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a b s t r a c t

A new unified approach to Gibbs energy minimization is introduced. While it has only been tested on
binary and ternary systems so far, it has a built in capability of handling arbitrary multicomponent
multiphase systems with any number of sublattices, miscibility gaps, order–disorder transitions, and
magnetic contributions. This new unified AMPL set-based Gibbs energy description optimizes the data
representation and makes it possible to subject the task of phase diagram calculation to numerous
existing general purpose optimization strategies as well as custom-made solvers. The approach is tested
on a variety of systems, including Co–Mo, Al–Pt and Ca–Li–Na, all known to be computationally
challenging for other approaches. In most of the tested systems, the AMPL code reproduces phase
diagrams obtained via Thermo-Calc. In other systems, in-depth comparison of results suggests that in
prior work a sub-optimal equilibrium might have been identified as a global one, and re-evaluation of
previously published diagrams and databases might be necessary.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The last few decades have seen substantial development of
algorithms and software for phase diagram calculations. These
specialized software packages provide much needed functionality
and capabilities for handling complex material systems. At the
same time, the existing software packages for phase diagram
calculation often rely on user input of initial conditions for
convergence, and require special handling when it comes to
formulations involving miscibility gaps and sublattices [1,2].
A number of remedies have been proposed in recent years, some
of which have been quite successful at reducing the risks of
running into suboptimal solutions, often with a steep cost pre-
mium [3,4]. Here a completely new methodology is proposed that
allows a user to tackle these issues with the efficient use of the
state-of-the-art constrained optimization algorithms that utilize
the generalized form of the Gibbs energy minimization problem.

This paper introduces a novel, set-based energy formulation,
equivalent to the traditional one, yet possessing a number of
advantages in automation and flexibility. The new formulation
allows the treatment of any multicomponent multiphase system
involving an arbitrary number of sublattices, order–disorder
transitions, and magnetic terms by means of a single formula.
Automated miscibility gap detection is also achieved with no need

for additional sampling as implemented by other existing meth-
odologies [3,4].

The set-based approach serves as a bridge between Thermo-
Calc-type databases and cutting edge optimization technologies
which have become available in recent years. The approach allows
the use of AMPL (a Modeling Language for Mathematical Program-
ming) [5], a low-cost software environment which exposes the
problem to a wide variety of general purpose optimization solvers
as well as custom implementations taking advantage of the
structure of the CALPHAD problem. This black box approach has
the potential to reduce or eliminate the need for expert knowl-
edge, enabling a simple and straightforward phase diagram
evaluation interface for specialists and non-specialists alike.

In order to produce an AMPL compatible system description
from a traditional database (TDB file), a system-independent
converter was developed to extract all phase data from a TDB
and feed it into the main AMPL model. This is not the first
adaptation of Thermo-Calc data for further processing within a
separate software module, or introduction of a framework capable
of computing phase diagrams from Thermo-Calc-type descrip-
tions. Notable existing work inspiring this effort includes the ESPEI
infrastructure [6], OpenCalphad initiative [7], and the Gibbs
module [8].

ESPEI is a self-optimizing phase equilibrium software package,
which integrates databases (crystallographic, phase equilibrium,
thermochemical, and modeled Gibbs energy data, etc) and data-
base development (automation of thermodynamic modeling) with
GUI (graphical user interface) designed mainly using Microsoft C#
and SQL (structured query language). The data is stored in a matrix
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format specific to ESPEI and allows for automation of database
development [6]. OpenCalphad is an open-source code for per-
forming thermodynamic calculations using the Calphad approach.
The code implements several different thermodynamic models
which allow the description of thermodynamic state functions,
such as the Gibbs energy, as a function of temperature, pressure
and composition [7]. Finally, Gibbs module is a tool hosted by
nanoHUB [9] that enables rapid prototyping, validation, and
comparison of thermodynamic models to describe the equilibrium
between multiple phases for binary systems [8].

The approach presented herein complements these efforts and
is not meant to introduce yet another solver, or compete with
existing packages in terms of speed. It is designed as a research
tool allowing scrutiny of phase diagram calculation from a differ-
ent viewpoint, making it possible to subject the problem to
numerous existing general purpose optimization strategies as well
as custom-made solvers, revealing similarities and differences
between resulting phase diagrams. As seen in Section 6 below,
preliminary benchmarking tests suggest that this methodology
can lead to some interesting observations when it comes to
systematic analysis of phase diagrams obtained by other methods.
In particular, new insights into phase stability were obtained by
applying the new methodology to several multicomponent test
systems containing miscibility gaps, multiple sublattices, and
order–disorder transitions. The AMPL based approach precisely
mirrored the Thermo-Calc phase diagram for the Co–Mo system,
however for the Al–Pt case a lower Gibbs energy associated with a
different phase combination was found than that reported by
Thermo-Calc using the default settings. Similar findings have been
reported earlier, e.g., in [10] for the systems Si–Tb, Al–Nb, Co–Si,
and others. While elucidating the source of these discrepancies is
outside of the scope of current work, the comparative analysis
presented in Section 6 gives evidence to certain inconsistencies in
the treatment of Gibbs energies that might warrant further
investigation.

The information flow is depicted graphically in Fig. 1. The
converter, model, and mapper are “black box” codes which do not
depend on the system being investigated. The converter is written
in Java, while the model and mapper are implemented in the
AMPL modeling language. The model is a description of the
problem for any system, completely independent of the number
and choice of elements or species. It is described in detail in
Sections 3 and 4.

