.6 0.8 1

Figure 4. Tteration history of (a) Lloyd-Newton vs. (b) Lloyd method for p(z) = 14 + 0.1z .k = 4.
Here lines connecting the generators are drawn.

Newton iteration Lloyd iteration
1 1
0.8 T 0.8 et
. .
0.6 . 0.6 \
—

=\

==

=

—

0.4 .’ ' . 0.4 : /

0.2 0.2 =

S

0 0
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

Figure 5. Tteration history of (a) Lloyd-Newton vs. (b) Lloyd method, p(z) = 1+ z* k = 4

For a more precise comparison, Table I below shows the decrease of the error for Lloyd-
Newton and Lloyd methods in the case of a quadratic density function p(z) = 1 + = + 0.122
after 5 consecutive iterations respectively:

Adding higher order terms to the density function introduces numerical error in the
calculation of both boundary and area integrals. Here we compare the exact and inexact
calculations made using Simpson’s rule for line integrals and midpoint triangle rule for the
area. Figure 6(a) shows results we got for a quadratic function, for which integration is exact,
whereas the graph in Figure 6(b) shows convergence for a quartic polynomial density function.

Clearly, the integration errors do have an effect on the convergence of the overall scheme,
so for the best performance of the algorithm the optimal tradeoff of the integration scheme
accuracy and overall complexity should be made. As mentioned above, for the density functions
up to certain order it is possible to nullify the numerical integration error by picking a more
accurate quadrature rule. However, this might not be possible for a large class of functions,
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Iteration | Lloyd’s iteration error | Lloyd-Newton’s iteration error
1 0.08641081909378 0.16571484289620
2 0.03313222925306 0.03144575914202
3 0.01849005608503 0.00159901251769
4 0.01041059669286 0.00000571605675
5 0.00599684938138 0.00000000572324

Table I. Error reduction of the Lloyd-Newton and the Lloyd iterations.

Figure 6. Comparison of convergence factors for Newton-Lloyd iteration (top) vs. Lloyd (bottom) for
different densities: (a)p(z) =1+ +0.122k=4; (b)p(z)=1+2* k=4

e.g. functions with singularities of a much higher order. Despite these natural restrictions, the
results shown above clearly justify the fact that for an adequately chosen quadrature Lloyd-
Newton method outperforms the Lloyd iteration and allows to reach the desired solution
significantly faster.

3. Newton-based multilevel algorithm

While the results presented in the previous section show that the Lloyd-Newton scheme
generally performs better than the traditional fixed-point iteration, improvement can be made,
in particular, by reducing the computational cost of solving the linear system for the Newton
increment. In this regard, one possibility is to use multilevel techniques to solve the linear
system inside the Newton iteration framework. We refer to this approach as the inner multigrid
scheme. Naturally, the other possibility is to rely on the nonlinear multigrid solver with the
Lloyd-Newton scheme being part of the inner relaxation procedure which would give an outer
multigrid approach. We now first discuss the former case while leave the latter to the next
section.

Recall that the nonlinear problem under consideration is to find the fixed points of the Lloyd
map T(z) = z. As shown above, the Newton linearization

(I—- dT|zn_1)(Zn —2Zn1) = T(2n1) — 2Zn_1
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gives a fast convergent iterative scheme in the neighborhood of the solution The performance
can be greatly enhanced if some fast sparse solvers are used to reduce the computational
complexity associated with the solution of linear systems. For instance, let us outline an
algorithm that uses algebraic multigrid techniques for these purposes.

Algorithm 3.1. AMG-BGS-Newton iteration
Input:

Q, the domain of interest; p, a probability distribution on €);

k, number of generators; z = {z;}¥, the initial set of generators;
Output:

{Vi}k, a CVT with k generators z = {z;}% in Q.

Method:

1. Given n — th iterate z, calculate T(z,), dT(zy).

2. Put

B (I-T,, Ty [ 1-T., 0
AIdT(Zn)( T I_Tyy> ’M< T I_Tyy)

yzx yzx

and b =T(zy,) — zy,.

3. Solve Mz,41 =b— (A — M)z, where the system for each of the diagonal blocks
involving (I — Tyy) and (I —Ty,) is solved using AMG.

