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ABSTRACT: One of the most challenging aspects of the microstructural evolution
in polycrystalline materials is to understand the role of topological reconfigurations
during coarsening. In this paper, we study these critical events in a one-dimensional
grain-boundary system and a stochastic framework for modeling texture evolution.
The model is based on a master equation derived from numerically determined statis-
tical properties of the system.
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1 INTRODUCTION

Most technologically useful materials arise as polycrystalline microstructures, com-
posed of a myriad of small crystallites, termed grains, separated by interfaces, called
grain boundaries. The energetics and connectivity of the network of boundaries are
implicated in many properties across wide scales, for example, functional properties,
like conductivity in microprocessors, and lifetime properties, like fracture toughness
in structures.
A central problem is to engineer a microstructure to attain adesired set of material
characteristics. It likewise presents many challenges formathematical modeling, sim-
ulation, and analysis. Historical emphasis here has been onthe geometry, or more
exactly, on statistics of simple geometric features of experimental and simulated poly-
crystalline networks, like grain area. We are now turning our attention to texture,
the mesoscopic description of arrangement and properties of the network described in
terms of both crystallography and geometry.
In recent years, we have witnessed a changing paradigm in thematerials laboratory
with the introduction of automated data acquisition technologies. This has permitted
the collection of statistics on a vast scale and its use to optimize aspects of material
behavior. There are situations, for example, where it is possible to quantify the amount
of alignment or misalignment sufficient to produce a corrosion resistant microstruc-
ture [1]. To rise beyond this level of anecdotal observation, the thermodynamics of
the material system must be related to texture and texture related properties. Said in
a different way, are there any texture related distributions which are material proper-
ties? Some geometric features of the configuration, like relative area statistics have
these properties in the sense that they are robust but they are not strongly related to
energetics. Recent work has provided us with a new statistic, the grain boundary char-
acter distribution, which has enormous promise in this direction. The grain boundary
character distribution is a measure of relative amount of grain boundaries with a given
net misorientation. Owing to our new ability to simulate theevolution of large scale
systems, we have been able to show that this statistic is robust and, in elementary



cases, easily correlated to the grain boundary energy [2]—[4].
However, the mechanisms by which the robust distributions develop from an initial
population are not yet understood. As a polycrystalline configuration coarsens, facets
are interchanged, some grains grow larger, and other grainsdisappear. We refer to
these topological rearrangements as critical events. Suchcritical events contribute to
the evolution of both the relative area and the grain boundary character distribution
via the motion of the triple junctions, with low energy boundaries sweeping out those
with higher energy. Further, when triple junctions collide, new boundaries are created.
The regular evolution of the network of grain boundaries in two dimensions is gov-
erned by the Mullins equations of curvature-driven growth,supplemented by the Her-
ring condition of force balance at triple junctions—a systemof parabolic equations
with natural boundary conditions [5]–[9]. (For the higher dimensional formulation of
capillary driven growth, see [10].) A main feature, first observed in [9] is that the non-
linear system and boundary conditions satisfy complementing conditions [8]. When
applied to a single evolvingn−sided grain with constant grain boundary energy, this
mechanism leads to a Mullins-von Neumannn − 6 rule [11]—the rate of change of
the area of the grain is proportional ton − 6, i.e.,

dAn

dt
= γ(n − 6) whereAn is the area of ann-sided grain, (1)

andγ > 0 is some material constant (MacPherson and Srolovitz [6] have given, very
recently, higher dimensional generalizations of then − 6 rule). In particular, grains
with 3, 4 or 5 sides decrease in area. When averaged over a population of grains,
equation (1) results in

dĀn

dt
= γ(n − 6) whereĀn is the average area ofn-sided grains. (2)