Given a TDB file for a system, the converter generates data and
parameter files in the AMPL modeling language. The mapper is an
AMPL script which reads the model and data and writes out phase
information by temperature and composition. This output consti-
tutes the data for a phase diagram, which is converted (for this
paper using MATLAB) into a graphical phase diagram.

The paper is organized as follows. A short description of the
AMPL environment is given in Section 2. The standard problem
formulation given in Section 3 is followed by the description of the
novel set-based formulation in Section 4, with the discussion on
the handling of the miscibility gap given in Section 4.6. The details
of the use of the novel formulation for the automation of phase
diagram calculation are provided in Section 5. Results of numerical
tests are shown in Section 6, followed by discussion.

2. AMPL environment

AMPL is a modeling language and software package providing a
unified front-end for an extremely wide variety of solvers, such as
LOQO [11], MINOS [12], and SNOPT [13], among others [5,14]. The
user can describe the model and separately provide the data,
making reuse of the model for alternative systems straightforward.
AMPL easily handles any combination of linear and nonlinear
objective functions and constraints, and selection of the best
solver is left to the user. The “student” version of AMPL with
limitations on the number of variables and constraints is freely
available online, and a professional version is available for a
modest fee. For academic use there are free online services where
a job can be submitted with no restriction on size, and the result is
returned via email. Many of the most powerful solvers are freely
available online. A robust set of documentation is available, and a
widespread group of users and AMPL developers actively discuss
challenges and advance the state of the art.

In the AMPL modeling language, data is primarily set-based
with native commands for set operations on scalars, textual values,
and tuples of arbitrary length. Summation, multiplication, and
other operations with sets as indices are natural. Set and para-
meter values may be explicitly defined in the data, or be trans-
parently computed according to their definition in the model
when the data is read or updated. It has to be noted that set-
based formulation has advantages over other structures tradition-
ally used to store data (e.g. vectors or matrices) due to its flexibility
in defining the number and the names of set components. The
space is automatically preallocated. The only task left to a user is
providing the sets and parameters defined on those sets and then
the model will automatically generate the Gibbs energies and the
constraints based on this information.

3. Formulation of Gibbs energy minimization problem

First recall the standard Gibbs energy minimization problem
formulation [15–17]:

min
f ;y

G¼∑
p
f ðpÞGðpÞðyÞ

0r f ðpÞr1 for each phase p

0r xðpÞe r1 for each phase� species pair ðp; eÞ
0r yðpÞs;e r1 for each phase� species� sublattice triplet ðp; e; sÞ
∑
e
yðpÞs;e ¼ 1; for each phase� sublattice pair ðp; sÞ

∑
p
f ðpÞxðpÞe ¼ f 0e ; for each species e; such that ∑

e
f 0e ¼ 1

9>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>;

ð1Þ

Here xðpÞe indicates the mole fraction of species e within the

phase, yðpÞs;e is the site fraction of species e in sublattice s within the

phase, aðpÞs is the site ratio of sublattice s in the phase, and f ðpÞ

indicates the mole fraction of the phase in the overall composition.
Similar to [15], rather than being the subject of a constraint, xe is
defined as a function of ys;e in the present implementation:

xðpÞe ≔
∑sa

ðpÞ
s yðpÞs;e

∑caVa∑sa
ðpÞ
s yðpÞs;c

: ð2Þ

This reduces the number of variables and constraints, and for the
solvers tested it results in a modest speed improvement.

The overall number of variables and constraints in this problem
depends entirely on the system being examined. The smallest
system potentially of interest would have two species and two
phases each with a single sublattice, hence six variables and aFig. 1. Data flow.
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dozen constraints. The largest system examined in this manuscript
had three species and twelve phases, resulting in 33 variables and
18 constraints. However, optimization techniques used in our tests
and other tools available in AMPL are capable of handing sig-
nificantly larger systems, so many realistic systems are well within
the reach of the methods discussed herein.

Traditionally, the Gibbs energy for each phase GðpÞ can belong to
several classes depending on whether it has sublattices, what type
of species interactions are allowed within each sublattice, whether
it has an order–disorder transition, etc. The standard formulation
is hence strongly parameter dependent. This paper proposes two
improvements to the way the problem is set up and solved:
(a) generalized Gibbs energy formulation; and (b) a straightfor-
ward way to handle miscibility gaps. The goal for the development
of a new methodology is to completely automate the task of
setting up and accurately solving problem (1).

4. A different look at Gibbs energy minimization

4.1. Motivation

An example of applying the proposed set-based paradigm to
modeling the excess energy via Redlich–Kister polynomials [18]
motivates the development of the model. Consider the case of a
phase having a single sublattice, where the standard form for
excess energy xsGΦ

m is given by [15,19]

∑
i
∑
j4 i

xixj∑
k

kLΦi;j ðxi�xjÞk: ð3Þ

By relabeling the kL as kG terms, formally replacing x by y and
moving the inner sum to the outside, (3) may be equivalently
written as

∑
k
∑
i
∑
j4 i

kGi;jyiyjðyi�yjÞk: ð4Þ

Note that in this motivating discussion we are only concerned with
the excess energy term, so conversions between x and y are purely
formal and do not involve the use of (2). Site ratios of sublattices
will naturally appear in the full energy formulation developed in
Section 4.2.