4. Repeat the procedure 1 to 8 until some stopping criterion is met.

Let us now discuss the key elements of the scheme introduced above. First key observation
is related to the choice of a triangular iteration matrix

I-T 0
M: xrx
("2 i)

for solving the linearized system. In making this choice, we relied on the fact that the matrix
A = I —dT has a block structure with the contribution of the off-diagonal blocks being
relatively small. To solve the corresponding linear system, one can either perform the GMRES
iteration with M being a preconditioner or resort to the block Gauss-Seidel (BGS) method
taking M to be the corresponding iteration matrix.

The next key feature of this algorithm is the use of the algebraic multigrid method (AMG)
[29, 30, 31] to solve the linear systems corresponding to each of the diagonal blocks of M.
Indeed, such an approach is justified by the fact that both of the blocks I — T, and I — T,
are symmetric and often share diagonal dominance properties. An example of using the classical
AMG approach based on the standard coarse-grid correction scheme is given as follows:

1. Perform relaxation of the fine grid until the error is smooth: A"u" = b".

2. Compute residual r" = b — A" and transfer to the coarse grid r2" = I2hrh,

3. Solve the coarse-grid residual equation in terms of the error A%e?h = 125,

4. Interpolate the error to the fine grid and correct the fine-grid solution: u” = u” + Ighe%.

Here the restriction operator I,zlh is dependent on the solution at the current iteration and
represents a coarsening procedure, while the iteration dependent operator Igh represents the
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standard interpolation. Naturally, a setup phase has to be implemented first based on the
entries of A so that these operators are suitably defined [31]. Combining these considerations,
we can design the AMG-BGS-Newton scheme, as shown in Algorithm 3.1.

The efficiency of such an algebraic multigrid implementation relies on the observation that
each of the diagonal blocks of the M matrix become diagonally dominant in the vicinity of the
solution. Theoretical arguments leading to this conclusion have been carried out in 1d for the
class of strongly logarithmically concave densities in [17]. In fact, in this case the Lloyd map
was shown to be a local contraction, implying diagonal dominance for the matrix I — dT. For
these densities, a multilevel scheme designed this way outperforms regular Newton iteration
in its convergence.

Another possible approach, as mentioned above, consists of taking a Newton iteration as
part of the relaxation within the outer framework provided by some type of nonlinear multigrid
procedure. The next section is dedicated to a possible implementation of this type of algorithm.

4. Optimization-based nonlinear multilevel algorithm

Since the original concept of centroidal Voronoi tessellations is related to the solution of a
nonlinear optimization problem, and the monotone energy descent property is preserved by the
Lloyd’s fixed point iteration ([2]), we may thus investigate whether monotone energy reduction
can be achieved in a multilevel procedure which would also improve the performance of the
simple-minded fixed point iteration.

The problem of constructing a CVT is nonlinear in nature, hence standard linear multigrid
theory cannot be directly applied. There are still several ways one could implement a nonlinear
multilevel scheme in this context (see [20],[21],[33],[34]). The Newton type acceleration methods
described earlier are based on some global linearization as the outer loop, coupled with other
fast solvers in the inner loop. Alternatively, we now study an approach that overcomes the
difficulties of the nonlinearity by essentially relying on the direct energy minimization without
any type of global linearization.

We note that the optimality property implies that at the CVT (or optimal quantizer), we
have VH = 0. This is the key characterization to be used in the later discussion.

4.1. Space decomposition

Since the energy functional is in general non-convex, it turns out to be very effective to relate
our problem to a convex optimization problem through a technique that mimics the role of
a dynamic nonlinear preconditioner. More precisely, denote R = diag{R;l},i =1,...,k+1
where R; = fVi p(y) dy are the masses of the corresponding Voronoi cells. We arrive at an
equivalent formulation of the minimization problem: RVH = 0, or min||RVH|[®>. A key
observation is that as R varies with respect to the generators, the above transformation or
dynamic preconditioning makes the modified energy functional convex in a large neighborhood
of the minimizer and therefore makes the new formulation more amenable than the original
problem. Hence, let us define the set of iteration points W by

W = {(wy)|i 20 ] 0=wo < w; Swip1 Swpqr =1, VO < i <k},
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and let us design a new multilevel algorithm based on the following nonlinear optimization
problem

min F(z), where Fl(s = {#:}43) = [|RVA({z) Ly, (VHLIP (1.4)
Here {V;}¥_, is the Voronoi tessellation corresponding to the generators {z;}¥_,. Let us take
T = T; as a finite element mesh corresponding to W. Consider a sequence of nested quasi-
uniform finite element meshes 7; C 75 C ... 7y, Where 7; consists of all finite element meshes
{7’ 71| with mesh parameter h;, such that U T = ). Corresponding to each finite element
partltlon 7; there is a finite element space W deﬁned by

W;={veH(Q) | v, €Pi(r),VreT}.