Inspection of Fig. 1 shows that, contrary to (2), the averagearea of five-sided grains in
a columnar aluminum structure increases several fold over the course of an annealing
experiment. Then − 6-rule does not fail for the continuous changes of boundary po-
sitions, but most of the five-sided grains we observe at timet = 2 hours had6, 7, 8, ...
sides at some earlier timet < 2 hours. Thus in the network setting, the critical events
grain deletion and side interchange play a major role.
A significant difficulty in developing a theory of the grain boundary character dis-
tribution lies in the lack of understanding of these stochastic events associated with
coarsening. As a motivation for such theory consider the following, highly oversim-
plified example. Letαt be a stochastic process in which low energy “boundaries”
grow at the expense of those with higher energy and new boundaries are created and
disappear at random

dα = −γ′(α)dt + ǫdBt . (3)

Hereα represents the difference of “orientations” on either sideof the grain boundary,
γ(α) represents the “energy” of the boundary, andǫ is related to the rate at which the
new grain boundaries enter the system. The stationary distribution for α is given by
the Boltzmann-like expression

ρ(α) =
1

Z
e−

2γ(α)

ǫ2 ,

that can be found by solving the stationary Fokker-Planck equation for (3). Note that
the maxima of this distribution function correspond to the minima of the energy–this
is an essential feature of a grain boundary character distribution [2]-[4].
There are several stochastic approaches one might adopt to develop a more realistic
model of the grain boundary character distribution. A framework based on statistical
mechanics is adopted in [12], where we constructed a Boltzmann-type equation mod-
eling grain interaction that successfully reproduces simulation data on a long timescale
and has a good potential for generalization to higher dimensions.
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Figure 1: Average area of five-sided grains in anAl columnar structure.

In [13]-[14] we conjectured the fractional nature of the grain boundary kinetics and
proposed a unified approach to model it in terms of a fractional master equation. We
tested our theoretical ideas on the one-dimensional model by identifying the set of
stable statistics and confirming the subdiffusive nature ofthe underlying kinetics for a
prolonged transient regime exhibited by the system. Further, we demonstrated a rea-
sonable agreement between the statistics obtained by direct simulation and the solu-
tion of the generalized master equation developed through the continuous time random
walk (CTRW) theory.
Through our investigations, however, it became apparent that, while some stages of
the evolution of one-dimensional system can be described using the formalism of the
fractional CTRW theory, a complete understanding of the observed dynamics may
require a new, more general stochastic framework. The main difficulty here is that
which framework is appropriate is not known in advance and, in fact, it may not be
available altogether.
In order to either develop a new or to select an existing theory, the statistical char-
acteristics of the process need to be determined through an experiment. Given a de-
terministic mathematical model, the experiments can be conducted numerically with
an advantage over physical experiments being that a large number of trials can be
conducted in a relatively short time. Here we demonstrate the applicability of this
approach to grain boundary evolution by developing a stochastic model for the times
of grain boundary disappearance events. A generalization of our ideas to the entire
grain boundary kinetics is a subject of a forthcoming publication.
Our main goal is to determine the equation governing the evolution of the arrival
rate—probability that a critical event will be observed at a given time—based on nu-
merically determined statistical properties of a large deterministic system. We study
a simplified one-dimensional model (Section 2) that we introduced in [12] exhibiting
the main features of the interacting grain boundary network. In particular, the model
incorporates boundaries and junctions between boundariesmoving under a form of
gradient flow.
In Section 4 we develop a generalized arrivals master equation for independent, but not
identically distributed time increments. We show that the independence assumption
holds for the model one-dimensional system and find the probability density functions
(pdfs) for waiting times between critical events. The waiting times are not identically
distributed but rather are time-dependent scalings of an exponential distribution; this



reflects the fact that the coarsening process slows down withtime.
The arrival times master equation can be explicitly solved for the model system (Sec-
tion 5) and we have found that arrival rates obtained both analytically and via the
numerical experiment are in a close agreement. The form of the pdfs for waiting
times suggests that, initially, the arrival rate corresponds to a stationary Poisson pro-
cess while it can be approximated by a solution of a fractional ODE at later times.