In the case of a four sublattice compounds with first order
constituent arrays, i.e., mixing between two species in exactly one
sublattice that may be represented as (A,B):C:D:E in standard
shorthand notation [15], the formula for the excess energy can be
written

∑
s
∑
i
∑
j4 i

∑
l
∑
m
∑
n
ys;iys;jyr;lyt;myu;n ∑

k

kLi;j:l:m:nðys;i�ys;jÞk: ð5Þ

Here kLi;j:l:m:n are the kth degree binary interaction (Redlich–Kister)
coefficients. Following the notation (A,B):C:D:E given above, the
indices i, j correspond to the elements A,B interacting on the first
sublattice, and indices m, n stand for the elements C and D
respectively.

By relabeling the kL as kG terms, replacing x with y, and moving
the inner sum to the outside, (5) may be equivalently written as

∑
k
∑
s
∑
i
∑
j4 i

∑
l
∑
m
∑
n

kGi;j:l:m:nys;iys;jyr;lyt;myu;nðys;i�ys;jÞk: ð6Þ

For second order constituent arrays, e.g., mixing at two sublattices
simultaneously, two additional summations would enter the
formula. Other models require more or fewer summations.

It is important to note that with the proper definition of G and
y, (4) is identical to (3) and (5) is identical to (6).

Using a set-based approach with proper indices and index sets,
(4) and (6) can be fully generalized as follows:

∑
ðσ;νÞ

νGσ ∏
ðs;eÞ

ys;e

" #
∑

ðsm ;e0 ;e1Þ
ðysm ;e0 �ysm ;e1 Þν

" #
: ð7Þ

The constituent array of a compound, introduced in [20], here
denoted by σ, indicates which species may be present at which
sublattices, and is paired with mixing order ν. In (7), σ ranges over
the same constituent arrays as i, j, etc., and ν represents all
possible orders similar to the k index in (3)–(6). The tuple (s,e)
defines the sublattice-species pair and depends on to the consti-
tuent array σ; while the pairing ðsm; e0; e1Þ reflects the sublattice
and species of mixing.

The essential difference between (3) or (5) and (7) is that (3) or
(5) can only be used to model a particular fixed number of
sublattices and mixing sites, while (7) needs no modification
when used with varying sublattices and additional mixing sites.
The following subsections elaborate the set based formulation, and
the inclusion of order–disorder and magnetic contributions,
resulting in the most general energy formula given in equations
(8) and (28).

4.2. Set based energy formulation

The details of the new set-based energy formulation are now
introduced. The following notation is used throughout the discus-
sion: p denotes a particular phase, e indicates a species, and e0; e1
denote species in mixing. σ indicates a particular constituent array,
s is a sublattice, sm indicates the sublattice where mixing is
occurring with ν being the order of mixing in the Redlich–Kister
model (if there is no mixing then ν is zero). νGðpÞ

σ is the Gibbs
coefficient for phase p, constituent array σ, and mixing order ν.

Using the correct index sets allows a single formula to accom-
modate any number of sublattices and any number of mixing sites
per compound. The necessary index sets are discussed in detail
further below, but the energy term without disorder or magnetic
contribution can now be written. It is distinguished from the
complete energy term GðpÞ and other similar terms by a subscript ⋆,

GðpÞ
⋆ ¼ ∑

ðσ;νÞA SðpÞ

νGðpÞ
σ ∏

ðs;eÞAT ðpÞ
σ;ν

yðpÞs;e

2
4

3
5 ∑
ðsm ;e0 ;e1ÞAXðpÞ

σ;ν

ðyðpÞsm ;e0 �yðpÞsm ;e1 Þ
ν

8<
:

9=
;

�RT ∑
ðs;eÞAT ðpÞ

aðpÞs yðpÞs;e ln yðpÞs;e

� �
: ð8Þ

The sums are over all indices existing in the original data file,
working from the outer to the inner sum and product. The first
sum is over each constituent array and mixing order pair ðσ;νÞ
which exists in the data for phase p. Then the product is over each
sublattice and species pair (s,e) which exist in the data for that
ðp;σ;νÞ. In most cases ν is zero, except in first or higher order
Redlich–Kister terms, where the final sum is over all mixing site
and pair of mixing species ðsm; e0; e1Þ which exist for ðp;ν;σÞ. The
term ∏s;ey

ðpÞ
s;e expands into a product of y values for sublattices s

and species e. In the presence of mixing in sublattice sm between
species e0 and e1 the Redlich–Kister term is

∏
s;e
yðpÞs;e

" #
∑

sm ;e0 ;e1
ðyðpÞsm ;e0 �yðpÞsm ;e1 Þ

ν: ð9Þ

In the case of a single mixed sublattice, the sum is over a single
tuple. In a compound with no mixing the sum is empty (see (5.65)
in [15]).

When multiplying other terms, both the sum and product over
the empty set equal one: 1 �∑∅ � ¼ 1, and 1 �∏∅ � ¼ 1. Similarly,
when adding the sum or product over the empty set they
are zero: 0þ∑∅ � ¼ 0. Hence in the case of no mixing, the sum

J. Snider et al. / CALPHAD: Computer Coupling of Phase Diagrams and Thermochemistry 48 (2015) 18–2620



is empty and

νGðpÞ
σ ∏

s;e
yðpÞs;e

" #
∑

sm ;e0 ;e1
ðyðpÞsm ;e0 �yðpÞsm ;e1 Þ

ν ¼ νGðpÞ
σ ∏

s;e
yðpÞs;e

" #
: ð10Þ

(see (5.67) and (5.70) in [15]).
The energy for a phase will be a sum of terms like (9) with their

respective coefficients νGðpÞ
σ , plus the entropy term. In [15] the

coefficients are in the deepest part of the sum denoted by νLij;
below they are pulled out front as νGðpÞ

σ so that one unified set of
coefficients applies to mixing and non-mixing conditions equally.
Each νGðpÞ

σ coincides with a particular constituent array σ and
mixing order ν.