For each W; there corresponds a nodal basis {}}7 ,1, such that % (x},) = &;1, where {a} }L

is the set of all nodes of the elements of 7; and z{ = O,xm = 1. Define the correspondmg
one-dimensional subspaces W; ; = span{zb;-}. Then the decomposition can be regarded as

J ng J
=3 WL - W,
=1

i=1 j=1
where W; = W,;/W,_; for i > 1 and W; = W;. Now clearly for every function w; €W, we
can find a vector ¢! = {¢},} € R/, such that ¢}(z Z Phthin (x), Ve € Q.

We note that in the 1-dimensional case, the set of ba51s functlons
Qi = [QZ:’U,QZ;]T e Rmxk

used at each iteration can be pre-generated using the recursive procedure: Q; = I« and
Qj—s = (II;_, Py_;)Q where P; is the basis transformation from space W;;1 to W, which
plays a role of a restriction operator.

4.2. Description of the algorithm

Using the above notations, we design a multilevel successive subspace correction algorithm
(Algorithm 4.1). Each step of the procedure outlined below involves solving a system of
nonlinear equations which plays the role of relaxation. We use the Newton iteration to solve
this nonlinear system, similarly to the method described in section 2. Solution at current iterate
is updated after each nonlinear solve by the Gauss-Seidel type procedure, hence the resulting
scheme is successive in nature. The algorithm uses a procedure CoarseGridSolve(Z), which, as
the names indicates, refers to finding the solution at the coarsest level. In our implementation,
this procedure consists of applying Lloyd method for a few steps or until saturation. In general,
other efficient optimization methods, as well as Newton’s method, can be used in order to
quickly damp the error, since the number of unknowns on the coarsest grid remains relatively
small. The overall algorithm essentially only depends on the proper space decompositions and
the correspondence with the set of generators thus is applicable in any dimension. The more
general forms will be discussed in our subsequent works.
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Algorithm 4.1. Successive correction V(vy,1v;) scheme

Input:

Q, the domain of interest; p, a probability distribution on 2;

k, number of generators;

z = {z f:ol € W, the ends plus the initial set of generators.

Output:

z = {2;}"1), the ends plus the set of generators for CVT {V;}k_,.

Method:

1. For i=J:-1:2

Repeat vy times: given z, find z =z + a?zﬁ; € W sequentially for 1 < j <mn;
such that H(z + 04915;) = miny, H(z + ajzﬁ;-),

endfor

2. At the coarsest level, update z by z — CoarseGridSolve(z).

3. For i=2:1:J

Repeat vy times: given z, find z = z + a?zﬁ; € W sequentially for 1 < j <mn;,
such that H(z + 0491/_);) = ming,,; H(z + aﬂzé),

endfor

4. Repeat the procedure 1 to 8 until some stopping criterion is met.

First, for y = u — v where u,v € W, we supply with the following norm:

1 k1
iw % Z (yi — y¢71)2 .
i=1

[yl

Note that yo = yr4+1 = 0.
We can state the following convergence result:

Theorem 4.1. Algorithm 3.1 converges uniformly in W for any density of the type p(x) =
1+ eg(x), where g(x) is smooth and € is small. Moreover, d,, = H(u,) — H(u) satisfies
dn S Tdnfla e (07 ]-)
c

for some constant r = SEvel where C = C2C2L/K3, independent of the number of generators
or the number of layers.

The proof of the above result can be constructed following the framework of [35] and is
rather technical, so it appears in a separate work [20], while extensions of this proof to higher
dimensions are discussed in [21]. Roughly, the key steps of the proof include demonstrating
that for all densities of the given type there exist constants K > 0, L > 0 such that

Kllw |} w < (H'(w) = H'(v),w = v) < L|jw — ||} w, Yw,v € W.

Moreover, the space decomposition _(e.g. for the hierarchical basis) satisfies:
1) for any v € W, there exist v; € W, such that

J J
Z’Ui:U7 (ZH%H?W%)UZ§C1||U||1,W§
i=1 i=1
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2) for any w;; € W,u; € W;,v; € W;, we have

J J J
Y (W (wig +ui) = H (wig),vy) < Co(Y il )2 Qs )2 -
i,j=1 i=1 j=1

The complete proof is given in [20] and is omitted here.
Corollary 4.2. For the constant density function in 1d, we have C = 4.