2 SIMPLIFIED MODEL

Here we report on a model which emphasizes the role of critical events. For a precise
description, fixL > 0 and consider the intervals[xi, xi+1], i = 0, . . . , n − 1 on the
real line wherexi ≤ xi+1, i = 0, . . . , n − 1 andxn = x0 + L. The locations of
the endpointsxi, i = 0, . . . , n may vary in time and the total lengthL of all intervals
remains fixed. For each interval[xi, xi+1], i = 0, . . . , n−1, choose a numberαi from
the set{αj}j=1,...,n. The intervals[xi, xi+1] correspond to grain boundaries and the
pointsxi represent to the triple junctions. The parameters{αi}i=1,...,n can be viewed
as representing crystallographic orientations. The length of theith grain boundary is
given byli = xi+1 − xi.
For a non-negative energy densityγ(α), we define the energy

E(t) =
∑

γ(αi)(xi+1(t) − xi(t)) (4)

and consider gradient flow dynamics characterized by the system of ordinary differ-
ential equations

ẋi = γ(αi) − γ(αi−1), i = 1, . . . , n. (5)

An important feature of the thermodynamics of grain growth is that it is dissipative
for the energy during normal grain growth. The dynamics (5) has this property [13].
The parameterαi is randomly prescribed for each grain boundary and does not change
during its lifetime. The velocities of the grain boundariescan be computed from the
relation

vi = ẋi+1 − ẋi = γ(αi+1) + γ(αi−1) − 2γ(αi) (6)

Note that the velocities in the system remain constant between critical events corre-
sponding to disappearances of individual grain boundaries. Every such critical event
changes the statistical state of the model through its effect on the grain boundary ve-
locities and therefore affects further evolution of the grains.

3 STOCHASTIC PROPERTIES OF THE SYSTEM

The first step toward a mesoscopic model is the identificationof stable statistics. The
stable statistics determined from numerical experiments for a system of grain bound-
aries can be found in [13]. In particular, the analog of the grain boundary character
approaches a stable distribution related to the energeticsof the system (Fig. 2).
Our goal in this paper is to describe the dynamics of criticalevents by understanding
the stochastic properties of waiting times between these events. Fig. 4 shows typical
distributions for waiting times. Note that, although the waiting times are close to being
exponentially distributed, their means increase with time.
In what follows, we sometimes refer to each critical event asa simulation "step".
Hence, unless there are coincident events,n boundaries disappear exactly aftern steps.
Waiting times between successive critical events can be treated as random variables.
To formulate a probabilistic theory, we need to establish the properties of these vari-
ables, e.g. their joint probability distribution functions (pdf’s) etc. This task would be
significantly simpler if we could assume that the waiting times are mutually indepen-
dent so that it would be sufficient to determine marginali-th waiting time distribution
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Figure 2: Evolution of the grain boundary character distribution for various choices of
γ.

wi(t). In all tests that follow, we use data collected from 15000 runs withn = 5000
grain boundaries each. The runs are initialized with a random configuration of orien-
tations and lengths and utilize the same energy functionalγ(x) = (x − 0.5)2.
Fig. 3 below provides the justification for the independenceassumption. Fig. 3(a)
shows the correlation coefficient between two successive waiting timesTi andTi−1,
where1 ≤ i ≤ 4500. Observe that this correlation does not grow with time. Fig.3(b)
depicts the2000-th row of the correlation matrix. This picture is generic inthe sense
that an analogous plot is observed for an arbitraryj 6= 2000. Therefore, the matrix
is close to being diagonal, and there is no significant correlation between thej-th and
k 6= j-th waiting times.
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Figure 3: (a) Correlation between successive waiting timesas a function of jump
number, showing no grow of dependence over time. (b) Aj-th row of the correlation
matrix with j = 2000, showing the absence of long-order correlations.

Next, we identify the pdfswi(t) for the waiting times. The histograms ofwi(t) for
each 100-th arrival are plotted in Fig. 4 in log-log scale. The trend is clearly linear,
showing that each probability density exhibits an exponential behavior. However, as
shown in Fig. 4(b), the means of the exponential distributions increase with time, due
to the slowing effect of the grain growth dynamics attributed to increase in the average
grain boundary length. Hence we conclude that the waiting times distributions depend
on the step number and are given by

wi(t) = ri exp (−rit),

whereri is a constant dependent oni. The dependence ofri on i is essentially quartic,
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Figure 4: (a) Double-log scale plot of the histograms for waiting timeswi(t), re-
vealing exponential behavior with decaying rates.(b) The mean of the waiting times
distribution for thei-th waiting timewi(t) grows with time.

as demonstrated by the least-squares fit in Fig. 5. Henceri ∼ (N∞ − i)4.
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Figure 5: Least squares fit for the exponential distributionparametersri.