The entropy sum

�RT ∑
ðs;eÞ

aðpÞs yðpÞs;e ln yðpÞs;e

� �
; ð11Þ

is over all existing (s,e) pairs for that phase p.

Example 1. A simple two sublattice phase; p≔ Al3Pt2.
In the Al–Pt binary system, consider the phase which is the

stoichiometric compound p≔ Al3Pt2, where the sole constituent
array Al:Pt is modeled with two sublattices having site ratios
aðpÞ1 ¼ 0:6 and aðpÞ2 ¼ 0:4. In this case the only ðσ;νÞ pair is ðAl : Pt;0Þ.
For this ðσ;νÞ pair the (s,e) pairs are (1,Al) and (2,Pt). Since there is
no mixing, the set of ðsm; e0; e1Þ tuples is empty, and the empty
product is taken to be 1. There is only one term in the outer sum,
σ ¼ Al : Pt, ν¼0, hence for this phase

GðpÞ
⋆ ¼ 0GðpÞ

Al:Pty
ðpÞ
1;Aly

ðpÞ
2;Pt

�RT aðpÞ1 yðpÞ1;Al ln yðpÞ1;AlþaðpÞ2 yðpÞ2;Pt ln yðpÞ2;Pt

� �
ð12Þ

Note that the coefficient 0GðpÞ
Al:Pt with a preceding zero is distinct

from the pure energy term ○GðpÞ
Al:Pt in the literature. The zero is

superfluous in a context with no higher order mixing, but included
here for completeness.

4.3. Index sets

Index sets are used in the sums and products in (8), where
some sets are themselves indexed by other sets. Define P to be the
set of all phases p in the system, and E the set of all species e in the
system. Set SðpÞ lists as tuples ðσ;νÞ all constituent arrays σ in phase
p with all corresponding mixing orders ν. E.g., if a particular
constituent array σ has mixing of orders 0, 1, and 2, then SðpÞ will
contain ðσ;0Þ, ðσ;1Þ, and ðσ;2Þ, perhaps among others.

For each constituent array and order ðσ;νÞ, each set T ðpÞ
σ;ν lists as

tuples (s,e) all sublattices s in the constituent array and the species
e which exist in the data file at that sublattice for that mixing
order; the set T ðpÞ lists all (s,e) pairs for the phase irrespective of
compound (it is the union of all T ðpÞ

σ;ν); and for each constituent
array and order ðσ;νÞ, each set XðpÞ

σ;ν contains all mixing sublattices
and the species which mix there ðsm; e1; e2Þ.

In other words,

constituent arrays of p SðpÞ � ðσ;νÞ∣ðσ;νÞ in p
� �

; ð13Þ

species sites of σ T ðpÞ
σ;ν � ðs; eÞ∣ðs; eÞ in σ

� �
; ð14Þ

species sites of p T ðpÞ � ⋃
ðσ;νÞA SðpÞ

T ðpÞ
σ;ν; ð15Þ

mixing sites of σ XðpÞ
σ;ν � ðsm; e0; e1Þ∣ðsm; e0; e1Þ in σ

� �
: ð16Þ

Example 2. A simple phase with multiple compounds; p≔ Laves.
In the Ni-Al system the C14_LAVES phase comprises the four

constituent arrays Al:Al, Al:Ni, Ni:Al, Ni:Ni, and has no mixing

compounds. The set of ðσ;νÞ pairs is SðpÞ ¼ ðAl:Al;0Þ;�
ðAl:Ni;0Þ; ðNi:Al;0Þ; ðNi:Ni;0Þg. For ðAl:Al;0Þ the set of (s,e) pairs is
T ðpÞ
Al:Al;0 ¼ ð1;AlÞ; ð2;AlÞ� �

, for ðAl:Ni;0Þ the (s,e) pairs are ð1;AlÞ and
ð2;NiÞ, and so on for the other constituent arrays. Since there is no
mixing, all the sets XðpÞ

σ;ν are empty. The empty product is taken to
be 1, and there are four terms in the outer sum, so

GðpÞ
⋆ ¼ 0GðpÞ

Al:Aly
ðpÞ
1;Aly

ðpÞ
2;Alþ0GðpÞ

Al:Niy
ðpÞ
1;Aly

ðpÞ
2;Ni

þ0GðpÞ
Ni:Aly

ðpÞ
1;Niy

ðpÞ
2;Alþ0GðpÞ

Ni:Niy
ðpÞ
1;Niy

ðpÞ
2;Ni

�RT aðpÞ1 yðpÞ1;Al ln yðpÞ1;AlþaðpÞ1 yðpÞ1;Ni ln yðpÞ1;Ni

�
þaðpÞ2 yðpÞ2;Al ln yðpÞ2;AlþaðpÞ2 yðpÞ2;Ni ln yðpÞ2;Ni

�
: ð17Þ

Example 3. A simple phase with mixing; p≔ liquid In the
Co–Mo system, the liquid phase is modeled with first order
mixing and comprises the three constituent arrays Co, Mo, and Co,
Mo. The set of ðσ;νÞ pairs is SðpÞ ¼ ðCo;0Þ; ðMo;0Þ; ðCo;Mo;0Þ;�
ðCo;Mo;1Þg. The two sets of (s,e) pairs are identical: T ðpÞ