It follows that for a suitable choice of decomposition the asymptotic convergence factor
of our multilevel algorithm is independent of the size of the problem and the number of grid
levels, which gives a significant speedup comparing to other methods, like the traditional Lloyd
iteration. This claim can be justified by the following numerical examples, computed using the
Matlab 6.5 implementation of the new algorithm on a Pentium IV with 512MB RAM. We
compare the results of our V(1,0) multilevel implementation with the regular Lloyd method,
and we also present some results for a two dimensional test problem in a parallelogram domain.

The one dimensional implementation is very straightforward. Here, we take the unit interval
and test a couple of different density functions p(x) = 1 and p(x) = 1 + z. For the energy
functional H defined in (4.4), we plot the convergence factor p & |H (un11) — H(un)|/|H (un) —
H(u,_1)| for each V(1,0) cycle with respect to the total number of generators (grid points)
involved.

1r

fvr & © —0 1801
0.9 1601

0.8F -©- Lloyd iteration for  p(x)=1 140k

—$— Lloyd iteration for p(x)=1+x

§ 0.71 -8~ Multilevel iteration for  p(x)=1+x 120F P(X)=1+x
|33 —@- Multilevel iteration for  p(x)=1
8 0.61 s
2 a 1001
c 05 o]
) E sof
E) 0.4] =
S 03l 601
go

0.2 407

01t 201

o
G0 50 100 150 0 20 40 60 80 100 120 140
Number of generators Number of generators

Figure 7. The left plot shows the convergence factor vs. the number of generators for Lloyd (upper)

and multilevel (lower curves) iterations with p(z) = 1 and p(z) = 1 + z. The right plot shows the

computational time needed for the V(1,0) implementation of the multilevel method vs. the problem
size.

Figure 7 substantiates the fact that the speed of convergence for the proposed scheme
remains nearly constant as the number of generators increases. The graph shows that for the 1-d
examples, the computational time scales almost linearly with the problem size. More statistics
on the implementation using other multilevel cycles can be found in [20]. The geometric rate
of the energy and error reduction asserted by the Theorem 4.1 are also confirmed by the
experiments. Indeed, Figure 8 shows the convergence history (that is, the error reduction
during the iteration) of a V(1,0)-cycle against the total number of relaxations for the k = 129
case.

Finally, the convergence factors for some two dimensional problems on a parallelogram
domain are compared in Figure 9. The graph on the left shows the convergence factor for
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Figure 8. The energy reduction (left) and the convergence history (right) for 129 generators in the
log-normal scale.

the compatible relaxation, that is, with the exact solution given at the coarse nodes (see [32]
for further discussion). The result gives an indication of the effectiveness of the coarsening
procedure. On the right of Figure 9 is the convergence history plot for the 2d example. The
top curves there depicts the error reductions given by the Lloyd iteration, while the graphs
below correspond to the convergence of the multigrid scheme for various problem sizes. We see
that that even though our theoretical results are only proved in 1d here, it is clear that they
remain valid in the higher dimensional implementations.

1
0.9f 4 . . . . .
=
0.8F 107 .
+ 2 ,
0.7f 2 3 M
= : + ¥
0.6 2 107 2 + :
< ; + i
0.5¢ 8 +
= Q
0.4f | + k=49 o
107 » k=205 < FS >
0.3 x k=961
O k=3969
0.2F ® Lloyd
10’5 i i i
01 . . . . . 1 2 3 4 5 6
0 500 1000 1500 2000 2500 number of cycles

Figure 9. Left: Convergence factors of a compatible relaxation against the number of generators. Right:
convergence history for the multigrid scheme compared to the Lloyd scheme (top curve).

5. Conclusion

In this paper, several methods are proposed for accelerating the convergence of the classical
Lloyd iteration commonly used in the context of quantization and in the construction of
centroidal Voronoi tessellations. The coupling of the Lloyd method with a Newton-like iteration
is introduced and studied both analytically and numerically. Some possible extensions that
use multilevel techniques to accelerate the convergence of the CVTs are suggested and their
implementations demonstrate enhancement of both the robustness and the efficiency of the
original algorithm. One of the extensions uses algebraic multigrid solver as a preconditioner
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to accelerate the solution of the linear system at every Newton iteration, while the other
adopts a novel energy based nonlinear multigrid approach with the use of a dynamic nonlinear
preconditioning. Some analysis of the convergence properties and numerical experiments for
these methods are carried out, with the more in-depth studies of the new algorithms as well
as various application problems left to the future works.
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