4 PROBABILISTIC DERIVATION OF THE ARRIVAL RATES MASTER EQUA-
TION

We now derive the arrival rate master equation. Consider thesequence of times of
critical events during grain coarsening. These events can be described within the
framework of a renewal process as long as timesT1, T2, . . . between consecutive steps
of the random walker are independent, identically distributed random variables. Here
we consider a more general case, whereTi, i = 1, 2, . . . are nonnegative, independent
random variables thatmay not be identically distributed, that is eachTi is drawn from
a distributionwi(t), i = 1, 2, . . ..
SetT (0) = 0 and let

T (n) =

n∑
i=0

Ti (7)

be the time of then-th jump. Consider the random process

N(t) = max{n ≥ 0 : T (n) ≤ t} (8)



counting the number of jumps up to timet and denote

tk =

k∑
i=1

Ti, k ≥ 1

to be renewal times of the process. Denote the probability that at leastk arrivals have
occurred prior to timet by

Λk(t) = P(tk ≤ t), (9)

and the corresponding density function by

λk(t) =
dΛk(t)

dt
. (10)

Note thatλk(t)dt is the probability that thek-th arrival occurs during the time interval
[t, t + dt]. The probability that an arbitrary arrival will be observedduring the same
time interval is given by

λ(t)dt = P (∪k {tk ∈ [t, t + dt]}) =

∞∑
k=0

λk(t)dt, (11)

where the last equality follows from independence of time increments. We callλ(t)
the arrival rate.
It is easy to see that while being a density of a sum of random variablesTi, i =
1, . . . , k, the densityλk(t) can be computed as ak-fold convolution of individual
waiting time densitieswi(t), i = 1, . . . , k, so that in the Laplace space

λ̂k(u) =
k∏

i=1

ŵi(u), (12)

where byf̂(u) we denote a Laplace transform of a well-behaved functionf :

L(f(t))(u) = f̂(u) =

∫ +∞

0

e−tuf(t)dt.

We can construct the master equation based on the last jump asfollows:

λk+1(t) =
∫ t

0
λk(s)wk+1(t − s)ds

λ(t) = λ1(t) +
∞∑

k=1

λk+1(t) = w1(t) +
∑∞

k=1

∫ t

0
λk(s)wk+1(t − s)ds

= w1(t) +
∫ t

0
λ(s)W (s, t − s)ds,

where

W (s, t − s) :=

∞∑
k=1

λk(s)

λ(s)
wk+1(t − s) (13)

is the kernel describing the probability of a single jump between timess andt. Hence
the arrival rates satisfy

λ(t) = w1(t) +

∫ t

0

λ(s)W (s, t − s)ds, (14)



which will be referred to as a generalized renewal equation from now on. In the case of
i.i.d waiting times distributed according to a common laww(t), we obtain a standard
renewal equation

λ(t) = w(t) +

∫ t

0

λ(s)w(t − s)ds, (15)

which, in turn, yieldsλ(t) = r = const in the case of a regular Poisson process with
the waiting timesw(t) = re−rt. Notice, however, than the behavior of the arrival rate
is more complicated in the case of non-identically distributed variables. For instance,
if wi(t) = rie

−rit, by a simple but tedious calculation ofk-fold convolutions we
obtain

λ(t) =

∞∑
k=1

k∑
i=1

rie
−rit

k∏
i=1,i 6=j

rj

ri − rj

. (16)

In order to avoid possible convergence issues and to reflect the fact that the number of
events in the model systems is finite we will assume that the first summation in (16) is
performed up to a largem < ∞.