Co;Mo;0 ¼
T ðpÞ
Co;Mo;1 ¼ ð1;CoÞ; ð1;MoÞ� �

. The two sets of ðsm; e0; e1Þ tuples are

again identical: XðpÞ
Co;Mo;0 ¼ XðpÞ

Co;Mo;1 ¼ ð1;Co;MoÞ� �
. There are four

terms in the outer sum, so

GðpÞ
⋆ ¼ 0GðpÞ

Coy
ðpÞ
1;Coþ0GðpÞ

Moy
ðpÞ
1;Mo

þ0GðpÞ
Co;Moy

ðpÞ
1;Coy

ðpÞ
1;Moþ1GðpÞ

Co;Moy
ðpÞ
1;Coy

ðpÞ
1;Mo yðpÞ1;Co�yðpÞ1;Mo

� �
�RT aðpÞ1 yðpÞ1;Co ln yðpÞ1;CoþaðpÞ1 yðpÞ1;Mo ln yðpÞ1;Mo

� �
: ð18Þ

4.4. Disordered contribution

The general formula for GðpÞ
⋆ ðyðpÞÞ defined in (8) is used for

modeling order–disorder transition:

GðpÞ ¼ GðpÞ
disðxðpÞÞþGðpÞ

ordðyðpÞÞ�GðpÞ
ordðyðpÞ ¼ xðpÞÞ; ð19Þ

see (5.144) and (5.145) from [15].

First, GðpÞ
ordðyðpÞÞ ¼ GðpÞ

⋆ ðyðpÞÞ; so the above expression for GðpÞ
⋆ ðyðpÞÞ

can be used “as is” for the middle term in (19).

Second, replacing yðpÞs;e with xðpÞe throughout GðpÞ
⋆ ðyðpÞÞ creates

GðpÞ
ordðyðpÞ ¼ xðpÞÞ in (19).
Finally, if ordered phase p has a disordered contribution from

phase ~p, then replacing the index sets from those that correspond

to p with those corresponding to ~p (as elaborated below) and yðpÞs;e

with xðpÞe throughout Gð ~pÞ
⋆ ðyðpÞÞ creates GðpÞ

disðxðpÞÞ in (19).
Thus a “disordered contribution” is defined, analogous but

complimentary to the “ordered contribution” in [15],

ΔGðpÞ≔GðpÞ
disðxðpÞÞ�GðpÞ

ordðyðpÞ ¼ xðpÞÞ: ð20Þ
Using this to update (19),

GðpÞ ¼ GðpÞ
⋆ þΔGðpÞ ð21Þ

More rigorously, consider the following expression using q as a
dummy variable:

GðpÞ
ðqÞ ¼ ∑

ðσ;νÞA SðqÞ

νGðpÞ
σ ∏

ðs;eÞAT ðqÞ
σ;ν

xðpÞe

2
4

3
5 ∑
ðsm ;e0 ;e1ÞAXðqÞ

σ;ν

ðxðpÞe0 �xðpÞe1 Þ
ν

8<
:

9=
;

�RT ∑
ðs;eÞAT ðqÞ

aðqÞs xðpÞe ln xðpÞe

� �
: ð22Þ

The above formula is the modification of GðpÞ
⋆ ðyðpÞÞ, where p is

the phase under consideration, q is the phase providing index sets
and coefficients, and yðpÞs;e is replaced with xðpÞe . Note carefully the
placement of q in the sets SðqÞ, T ðqÞ, T ðqÞ

σ;ν, and XðqÞ
σ;ν, in contrast with

p in the coefficients νGðpÞ
σ , and the replacement of yðpÞ variables

with xðpÞ.

J. Snider et al. / CALPHAD: Computer Coupling of Phase Diagrams and Thermochemistry 48 (2015) 18–26 21



Now the first and the third terms in (19) using GðpÞ
ðqÞ can be

expressed as follows

GðpÞ
dis ¼ GðpÞ

ð ~pÞ; ð23Þ

GðpÞ
ordðyðpÞ ¼ xðpÞÞ ¼ GðpÞ

ðpÞ: ð24Þ

To specify the phases with disordered contributions, a set D is
introduced which indicates all disordered contributions in the
system by pairs ðp; ~pÞ. Using set notation, for a phase p this may be
written as

DðpÞ ¼ fðq; ~qÞAD ∣ q¼ pg: ð25Þ
In all systems and for all phases p the set DðpÞ will contain zero or
one pair ðp; ~pÞ. This generic set based formulation allows summa-
tion over zero or one pairs to act as an “if” condition,

ΔGðpÞ≔GðpÞ
dis�GðpÞ

ordðyðpÞ ¼ xðpÞÞ ¼ ∑
ðp; ~pÞADðpÞ

GðpÞ
ð ~pÞ �GðpÞ

ðpÞ: ð26Þ

A phase p receiving no disordered contribution does not appear in
the left hand side of any tuple in D, and in this case DðpÞ ¼∅, and
the sum over the empty set is zero. Hence the disordered
contribution received by such a phase is automatically zero:
ΔGðpÞ ¼ 0, giving

GðpÞ ¼ GðpÞ
ordðyðpÞÞ ¼ GðpÞ

⋆ ðyðpÞÞ:

Example 4. Al–Pt B2 with a disordered contribution from bcc.
In the Al–Pt system the two-sublattice ordered B2 phase is

present and receives a disordered contribution from bcc with first
order mixing.

