We expand on A.H. Stone’s 1948 result that \mathbb{N}^ω is not normal, by characterizing the closed sets which witness the non-normality of \mathbb{N}^ω. We give necessary and sufficient conditions on closed sets $Z \subset \mathbb{N}^\omega$ for the existence and construction of a closed set $Z' \subset \mathbb{N}^\omega$ where Z' is disjoint from Z, and where Z and Z' witness the non-normality of \mathbb{N}^ω. We use the above to get a relationship between witnesses to the non-normality of \mathbb{N}^ω and discrete subsets of \mathbb{N}^ω, as well as give a pair of disjoint countable closed discrete subsets of \mathbb{N}^ω which can not be separated by open sets having disjoint closures. A.H. Stone gave two closed disjoint homeomorphic subsets of \mathbb{N}^ω failing to have an open separation. We expand on the property that his witnesses are homeomorphic by showing that for any closed set $Z \subset \mathbb{N}^\omega$ if Z has a non-Lindelöf boundary, then there exists a closed set $Z' \subset \mathbb{N}^\omega$ where Z and Z' are disjoint, homeomorphic, and fail to have an open separation.