5 COMPARISON BETWEEN THEORY AND NUMERICS

Our numerical experiments show that the cumulative arrivals do not depend linearly
on time. In Fig. 6, we plot the cumulative number of arrivalsN(t) (the number
of critical events) before timet, and again observe the slowing effect comparing to
what we expect from regular Poisson-type process (whereN(t) grows linearly with
time). What is even more intriguing is that the arrival times match those obtained via
the regular renewal equation (15) for the choice ofw(t) = 0.051 t−1.3 for 3500 ≤
i ≤ 4500, as shown in Fig. 6. This suggests existence of an intermediate fractional
diffusive regime in our model [13]. To study this more precisely, we need to identify
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Figure 6: Empirical cumulative arrivals at timet produced via simulation and an-
alytically determined from the generalized fractional renewal equation (15) with
w(t) ∼ t−1.3.

if the fractional exponentβ = 0.3 conforms with the arrival rates given above. Fig.
7(a) shows the log-log graph of the number of intervals in thesystem surviving at time
t, N∞ − N(t), for the period from1000 to 4500-th arrivals. This behavior conforms
well with N(t) ∼ t in the beginning. However the dependence ofN∞ − N(t) on t



for the period between 3000th and 5000th arrivals (Fig. 7(a)) is given by

N∞ − N(t) ∼ t−β , whereβ ∼ 0.3.

The dynamics of the process experiences a transition from one mode to another at
some critical pointtcr in the simulation. At the same critical timetcr the stabiliza-
tion of relative distributions is observed. Note that, although by the timet = tcr,
almost half of the boundaries have disappeared, the absolute time elapsed from the
onset of simulation remains minuscule (of the order of10−4 sec for a 1 sec long simu-
lation). The change in the behavior of the system can be attributed to "washing-out" of
transients during the relaxation stage of coarsening. Note, however, that the "stable"
regime corresponding to the stabilized distributions deviates significantly from regular
diffusion, withβ = 0.3, in contrast with the normal diffusion, whereβ = 1. Hence
we have a case of an anomalous (sub)diffusion.
Further, note that the analytical solution of the generalized renewal equation (16) pre-
dicts both stationary Poisson and fractional behavior observed in our experiments.
Indeed, there is a close match between the arrival rates at the intermediate stage of
coarsening as can be seen in Fig. 7(b). Here, for the intervalbetweeni = 3600 and
i = 4500, we compare the empirical arrival rate versus the solution of the renewal
master equation (16). We approximate waiting times to matchthe least-squares fit in
Fig. 5 by settingwi(t) = ri exp (−rit) with ri = 3.7 · 10−9(1400− i)4. We compen-
sate for the time elapsed before the3600 arrival by translating the absolute time by
3.4 · 10−2—the mean of

∑3600

i=1
Ti. The plot shows a close agreement in the double-

logarithmic scale, indicating that the generalized renewal equation captures the system
dynamics in this interval.
If, on the other hand, we examine the expressionri ∼ (N∞ − i)4, we observe that
ri ≈ N4

∞ for i ≪ N∞. Hence, at its initial stages, the renewal process is close to a
stationary Poisson process. The drawback of this is that thesolution (16) of the gener-
alized renewal equation is numerically ill-behaved fori ≪ 5000. Having made these
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Figure 7: (a) Least square power law fit for the number of surviving grain boundaries
at timet. (b) Comparison of arrival rates in log-log scale obtained in simulations of
the full system and analytically via equation (16).

observations, it is clear that the jump process underlying the grain growth dynamics
in the one-dimensional case is far from being simple. Not only it does not fit into the
regular diffusion framework but, due to the decaying arrival rates, it also deviates from
the more general framework of continuous time random walks.By means of the gen-
eralized renewal theory, we have been able to completely determine the arrival rates
throughout the evolution. Moreover, we have shown that the model bears striking sim-
ilarity to the fractional sub-diffusion in an intermediateregime where most relevant
distributions stabilize. Similar observations can be madefor the full process that takes
into account jumps in orientation, as we will show in a forthcoming paper.
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