The energy equation is

GðB2Þ ¼ GðB2Þ
⋆ ðyðB2ÞÞþGðB2Þ

dis ðxðB2ÞÞ�GðB2Þ
ord ðy¼ xðB2ÞÞ

¼ GðB2Þ
⋆ ðyðB2ÞÞþGðB2Þ

ðbccÞðxðB2ÞÞ�GðB2Þ
ðB2Þðy¼ xðB2ÞÞ:

For a disordered phase such as bcc, because there is only one
sublattice and no disordered contribution, without considering a
magnetic contribution, thus

GðbccÞ ¼ GðbccÞ
⋆ ¼ GðbccÞ

dis ðxðbccÞÞ ¼ GðbccÞ
dis ðyðbccÞÞ ¼ GðbccÞ

ðbccÞðyðbccÞÞ:

4.5. Magnetic contribution and complete formulation

The model for magnetic contribution used here is given in full
generality in [21], and applied, e.g., in [16] for Co–Mo using
specific calculated values,

GðpÞ
mag ¼ RT lnðβðpÞ þ1ÞgðτÞ: ð27Þ

See [21] for detail on β, gð�Þ, and τ. The older Inden–Hillert–Jarl
model is easily implemented as well, but not compared here.

Including the disordered and magnetic contribution as defined
above, the complete formula is

GðpÞ ¼ GðpÞ
⋆ þΔGðpÞ þGðpÞ

mag: ð28Þ
where GðpÞ

⋆ is defined in (8), and ΔGðpÞ in (26).
Using the modeled Gibbs energy for each phase GðpÞ, the total

Gibbs energy function to be minimized is

G¼ ∑
pAP

GðpÞf ðpÞ; ð29Þ

where f ðpÞ indicates the mole fraction of the phase in the overall
composition.

4.6. Miscibility gap handling

The algorithm automatically creates n instances for each of
the phases in any n-component system to handle miscibility gaps.

For any binary system, the proposed formulation includes two
instances for each of the existing phases, so that in the presence of
a miscibility gap each is assigned a different phase fraction f and a
different equilibrium composition x. Where no miscibility gap is
present, the two instances will correspond to the same solution x,
or one f will be zero. According to the results of several bench-
marking tests run on binary and ternary systems, this simple idea
allows for detection of miscibility gaps without a significant
increase in computational complexity since the number of vari-
ables in the resulting optimization problem is small. Naturally,
there is an added cost associated with this approach when it is
applied to higher-dimensional multicomponent systems, and its
advantage comparing to existing strategies ([4,3,22] etc) still needs
to be investigated.

5. Automating phase diagram calculation

5.1. AMPL model

As depicted in Fig. 1, given the TDB database file, the Java
converter produces the data and parameter files, which populate
the generic model with the required index sets and parameter
values in the AMPL syntax.

The mapper is run in AMPL, which uses the model file, the data
file, and sources the parameter file each time a new temperature
or pressure is to be examined. The mapper produces a database of
phase diagram information as a set of CSV files. The diagram is
then generated using any available graphical software package
(MATLAB was used for this work).

In AMPL, the model and data are separated into three files:
model, data and temperature/pressure dependent parameters. The
data and parameter files are generated by automatic data conver-
sion from a TDB file. A space sampling (mapping) script will read
the model and data only once, while the T and P dependent
parameters are read each time those values are adjusted. AMPL
then executes the model at each sample point, once for each set of
initial conditions to be tested. A variety of mapping scripts are
possible and each will assemble the results of the many tests into a
coherent image according to its purpose: a temperature/pressure
diagram, a fixed-temperature Gibbs triangle, etc.

Themodel has several parts: declaration of sets and parameters,
creation of necessary data structures, objective function, and
constraints. The model file is read first by AMPL to declare all sets
which will be encountered in the data file and how that data will
be built into additional data structures. For example, for each
phase the data file contains a list of all its possible sublattices. The
model file contains definitions of sets such as a list of all possible
constituent arrays in the model, and a list of all possible species at
a sublattice, both of which are built from the list of constituent
arrays in the data file.

The data file contains the essential minimum of information
from the TDB file, the remaining necessary data structures are
created by the model file from that minimum data. The data
structures in the data file are: (1) elements/species; (2) phases;
(3) sublattices and their order of mixing; (4) symmetries; (5) dis-
ordered contributions; (6) site ratios; (7) magnetic coefficients;
(8) multiplicity of phases (to cover miscibility gaps); and (9) para-
meters for each named formula in the TDB.

The temperature dependent parameter file has a format similar
to the TDB, with minimal sufficient alteration into AMPL syntax.
AMPL fixes the parameters with let statements which must be
called each time the temperature is changed. An equivalent for-
mulation would be to create equality constraints and rely on
the AMPL substout option to treat them as computed parameters.
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This type of implementation would eliminate the need to set the
parameters each time the temperature gets changed.

As mentioned in Section 3, in the presence of a miscibility gap
the lowest energy phase is nonconvex, but this methodology
allows multiple instances of a phase to be present in the sum for
the objective function and span the nonconvex region, thus
finding the true minimal energy. In this way miscibility gaps are
automatically detected, without expert intervention.

5.2. Mapper

As a proof-of-concept algorithm for “mapping” a phase dia-
gram, each temperature is evaluated independently of other
temperatures. A minimal version of the algorithm is presented in
pseudocode in Fig. 2. Many additional refinements are desirable,
but not discussed in this paper.

To solve optimization problem (1) formulated in AMPL, two
existing optimization codes were used: MINOS and SNOPT. MINOS
implements a linearly constrained Lagrangian algorithm [12] while
SNOPT uses Sequential Quadratic Programming [13] to solve a
general nonlinear optimization problem [23]. The AMPL model
loops over different mole fractions as well as temperatures within
some range with a selected step size and calls both MINOS and
SNOPT to solve (1) and to build a phase diagram. In most of runs
both SNOPT and MINOS return the same solution, while occasion-
ally one of them may find a local minimum. Using this hybrid
scheme serves as safeguard and improves the likelihood of finding
the global minimum. In the next section, detailed analysis of the
computational results produced by this method are presented.

5.3. Converter

The converter handles parsing a Thermo-Calc [24] TDB data-
base [25] into the necessary AMPL data format. Fig. 1 depicts the
information flow, and the components of the process.

The converter is written in Java for maximum portability
between systems and relative ease of maintenance by a diverse
body of researchers. A full description of the converter is not
relevant to this paper, however for clarity it must be noted that
each PARAMETER statement in the TDB defines an energy function

for a particular phase, constituent array, and mixing order. The
PARAMETER statements collectively determine which species can
be in which sublattices for that phase with that mixing order. The
converter is able to handle wildcard notation used in Thermo-Calc
databases. In particular, it is able to detect symmetry in binary
interaction coefficients and correctly assign same parameter to
multiple mixing order pairs in the AMPL description.

6. Numerical tests

Example systems with varying features have been examined to
ensure the phase diagrams calculated using the “push-button”
approach made possible by the new unified AMPL-based formula-
tion are in correspondence with the current state of the art.

Two binary systems and one ternary are examined, chosen for
their interesting thermodynamic features and for having been
recently studied in the literature.

6.1. Co–Mo binary system

The Co–Mo system has phases with one (bcc, fcc, liquid), two
(ϵ), three ðσ10;4;16Þ and four ðμ1;2;6;4Þ sublattices. It also features a
magnetic contribution and a miscibility gap as part of the fcc

description, as described in [16,26]. The phase diagram produced
by the present model appears in Fig. 3, compared against the
diagram given in [26].

The diagram shows good correlation between the result pro-
duced by this method and that in [26]. The “horn” at 1200 K,
0.05 Mo, is precisely aligned, as are all phases below the liquidus.
One discrepancy is that the AMPL model distinguishes different
types of μ phases and σ phases which are not distinguished by the
diagram in [26].

6.2. Al–Pt binary system

The Al–Pt system has phases with one (liquid, fcc), two (bcc,
B2) and four (L12) sublattices, it has order–disorder transition and
miscibility gaps in B2 and L12. fcc and bcc are disordered phases
contributing to L12 and B2 respectively. L12 has a miscibility gap.
The Al–Pt phase diagram produced by the present method appears
in Fig. 4, compared with the stable diagram produced by running
Thermo-Calc 4.0 (Mac version). The diagrams match precisely.

An interesting observation is that the diagram from [17] shows
a triangular B2 region, around 1600 K and composition 0.56,
which suggests existence of a stable B2 phase in that area. Using
the TDB file from [17], the present implementation finds a
different minimizer with B2 phase not taking part in the equili-
brium. Thermo-Calc produces the same region of L12 stability
instead of the B2 triangle if the global optimization option is
turned on, which is the default setting, but B2 shows up in a
wrong place in the left corner of the diagram. The two alternative
versions of stable Al–Pt diagram produced by Thermo-Calc with
otherwise identical settings are given in Fig. 5. The total Gibbs
energy produced by the AMPL code and by the global optimization
within Thermo-Calc is GM¼ �181473:96 (corresponding to the
existence of the L12 stability region), where as by forcing the B2

phase to be stable one obtains in a slightly higher value of the total
Gibbs energy of GM¼ �178278:65 according to the calculation
made in Thermo-Calc.

An energy diagram of the region in question appears in Fig. 6,
and a straight edge shows that the tangent between Al3Pt5 and
L12 lies below the energy curve of B2, justifying the result shown
in the diagram. The plot shows perfect agreement between
Thermo-Calc and AMPL models in terms of the Gibbs energies.

Fig. 2. Mapping algorithm for binary systems. Pðx; TÞ: the set of phases present at
composition x and temperature T . card(P) indicates the cardinality of P (always
1 or 2 in this idealized context). When there are two phases present, one has
composition xlower and the other xupper, where xlowerrxupper.
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Fig. 4. (Left) The Al–Pt phase diagram produced by the AMPL model (○) overlapped with the diagram from Thermo-Calc (� ). (Right) The Al–Pt diagram produced by
Thermo-Calc, where L12 phase is stable around xðPTÞ ¼ 0:56.

Fig. 5. The AlPt diagram produced by Thermo-Calc using: (left) global optimization on option; (right) global optimization off option, with same settings used
otherwise.
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Fig. 3. The Co–Mo phase diagram produced by the new AMPL model (○) overlapped with the diagram from [26](� ). (right). The Co–Mo phase diagram from [26].
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It demonstrates the fact that AMPL code automatically found a
lower minimum energy than the previous Thermo-Calc-based
calculation.

The discovery of such conflicting data highlights the value of
the present method. It allows scrutiny of earlier results obtained
using other types of minimization routines and does not require
careful choice of initial conditions to identify the correct minimum
energy and corresponding phases.

6.3. Ca–Li–Na ternary system

The single three-species system Ca–Li–Na is examined, chosen
for its challenging miscibility gap in the liquid phase. This system
was thermodynamically examined using Thermo-Calc in [19] and
later was subjected to automatization techniques in [4], where
adaptive sampling method was shown to successfully detect the

miscibility gap. Here same TDB description is used for testing the
ability of the AMPL model to handle ternary systems. Note that the
method of replicating each phase to detect miscibility gaps
described in Section 4.6 is used here without resorting to any
mesh adaptation, distinguishing it from the earlier approaches.

The Ca–Li–Na phase diagram produced by this method appears
in Fig. 7, with the diagram from [19] on top of it for comparison.
The diagrams match, which shows that the triple points and
liquidus are correctly detected, and that the miscibility gap has
been handled without any intervention from the user.

Note that all of these features are automatically handled in the
conversion and modeling process, and the calculated energy levels
and resulting diagram match the state-of-the-art Thermo-Calc
diagrams with the exception of several discrepancies mentioned
above.

7. Discussion

The result of this effort is an approach which solves a Gibbs
energy minimization problem using an existing Thermo-Calc
database without requiring expert input. One advantage of the
model is its flexibility. It enables a “push button” approach
requiring no input from the user, ideal for demo or student use.
For more experienced users it allows modification of the model
and the underlying solver, both readily accessible within the
framework. If the user is unaware of the presence of a miscibility
gap the result is still correctly produced. The novelty of this new
strategy lies in representing the objective function in a completely
system-independent way by means of a set-based formalism
compatible with state-of-the-art optimization tools. The con-
strained optimization formulation using this unified paradigm
also allows other important investigations such as finding the
stable phases at a certain composition or identifying the minimal
temperature with certain phase compositions, without changing
the model. The model is well suited for other types of calculations,
such as energy diagrams including energies of metastable phases;
the energy diagram in Fig. 6 is an example of using the model for
this purpose. The set based framework of global free energy
minimization is readily expandable to other energy models, e.g.,
Helmholtz free energy [27], and for the computation of other
thermodynamic quantities of interest, such as enthalpies, activities
etc. The built-in capability of AMPL to symbolically compute
partial derivatives is a big bonus for these types of calculations.
Further, it is natural to extend the use of this approach for
computing the cooling path or other dynamic properties of the
materials similarly to the way other software are being used in this
context, e.g., as described in [2].

Here three test systems were investigated, with the Co–Mo and
Ca–Li–Na systems performing as expected based on previously
known data, and Al–Pt exhibiting interesting deviations in the B2

region, which prompts further investigation. As discussed above, a
high sensitivity to the optimization method being chosen for
investigation is observed in the case of close-lying energies like
in the Al–Pt case, which suggests a re-evaluation of this and other
phase diagrams and databases using new tools might be necessary.
The availability of custom built solver options within this frame-
work opens a pathway for new algorithmic developments which
may help shed light on some of these issues. Different numerical
methods can be tested and compared. The tools developed herein
make identification of discrepancies in diagrams produced by
different codes easier. A significant advantage of this open source
methodology is that it separates the modeling and computational
aspects, allowing concentration on each of them independently.
The AMPL model developed in this paper due to its versatility
significantly reduces the modeling effort associated with Gibbs

Fig. 6. The Al–Pt Gibbs energy detail. Around xðPtÞ ¼ 0:56 the B2 energy curve
extends below the L12 energy curve. However the tangent between Al3Pt5 at
composition 0.625 and L12 near 0.5 lies below B2 at all points, so B2 does not
appear in the phase diagram near this temperature. Values obtained by Thermo-
Calc match those obtained via AMPL.

Fig. 7. The Ca–Li–Na phase diagram at 900 K, showing correct triple points and
miscibility gap, overlapped with the diagram from [19].
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energy formulation allowing to concentrate on computational
aspects.

The benefits of the AMPL approach outlined above come with
certain challenges. While AMPL has control structures such as for
loops and if statements, it has no scoping of variables (i.e., sets
and parameters are all global), nor function declaration in a
programmatic sense. The only approximation to a subroutine is
using the include statement to load a separate file from storage.
The much needed Integrated Development Environment for AMPL
was released earlier this year, too late for evaluation for this paper.
These limitations make the implementation of sophisticated
numerical algorithms difficult. However, as mentioned above, a
large database of numerical solvers available within AMPL makes
its use more straightforward.

It must be noted that there are multiple ways to sample points
in the composition-temperature space and record phase data to
create the diagram efficiently. This work has adhered to the
simplest sampling strategy to demonstrate the feasibility of the
present methodology. Optimal sampling schemes and their impact
on performance of this algorithm will be discussed elsewhere.

It is also worth mentioning that the solvers used in this work
may converge in theory to other stationary points such as saddles
or local maxima, while from practical consideration the likelihood
of that is near zero as all the used optimization methods employ
descent strategies. Such a scenario has never been observed in our
calculations. By testing various initial conditions the mapping
algorithm increases the likelihood that the global minimum is
identified. Employing global optimization strategies to ensure that
a global minimum is found is another promising future research
direction.

Future work will also include development of a graphical user
interface allowing switching between various tasks, extensions of
the framework to address other minimization problems such as
liquidus calculations, and development of a custom-built solver to
be used in conjunction with the AMPL model presented here.
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